Transcendental Number Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minkowski's Geometry of Numbers
Geometry of numbers MAT4250 — Høst 2013 Minkowski’s geometry of numbers Preliminary version. Version +2✏ — 31. oktober 2013 klokken 12:04 1 Lattices Let V be a real vector space of dimension n.Byalattice L in V we mean a discrete, additive subgroup. We say that L is a full lattice if it spans V .Ofcourse,anylattice is a full lattice in the subspace it spans. The lattice L is discrete in the induced topology, meaning that for any point x L 2 there is an open subset U of V whose intersection with L is just x.Forthesubgroup L to be discrete it is sufficient that this holds for the origin, i.e., that there is an open neigbourhood U about 0 with U L = 0 .Indeed,ifx L,thenthetranslate \ { } 2 U 0 = U + x is open and intersects L in the set x . { } Aoftenusefulpropertyofalatticeisthatithasonlyfinitelymanypointsinany bounded subset of V .Toseethis,letS V be a bounded set and assume that L S is ✓ \ infinite. One may then pick a sequence xn of different elements from L S.SinceS { } \ is bounded, its closure is compact and xn has a subsequence that converges, say to { } x. Then x is an accumulation point in L;everyneigbourhoodcontainselementsfrom L distinct from x. The lattice associated to a basis If = v1,...,vn is any basis for V ,onemayconsiderthesubgroupL = Zvi of B { } B i V consisting of all linear combinations of the vi’s with integral coefficients. Clearly L P B is a discrete subspace of V ;IfonetakesU to be an open ball centered at the origin and having radius less than mini vi ,thenU L = 0 .HenceL is a full lattice in k k \ { } B V . -
Transcendence Theory and Its Applications
J. Austral. Math. Soc. (Series A) 25 (1978), 438-444 TRANSCENDENCE THEORY AND ITS APPLICATIONS A. BAKER Dedicated to Professor K. Mahler on his 75th birthday (Received 19 December 1977) Communicated by J. H. Coates Abstract This is the text of an invited address given at the Summer Research Institute of the Australian National University in January 1978. It provides a survey of the subject matter of the title. Subject classification (Amer. Math. Soc. (MOS) 1970): primary 10-02, 1OF35; secondary 10B15. 1. Introduction I should like to speak today about some of the latest developments that have taken place in connexion with the theory of linear forms in the logarithms of algebraic numbers. This is, of course, just one aspect of transcendence theory, but it has been an especially active area of development throughout the past decade, and it has found many applications relating to a wide variety of Diophantine problems. I shall discuss some of these applications later in my talk, but let me begin with some basic definitions. 2. Definitions An algebraic number is a zero of a polynomial with integer coefficients; thus if a. is algebraic we have for some integers a0, ...,an. We can suppose that the polynomial on the left is irreducible, and that ao,...,an are relatively prime; then n is called the degree of 438 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 25 Sep 2021 at 06:49:21, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. -
The Hermite–Lindemann–Weierstraß Transcendence Theorem
The Hermite–Lindemann–Weierstraß Transcendence Theorem Manuel Eberl March 12, 2021 Abstract This article provides a formalisation of the Hermite–Lindemann– Weierstraß Theorem (also known as simply Hermite–Lindemann or Lindemann–Weierstraß). This theorem is one of the crowning achieve- ments of 19th century number theory. The theorem states that if α1; : : : ; αn 2 C are algebraic numbers that are linearly independent over Z, then eα1 ; : : : ; eαn are algebraically independent over Q. Like the previous formalisation in Coq by Bernard [2], I proceeded by formalising Baker’s alternative formulation of the theorem [1] and then deriving the original one from that. Baker’s version states that for any algebraic numbers β1; : : : ; βn 2 C and distinct algebraic numbers αi; : : : ; αn 2 C, we have: α1 αn β1e + ::: + βne = 0 iff 8i: βi = 0 This has a number of immediate corollaries, e.g.: • e and π are transcendental • ez, sin z, tan z, etc. are transcendental for algebraic z 2 C n f0g • ln z is transcendental for algebraic z 2 C n f0; 1g 1 Contents 1 Divisibility of algebraic integers 3 2 Auxiliary facts about univariate polynomials 6 3 The minimal polynomial of an algebraic number 10 4 The lexicographic ordering on complex numbers 12 5 Additional facts about multivariate polynomials 13 5.1 Miscellaneous ........................... 13 5.2 Converting a univariate polynomial into a multivariate one . 14 6 More facts about algebraic numbers 15 6.1 Miscellaneous ........................... 15 6.2 Turning an algebraic number into an algebraic integer .... 18 6.3 Multiplying an algebraic number with a suitable integer turns it into an algebraic integer. -
Algebraic Numbers As Product of Powers of Transcendental Numbers
S S symmetry Article Algebraic Numbers as Product of Powers of Transcendental Numbers Pavel Trojovský Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic; [email protected]; Tel.: +42-049-333-2801 Received: 17 June 2019; Accepted: 4 July 2019; Published: 8 July 2019 Abstract: The elementary symmetric functions play a crucial role in the study of zeros of non-zero polynomials in C[x], and the problem of finding zeros in Q[x] leads to the definition of algebraic and transcendental numbers. Recently, Marques studied the set of algebraic numbers in the form P(T)Q(T). In this paper, we generalize this result by showing the existence of algebraic Q (T) Qn(T) numbers which can be written in the form P1(T) 1 ··· Pn(T) for some transcendental number T, where P1, ... , Pn, Q1, ... , Qn are prescribed, non-constant polynomials in Q[x] (under weak conditions). More generally, our result generalizes results on the arithmetic nature of zw when z and w are transcendental. Keywords: Baker’s theorem; Gel’fond–Schneider theorem; algebraic number; transcendental number 1. Introduction The name “transcendental”, which comes from the Latin word “transcendˇere”, was first used for a mathematical concept by Leibniz in 1682. Transcendental numbers in the modern sense were defined by Leonhard Euler (see [1]). A complex number a is called algebraic if it is a zero of some non-zero polynomial P 2 Q[x]. Otherwise, a is transcendental. Algebraic numbers form a field, which is denoted by Q. The transcendence of e was proved by Charles Hermite [2] in 1872, and two years later Ferdinand von Lindeman [3] extended the method of Hermite‘s proof to derive that p is also transcendental. -
Arithmetic Properties of Certain Functions in Several Variables III
BULL. AUSTRAL. MATH. SOC. I0F35, 39A30 VOL. 16 (1977), 15-47. Arithmetic properties of certain functions in several variables III J.H. Loxton and A.J. van der Poorten We obtain a general transcendence theorem for the solutions of a certain type of functional equation. A particular and striking consequence of the general result is that, for any irrational number u) , the function I [ha]zh h=l takes transcendental values at all algebraic points a with 0 < lal < 1 . Introduction In this paper, we continue our study of the transcendency of functions in one or more complex variables which satisfy one of a certain general class of functional equations. The ideas for this work go back almost 50 years to 3 papers of Mahler [9], [JO], and [H] in which he analyses solutions of functional equations of the form f{Tz) = R{z; f{z)) , where T is a certain transformation of the n complex variables z = [z , ..., z ) , and R(z; w) is a rational function. In our earlier papers [7] and [£], we extended Mahler's results by widening the class of allowable transformations T . It is our object here to generalise the theory in another direction and, specifically, to answer a problem posed by Mahler, namely Problem 2 of [72]. In view of the technical nature of our Received 16 August 1976. 15 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 24 Sep 2021 at 14:25:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. -
Zero-One Laws
1 THE LOGIC IN COMPUTER SCIENCE COLUMN by 2 Yuri GUREVICH Electrical Engineering and Computer Science UniversityofMichigan, Ann Arb or, MI 48109-2122, USA [email protected] Zero-One Laws Quisani: I heard you talking on nite mo del theory the other day.Itisinteresting indeed that all those famous theorems ab out rst-order logic fail in the case when only nite structures are allowed. I can understand that for those, likeyou, educated in the tradition of mathematical logic it seems very imp ortantto ndoutwhichof the classical theorems can b e rescued. But nite structures are to o imp ortant all by themselves. There's got to b e deep nite mo del theory that has nothing to do with in nite structures. Author: \Nothing to do" sounds a little extremist to me. Sometimes in nite ob jects are go o d approximations of nite ob jects. Q: I do not understand this. Usually, nite ob jects approximate in nite ones. A: It may happ en that the in nite case is cleaner and easier to deal with. For example, a long nite sum may b e replaced with a simpler integral. Returning to your question, there is indeed meaningful, inherently nite, mo del theory. One exciting issue is zero- one laws. Consider, say, undirected graphs and let be a propertyofsuch graphs. For example, may b e connectivity. What fraction of n-vertex graphs have the prop erty ? It turns out that, for many natural prop erties , this fraction converges to 0 or 1asn grows to in nity. If the fraction converges to 1, the prop erty is called almost sure. -
Liouville Numbers
Math 154 Notes 2 In these notes I’ll construct some explicit transcendental numbers. These numbers are examples of Liouville numbers. Let {ak} be a sequence of positive integers, and suppose that ak divides ak+1 for all k. We say that {ak} has moderate growth if there is some con- K stant K such that an+1 <K(an) for all n. Otherwise we say that {an} has immoderate growth. ∞ 1 Theorem 0.1 k P If {a } has immoderate growth then the number x = n=1 an is transcendental. Proof: We will suppose that P (x) = 0 for some polynomial P . There is some constant C1 such that P has degree at most C1 and all the coefficients of P are less than C1 in absolute value. Let xn = 1/a1 + ... +1/an. The divisibility condition guarantees that xn = hn/an, where hn is some integer. As long as P (xn) is nonzero, we have −C1 |P (xn) − P (x)| = |P (xn)|≥ (an) . (1) This just comes from the fact that P (xn) is a rational number whose denom- C1 inator is at most (an) . ′ On the other hand, there is some constant C2 such that |P (u)| < C2 for all u in the interval [x − 1,x + 1]. For n large, xn lies in this interval. Therefore, by the usual estimate that comes from integration, −1 |P (xn) − P (x)| <C2|xn − x| < 2C2an+1. (2) The last inequality comes from the fact that {1/an} decays faster than the sequence {1/2n} once n is large. -
Chapter 2 Geometry of Numbers
Chapter 2 Geometry of numbers Literature: W.M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer Verlag 1980, Chap.II, xx1,2, Chap. IV, x1 J.W.S. Cassels, An Introduction to the Geometry of Numbers, Springer Verlag 1997, Classics in Mathematics series, reprint of the 1971 edition C.L. Siegel, Lectures on the Geometry of Numbers, Springer Verlag 1989 2.1 Introduction Geometry of numbers is concerned with the study of lattice points in certain bodies n in R , where n > 2. We discuss Minkowski's theorems on lattice points in central symmetric convex bodies. In this introduction we give the necessary definitions. Lattices. A (full) lattice in Rn is an additive group L = fz1v1 + ··· + znvn : z1; : : : ; zn 2 Zg n where fv1;:::; vng is a basis of R , i.e., fv1;:::; vng is linearly independent. We call fv1;:::; vng a basis of L. The determinant of L is defined by d(L) := j det(v1;:::; vn)j; that is, the absolute value of the determinant of the matrix with columns v1;:::; vn. 7 We show that the determinant of a lattice does not depend on the choice of the basis. Recall that GL(n; Z) is the multiplicative group of n×n-matrices with entries in Z and determinant ±1. Lemma 2.1. Let L be a lattice, and fv1;:::; vng, fw1;:::; wng two bases of L. Then there is a matrix U = (uij) 2 GL(n; Z) such that n X (2.1) wi = uijvj for i = 1; : : : ; n: j=1 Consequently, j det(v1;:::; vn)j = j det(w1;:::; wn)j. -
Introductory Number Theory Course No
Introductory Number Theory Course No. 100 331 Spring 2006 Michael Stoll Contents 1. Very Basic Remarks 2 2. Divisibility 2 3. The Euclidean Algorithm 2 4. Prime Numbers and Unique Factorization 4 5. Congruences 5 6. Coprime Integers and Multiplicative Inverses 6 7. The Chinese Remainder Theorem 9 8. Fermat’s and Euler’s Theorems 10 × n × 9. Structure of Fp and (Z/p Z) 12 10. The RSA Cryptosystem 13 11. Discrete Logarithms 15 12. Quadratic Residues 17 13. Quadratic Reciprocity 18 14. Another Proof of Quadratic Reciprocity 23 15. Sums of Squares 24 16. Geometry of Numbers 27 17. Ternary Quadratic Forms 30 18. Legendre’s Theorem 32 19. p-adic Numbers 35 20. The Hilbert Norm Residue Symbol 40 21. Pell’s Equation and Continued Fractions 43 22. Elliptic Curves 50 23. Primes in arithmetic progressions 66 24. The Prime Number Theorem 75 References 80 2 1. Very Basic Remarks The following properties of the integers Z are fundamental. (1) Z is an integral domain (i.e., a commutative ring such that ab = 0 implies a = 0 or b = 0). (2) Z≥0 is well-ordered: every nonempty set of nonnegative integers has a smallest element. (3) Z satisfies the Archimedean Principle: if n > 0, then for every m ∈ Z, there is k ∈ Z such that kn > m. 2. Divisibility 2.1. Definition. Let a, b be integers. We say that “a divides b”, written a | b , if there is an integer c such that b = ac. In this case, we also say that “a is a divisor of b” or that “b is a multiple of a”. -
On the Normality of Numbers
ON THE NORMALITY OF NUMBERS Adrian Belshaw B. Sc., University of British Columbia, 1973 M. A., Princeton University, 1976 A THESIS SUBMITTED 'IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Mathematics @ Adrian Belshaw 2005 SIMON FRASER UNIVERSITY Fall 2005 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. APPROVAL Name: Adrian Belshaw Degree: Master of Science Title of Thesis: On the Normality of Numbers Examining Committee: Dr. Ladislav Stacho Chair Dr. Peter Borwein Senior Supervisor Professor of Mathematics Simon Fraser University Dr. Stephen Choi Supervisor Assistant Professor of Mathematics Simon Fraser University Dr. Jason Bell Internal Examiner Assistant Professor of Mathematics Simon Fraser University Date Approved: December 5. 2005 SIMON FRASER ' u~~~snrllbrary DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection, and, without changing the content, to translate the thesislproject or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. -
Diophantine Approximation and Transcendental Numbers
Diophantine Approximation and Transcendental Numbers Connor Goldstick June 6, 2017 Contents 1 Introduction 1 2 Continued Fractions 2 3 Rational Approximations 3 4 Transcendental Numbers 6 5 Irrationality Measure 7 6 The continued fraction for e 8 6.1 e's Irrationality measure . 10 7 Conclusion 11 A The Lambert Continued Fraction 11 1 Introduction Suppose we have an irrational number, α, that we want to approximate with a rational number, p=q. This question of approximating an irrational number is the primary concern of Diophantine approximation. In other words, we want jα−p=qj < . However, this method of trying to approximate α is boring, as it is possible to get an arbitrary amount of precision by making q large. To remedy this problem, it makes sense to vary with q. The problem we are really trying to solve is finding p and q such that p 1 1 jα − j < which is equivalent to jqα − pj < (1) q q2 q Solutions to this problem have applications in both number theory and in more applied fields. For example, in signal processing many of the quickest approximation algorithms are given by solutions to Diophantine approximation problems. Diophantine approximations also give many important results like the continued fraction expansion of e. One of the most interesting aspects of Diophantine approximations are its relationship with transcendental 1 numbers (a number that cannot be expressed of the root of a polynomial with rational coefficients). One of the key characteristics of a transcendental number is that it is easy to approximate with rational numbers. This paper is separated into two categories. -
The Evolution of Number in Mathematics Assad Ebrahim
THE EVOLUTION OF NUMBER IN MATHEMATICS ASSAD EBRAHIM Abstract. The number concept has evolved in a gradual process over ten millenia from concrete symbol association in the Middle East c.8000 BCE (“4 sheep-tokens are different than 4 grain-tokens”)1 to an hierarchy of number sets (N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H ⊂ O)2 the last four of which unify number with space and motion.3 In this paper we trace this evolution from whole numbers at the dawn of accounting with number-tokens through the paradoxes of algebraic irrationals, non-solvability by radicals4 , and uncountably many transcendentals, to the physical reality of imaginary numbers and the connection of the octonions with supersymmetry and string theory.5(FAQ3) Our story is of conceptual abstraction, algebraic extension, and analytic completeness, and reflects the modern transformation of mathematics itself. The main paper is brief (four pages) followed by supplements containing FAQs, historical notes, and appendices (holding theorems and proofs), and an annotated bibliography. A project supplement is in preparation to allow learning the material through self-discovery and guided exploration. For scholars and laymen alike it is not philosophy but active experience in mathematics itself that can alone answer the question: ‘What is Mathematics?’ Richard Courant (1941), book of the same title “One of the disappointments experienced by most mathematics students is that they never get a [unified] course on mathematics. They get courses in calculus, algebra, topology, and so on, but the division of labor in teaching seems to prevent these different topics from being combined into a whole.