Standard Compliant and Functionally Safe Engineering Design with Mechanical Auxiliary Contacts

Total Page:16

File Type:pdf, Size:1020Kb

Standard Compliant and Functionally Safe Engineering Design with Mechanical Auxiliary Contacts www.moeller.net Standard Compliant and Functionally Safe Engineering Design with Mechanical Auxiliary Contacts The complete range of Special Publication contactors, efficient motor- starters and controlled Dipl.-Ing. Wolfgang Esser drives for the motor circuit. New simple to install solutions based on clever communication. Contactors DIL Motor-protective circuit-breakers PKZ Motor-starters MSC Softstarters DS4 Drives Rapid Link 46157_VER2100-956.indd 1 07.08.2008 10:50:50 Uhr Dipl.-Ing. Wolfgang Esser Head of Industrial Switchgear Product Support Business Unit Motor Starters and Drives Moeller GmbH, Bonn Standard-compliant and functionally-safe engineering design with mechanical auxiliary contacts New, electronic-compatible auxiliary contact modules Information for quick readers DILA-XHIR11 for the contactor relay DIL A and for the most popular contactors DIL M7 to DIL M32, complement the xStart Even highly automated machines and systems cannot be product system [1]. The new auxiliary contacts provide an designed without electromechanical components which opportunity to discuss the topic of contact or control circuit feature electrical isolation, a high level of safety and excellent reliability. This technical publication additionally examines performance on the interfaces to the electronic inputs and different auxiliary contact constructions from the point of outputs. Contacts can occasionally cause contact faults due view of their suitability for usage in safety-related controls. to unfavourable circumstances and conditions. Contact faults must be avoided at all costs as a very high level of availability is In control circuits occasional malfunctions can occur even expected from machines and systems due to economic and with the use of top-quality switchgear. These difficulties can technical safety considerations. Moeller plays its part and be avoided by a problem-orientated engineering design provides improved auxiliary contacts, but the design engineer, approach. In this special publication potential sources of the installation specialist and the operators must also provide disturbance are highlighted and preventative solutions for support. The influencing variables are described in this engineering design are indicated. Well-known principles of publication as constructive measures, engineering principles reliability and safety with electrical low-voltage switchgear and ambient influences. systems are explained. This publication endeavours to make this topic understandable for all persons who do not have a background in electrical technology. Different parameters influence the in Table 1), which are available as ready the requirements placed on the contacts contact reliability made products on the market. The and have produced new terms which individual solutions include advantages have led to the confusion of many users. Four aspects influence the quality level and disadvantages. The most important New terms have always been associated of the contact or control circuit reliability disadvantage relates to limitations with with the escalation in the requirements of electromechanical switchgear and the relationship between different and with a more exact description of protective devices on the interface to types of contacts for safety circuits with the relationship and dependance the electronic systems, and in the regard to the reductions in electrical between different types of contacts. circuits with very low currents and load capability and the frequent voltages: limitation of application possibilities, or the absence of electrical isolation Contacts with electrical isolation for • Constructive features of the contact (will be explained later). safety functions element, • Current and voltage levels which are The term “auxiliary contact” sounds One of the most important features of to be switched, very simple at first. The demands placed contact-relevant switchgear continues • Engineering design principles with on it however are very comprehensive to be the electrical isolation provided interconnection of several contact and partly physically contradictory. by the contacts, which provides a high blocks Table 2 shows in very simplified form level of safety, e.g. for personnel safety, • and the ambient conditions. the typical demands placed on the and on which the entire safety contacts with different product groups philosophy is based. The electrical The contact reliability or contact security which feature different actuation isolation ensures that the isolated is not a constant factor, but deviates devices. The method of actuation conductors on the output side are truly from circuit to circuit within a certain heavily influences the construction of potential free. In contrast to switching tolerance. The tolerances can be the contact and the remedies to contact with semiconductors it must be noted influenced by the four factors reliability problems. that a leakage current will flow in the mentioned above. The competence of off state and that a dangerous touch a switchgear manufacturer is primarily Auxiliary contacts are frequently involved voltage may exist on the output. responsible for the first criterion. Over in the mastering of safety-related tasks, A second significant difference between the years there have been various e.g. personnel protection with mechanical contacts and semiconductor solutions for optimisation of the contact dangerous machines and systems. Hence contact elements is associated in the reliability of auxiliary contacts (examples various safety standards have dealt with transfer resistance and in the related 2 46157_VER2100-956.indd 2 07.08.2008 10:50:52 Uhr heat dissipation. The heat dissipation circuit-breakers). They are designed to Those who are not familiar with the is about 10 times higher on semi- switch different types of loads (motors, construction principles of switching and conductors than on an electromechanical heating systems, lighting, capacitors, protection devices initially assume that contact for the same current. This aspect etc.) with different rating data (power, the auxiliary contacts always assume plays a significant role with high-power current, voltage) over a suitable lifespan. the same switch position as the main contacts. The demands on the main contacts contacts. However, this obvious result from the corresponding product assumption is not always possible to standards, for example from the group realise on the timing front. For example, Contact types and standard-conform IEC/EN 60 947, but also from the the linear motions of the actuators of relationships between contacts construction and installation standards, the main and auxiliary contacts may such as IEC/EN 60 204-1 [2]. vary in length, so that acceleration path The risk assessment prescribed for and the slowdown path leads to differing machines and systems in compliance Auxiliary contacts are also referred to switching time points. The main and with the EU machine directive is usually as supplementary contacts or control auxiliary contacts are no longer switched performed by machine specialists. This contacts (Figure 1). They belong to the on and off using the same contact is why the most well-known and auxiliary or control devices (e.g. control mechanism, at the latest since the different types of contacts and their devices, contactor relays, relays). They switchgear has been developed, peculiarities should be explained here are also used for auxiliary functions on constructed and combined as a modular first for the electrical specialist personnel. the described circuit-breaker devices. system. Previously the contact paths of With the contact types it is initially They are mainly used to signal switching auxiliary and main contacts more or less important to differentiate between or malfunction states, for interlocking exhibited significant differences with main and auxiliary contacts for the sake circuits or logic and sequence controls the non-modifiable switchgear, because of the standards. Main contacts or with low to high loading. different voltages, currents and load high-power contacts belong to the types with varying arcing conditions circuit-breaker devices (e.g. contactors, had to be mastered, which inevitably Technological and economic aspects Important criteria for safety applications Construction features Positively driven Advantages Disadvantages Mirror contacts contacts Switch in a switch, introduces a certain Under certain Integrated enhancement of the circumstances, if N/O See right Probably no microswitch degree of protection, can and N/C contacts are be used for wide current available and voltage ranges Vibration sensitive, sensitive to interference, Attractively priced, Reed contacts low loadability, short- No No space-saving circuit protection difficult Expensive, voltage supply Wear free, insensitive dependent, outputs Electronic to soiling, insensitive frequently potential No No circuits to vibration relevant, difficult short- circuit protection Attractively priced, no New auxiliary For 2 contacts the space limitations in terms of Yes, for use in Yes, for use in contact DILA-XHIR11 of 4 “normal” contacts loadability with current safety circuits safety circuits from Moeller is required and voltage values Table 1: Different example solutions for auxiliary contacts with the main advantages and disadvantages. In safety applications positively driven contact blocks, or even mirror contacts are required 3 46157_VER2100-956.indd 3 07.08.2008 10:50:52 Uhr Demands on the auxiliary contact with
Recommended publications
  • GE Kv Vector Electricity Meter
    GEH-5081B GE kV™ Vector Electricity Meter Product Description Option Board Installation Procedures, Operating Instructions, Maintenance Instructions and Site Analysis Guides Price: $ 30.00 Notice The information contained in this document is subject to change without notice. GE makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. GE shall not be liable for errors contained herein or incidental consequential damages in connection with the furnishing, performance, or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied or otherwise reproduced without consent of GE. Copyright (c) 1997 by GE Published in a limited copyright sense, and all rights, including trade secrets, are reserved. Document Edition - First 4/96 - Version A 5/97 - Version B 11/97 kV™, Lexan™, MeterMate™, OPTOCOM™, Power Guard™, Site Genie™, Fitzall, and SMARTCOUPLER™ are trademarks of GE. FCC COMPLIANCE STATEMENT This product generates and uses radio frequency energy. It has been tested and verified that it complies with the limits for the Code of Federal Regualtions (CFR) 47, Part 15 Radio Frequency Devices, Subparts A General and B Unintentional Radiators issued by the Federal Communications Commission for Class “B” digital devices. If, however, the product causes radio or television interference, notify: Manager - Technology General
    [Show full text]
  • Moeller Wiring Manual 02/05 Specifications, Formulae, Tables
    Moeller Wiring Manual 02/05 Specifications, Formulae, Tables Page Marking of electrical equipment 9-2 Circuit symbols, European – North America 9-14 Circuit diagram example to North American specifications 9-27 Approval authorities worldwide 9-28 Test authorities and approval stamps 9-32 Protective measures 9-34 Overcurrent protection of cables and conductors 9-43 Electrical equipment of machines 9-51 Measures for risk reduction 9-56 Measures for risk avoidance 9-57 Degrees of protection for electrical equipment 9-58 North American classifications for control switches 9-68 9 Utilisation categories for contactors 9-70 Utilisation categories for switch-disconnectors 9-74 Rated motor currents 9-77 Conductors 9-81 Formulae 9-90 International unit system 9-94 For Immediate Delivery call KMParts.com at (866) 595-96169-1 Moeller Wiring Manual 02/05 Specifications, Formulae, Tables Marking of electrical equipment General Extracts from the DIN Standards with VDE The marking appears in a suitable position as Classification are quoted with the permission of close as possible to the circuit symbol. The the DIN (Deutsches Institut für Normung e.V.) and marking forms the link between the equipment in the VDE (Verband der Elektrotechnik Elektronik the installations and the various circuit documents Informationstechnik e.V.) It is imperative for the (wiring diagrams, parts lists, circuit diagrams, use of the standards that the issue with the latest instructions). For simpler maintenance, the date is used. These are available from complete marking or part of it, can be affixed on VDE-VERLAG GMBH, Bismarckstr. 33, 10625 or near to the equipment.
    [Show full text]
  • Nortec RS Steam Humidifier Operation Manual
    2582418-A EN | 06 AUG 2015 EN | 06 2582418-A OPERATION MANUAL Steam humidifier Nortec RS Humidification and Evaporative Cooling Thank you for choosing Nortec Installation date (MM/DD/YYYY): Commissioning date (MM/DD/YYYY): Site: Model: Serial number: Manufacturer Nortec Humidity Ltd. 2740 Fenton Road, Ottawa, Ontario K1T3T7 TEL: 1.866.NORTEC1, FAX: 613.822.7964 EMAIL: [email protected], WEBSITE: www.humidity.com Proprietary Notice This document and the information disclosed herein are proprietary data of Nortec Humidity Ltd. Neither this do- cument, nor the information contained herein shall be reproduced, used, or disclosed to others without the written authorization of Nortec Humidity Ltd., except to the extent required for installation or maintenance of recipient's equipment. Liability Notice Nortec Humidity Ltd. does not accept any liability due to incorrect installation or operation of the equipment or due to the use of parts/components/equipment that are not authorized by Nortec Humidity Ltd. Copyright Notice Copyright 2015, Nortec Humidity Ltd. All rights reserved. Technical modifications reserved Contents 1 Introduction 5 1.1 Before You Begin 5 1.2 Notes on the Operation Manual 5 2 For Your Safety 7 3 Product Overview 9 3.1 Construction Nortec RS steam humidifier 9 3.2 Functional Description 10 3.3 System Overview Nortec RS 11 3.4 System Overview Nortec RS for Direct Room Humidification 12 4 Operation 13 4.1 First-time Commissioning 13 4.2 Display and Operating Elements 13 4.3 Commissioning After an Interruption of Operation
    [Show full text]
  • RELAY and CONTROL REQUIREMENTS for PARALLEL OPERATION of DISTRIBUTED GENERATION (12Kv and Below)
    EU00536095 RELAY AND CONTROL REQUIREMENTS FOR Revision:0 PARALLEL OPERATION OF GENERATION Effective Date: 12/11/2017 Page 1 of 67 PPL ELECTRIC UTILITIES CORPORATION RELAY AND CONTROL REQUIREMENTS FOR PARALLEL OPERATION OF DISTRIBUTED GENERATION (12kV and below) REV. 0, 12/11/2017 By: Deepak Sharma Reviewer: signed Thien Hoang – Supervising Engineer Distribution Design and Standards Approver: signed Michael J. Wolf – Supervising Engineer Distribution Substation Design SHEET 1 of 67 EU00536095 RELAY AND CONTROL REQUIREMENTS FOR Revision:0 PARALLEL OPERATION OF GENERATION Effective Date: 12/11/2017 Page 2 of 67 TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................... 2 1 FOREWORD ........................................................................................................................................ 5 2 SCOPE ................................................................................................................................................... 6 3 OVERVIEW .......................................................................................................................................... 7 3.1 INITIATING A REQUEST TO INSTALL OR CHANGE OPERATION OF GENERATION EQUIPMENT ............................................................................................................................................................. 8 3.2 POINT OF CONTACT (POC) and INTERTIE PROTECTIVE RELAYING (IPR) ...................................
    [Show full text]
  • Panasonic Switches
    GENERAL CATALOG SWITCHES Panasonic Switches Development cycles in modern industry are becoming ever shorter and more complex, and they require a high degree of engineering. Components integrated into machines must therefore not only meet the current qualitative and technical standards but must also fulfill functional and application demands. Individual products can often only be integrated after they have been customized. Panasonic Electric Works has always stood for product innovation – also when it comes to mechanical switches. Our immense portfolio includes switches in all common sizes and with various IP degrees of protection, and are guaranteed to cover all standard requirements. Our switches are characterized by a large switching capacity range, long lifetime and exceptional reliability. A wide selection of supplemental actuators coupled with various terminal styles, e.g. solder, quick connect, PC board terminal and cable connections, maximize flexibility and ease application design. In addition, we concentrate on the development and implementation of customer-specific solutions: Does the cable have to be a little bit longer? Or is a pluggable solution necessary? With the engineering know-how at our European manufacturing sites, we guarantee flexible, on-time delivery and provide immediate, on-site technical support. Product lineup 36 3 1 8 ASQ ABJ ABS ABV 8 2 27. 8 AV4 AH1 AEQ AV3/AVM3/AVT3/AVL3 AV6 AM5 AM1 AV1 AGX AJ7/8 T Series Tailoring equipment 2 Contents Selector Chart........................................................... 4 AM5 (QV) switches (contact gap more than 1mm).. 80 Micro switches IP67.................................................... 4 AEQ (EQ) switches.................................................. 81 Micro switches IP40.................................................... 6 AV (FS•FS-T) switches............................................ 86 Basic switches......................................................
    [Show full text]
  • Technical Information ■ Relay Classification
    Introduction Introduction Technical Information ■ Relay Classification Model Mounting Enclosure Ratings Features G4W Discrete Unsealed Designed for manual soldering. G2R Flux protection Designed inhibits flux intrusion into the casing from the ter- minals during soldering. G6A Sealed Sealed resin casings and covers, limiting damage from cor- rosive atmospheres. G6S Surface mounting Surface mounting relays permit automatic reflow soldering. ■ Construction Sealing Sealed Relays Unsealed Relays Fully sealing prevents not only flux, but also cleaning solvent from Relays of this type are intended for manual soldering. No mea- penetrating into the relay housing. Therefore, this type of relay sures are taken against penetration of flux and cleaning solvent can be immersion-cleaned. Relays are each tested before being into the relay. This type of relay cannot be immersion-cleaned. shipped. The relay is immersed in fluorocarbon solution for 1 +5°C Flux-protection Relays minute, at a temperature of 70°C /−0°C, to see if gases escape from the relay. The following figure illustrates the test conditions. Special design construction prevents flux from penetrating into the relay housing, for example, due to capillary action up the ter- minals when the relay is soldered onto a PCB. This type of relay also cannot be immersion-cleaned. 50 mm Ex.) 70 °C Relay Fluorocarbon solution Classification Unsealed Flux protection Construction Contacts located at Press-fit terminals Inserted terminals upper part of relay case Terminals separated from PCB Terminals Resin seal separated Terminals from PCB separated 0.3 mm from PCB min. base thickness Features Terminals are separated Contacts are positioned Terminals are pressed Terminals are inserted from PCB surface when away from base.
    [Show full text]
  • 2003 Cat.Pdf
    What’s New - New Products - What’s New High Voltage Reed Switches Tilt Switch See page 37 This series of switches is designed for Non-Mercury relays which are used in high reliability areas of the elec- trotechnical and electronic industry including electronic medical equip- Changeover ment; cable tester arrays and cable test equipment; copy machines; laser optical systems and infrared equipment; test equipment S1234 They provide high voltage stand-off and switching capability. The tung- See page 78 sten plated contacts give both a low stable CR and a long and reliable life. Surface Mount Mercury free changeover tilt switch with hermetically sealed gold contacts, Switch and and a case size of just 7.6mm. It’s rugged construction makes this Sensors switch suitable for many uses in secu- The Comus Group can now supply rity products, alarm and general move- surface mount termination for a wide ment sensing. rated at 60V, 0.2A and range of products. The gold plated clips See page 70 3VA Max. give good solderability and are designed to provide stability during assembly. Magtrix Connectors are versatile miniature Magtrix Neodymium-iron-boron nickel plated 6.0 Dia x Connector 5mm long magnets connected to a 40 x 0.65mm Dia. copper-tin plated flexible lead, with an operating MC/53GNS temperature of 120°C and a maximum power rating See page of 8 Amps. Primarily designed for use as battery connectors, 68 they are also ideal for proximity sensor and reed switch triggering, connecting PCBs, test equipment connections and prototypes where connections need to be made quickly.
    [Show full text]
  • • Relay Contact Protection • Noise Reduction on Controllers/Drivers • Dv
    Type Q/QRL Quencharc®Capacitor RC Snubber Network Arc Suppressor • Relay contact protection • Noise reduction on controllers/drivers Snubber Network • dv/dt suppression on thyristor and triacs • EMI/RFI reduction • No lag time in suppression • Available voltages: 125 VAC - 660 VAC • Type QRL – UL/CSA version L Max. TMax. ® Quencharc¤ ITW PAKTRON QUENCHARC¤ Arc Suppressor Snubber Network ITW PAKTRON H Max. Q/QRL QUENCHARC¤ UL/CSA version .25" Max. .850" Min. ARCING, SPARKING, and TRANSIENTS often cause premature failures in relays, switches, thyristors, triacs, contactors, and related products. Paktron QUENCHARCS¤ extend operating life when properly selected and applied. D Typ. VoltagE WavefoRM CURRENT WavefoRM Electrical Schematic Non-polarized UNSUPPRESSED SUPPRESSED UNSUPPRESSED SUPPRESSED 100V/div .1ms/div 100V/div .5ms/div 100V/div .1ms/div 100V/div .1ms/div PF Value Voltage Type Ohms Watt L T H D Part Code µF VDC/VAC ±10% MAX MAX MAX Typical Number 104 .1 600 / 250 QC 22 .5 1.08 (27.4) .39(9.9) .66 (16.7) .82 (20.8) 104M06QC22 104 .1 600 / 250 QC 47 .5 1.08 (27.4) .39(9.9) .66 (16.7) .82 (20.8) 104M06QC47 104 .1 600 / 250 QC 100 .5 1.08 (27.4) .39(9.9) .66 (16.7) .82 (20.8) 104M06QC100 104 .1 600 / 250 QC 150 .5 1.08 (27.4) .39(9.9) .66 (16.7) .82 (20.8) 104M06QC150 104 .1 600 / 250 QC 220 .5 1.08 (27.4) .39(9.9) .66 (16.7) .82 (20.8) 104M06QC220 104 .1 600 / 250 QC 330 .5 1.08 (27.4) .39(9.9) .66 (16.7) .82 (20.8) 104M06QC330 104 .1 1200/480 QH 39 2.0 1.60(40.6) .64(16.3) 1.04(26.4) 1.29(32.7) 104M48QH39 104 .1 1600/660 QV 39 2.0
    [Show full text]
  • Operation Manual
    NORTEC 1905 EN D 2582418- OPERATION MANUAL Steam humidifier Nortec RS series Humidification and Evaporative Cooling Thank you for choosing Condair Installation date (MM/DD/YYYY): Commissioning date (MM/DD/YYYY): Site: Model: Serial number: Contact Condair Ltd. 2740 Fenton Road, Ottawa, Ontario K1T3T7 TEL: 1.866.667.8321, FAX: 613.822.7964 EMAIL: [email protected], WEBSITE: www.condair.com Proprietary Notice This document and the information disclosed herein are proprietary data of Condair Ltd. Neither this document, nor the information contained herein shall be reproduced, used, or disclosed to others without the written authorization of Condair Ltd., except to the extent required for installation or maintenance of recipient's equipment. Liability Notice Condair Ltd. does not accept any liability due to incorrect installation or operation of the equipment or due to the use of parts/components/equipment that are not authorized by Condair Ltd. Copyright Notice © Condair Ltd. All rights reserved. Technical modifications reserved Contents 1 Introduction 5 1.1 To the very beginning 5 1.2 Notes on the operation manual 5 2 For your safety 7 3 Product Overview 9 3.1 Construction Nortec RS steam humidifier 9 3.2 Functional description 10 3.3 System overview Nortec RS 11 3.4 System overview Nortec RS for direct room humidification 12 4 Operation 13 4.1 First-time commissioning 13 4.2 Display and operating elements 13 4.3 Commissioning after an interruption of operation 14 4.4 Notes on operation 15 4.4.1 Inspections during operation 15 4.4.2 Remote
    [Show full text]
  • Sensor Switch Product Catalog
    / Lighting Controls Product Catalog It’s not just smarter. It’s easier. Acuity Controls is advanced lighting controls technology, service and support from a single expert source. We offer one of the industry’s most extensive product portfolios for indoor and outdoor applications, single rooms to campuses to municipalities. Our product solutions include occupancy and photosensors, panels, switches, fixture-level and wireless controls. Printed on Recycled Paper Contents 5 ABOUT SENSOR SWITCH 38 DAYLIGHTING CONTROL SENSORS 6 Benefits 38 Ceiling Mount 7 Sensor Technology 42 Recessed Mount 8 Sensorpedia: Occupancy Sensor Reference Guide 48 Fixture Mount 54 Fixture Mount Interchangeable Lens 21 PRODUCT SELECTION GUIDE 22 Wall Switch Controls 60 POWER PACKS 32 Wireless Products 34 Ceiling Mount Sensors 75 SPECIALTY PRODUCTS 40 Recessed Mount Sensors 76 Data Logging Monitoring System 44 Fixture Mount Sensors 78 Wire Guards 50 Fixture Mount Interchangeable Lens Sensors 79 Masking Labels 56 Wide View & Hallway Sensors 79 Ballast Discriminator 58 Outdoor Sensors 60 Power Packs 81 WIRING DIAGRAMS 62 Micro Enclosure 64 Snap-Fit 94 INDEX 69 Embedded The Sensor Switch product line Performance from Acuity Controls provides an innovative, high quality and You Can Count On! cost-effective controls solution for every application. Our occupancy Our Passive Dual Technology (PIR/Microphonics™) sensors and photocell products are • looks and listens for occupants ensuring reliable detection easy to install and easy to use. • Reversible line and load wires make Sensor Switch products easy to install • Reliable-circuit protection tested for over 400,000 switching cycles • Continuous coverage patterns for a breadth of applications meeting your every need • 5-year limited product warranty • Sensor Switch products aid in ensuring buildings meet applicable energy codes (Title 24, ASHRAE and IECC) www.acuitycontrols.com / 5 BENEFITS Energy Savings The Sensor Switch offering of occupancy and daylight sensors are designed to optimize energy savings and enable sustainability.
    [Show full text]
  • Relay Contact Life
    Application Note Relay Contact Life Relay contacts are available in a variety of metals and alloys, sizes and Because silver and silver alloys sulfidate, contact pressures must be great styles. There is no such thing as a universal contact. The relay user enough to break through this film. (Controlled arcing will also be helpful should select contact materials, ratings, and styles to meet, as precisely in that it burns off the sulfidation, and contact overtravel wipes away the as possible, the requirements of a particular application. Failure to do so residue.) While such pressures have no appreciable effect on silver- can result in contact problems and even early contact failure. cadmium contacts, they do result in increased material wear of fine silver contacts. Also, an interface voltage of several tenths of a volt can result For example, some contact materials require an arc to keep them free of with fine silver contacts because of the sulfide film. This film has been sulfidation, oxidation, and contaminates. Such materials on contacts known to capture and imbed airborne dirt. Breaking through this film used in a dry or low-level circuit can result in the contacts failing electrically generates electrical noise. Because of this, fine silver contacts are not to close the circuit, even though they make physically. The contacts may used for low-level switching, such as audio circuits. Rather, fine silver look clean, but this is deceiving. In reality, there is a very thin film of and silver alloy contacts are for use in circuits of 12 volts, 0.4 ampere, or insulating sulfidation, oxidation or contaminates on the surface of the more.
    [Show full text]
  • Reed Switch Protection
    G::9HL>I8=EGDI:8I>DC Reed Switch Protection The hermetically-sealed reed switch used in GEMS level switches are 6EE:C9>MM extremely rugged and designed to operate reliably for many years – The dependable reed 2 million cycles under ideal conditions. To achieve the maximum switch is at the heart of most level switch shown service life, reed switches benefit from protected electrical supply. in this catalog. IMPORTANT: s$ONTBEMISLEDBYTHERESISTIVERATINGSOFTHESWITCHES-OSTAPPLICATIONSINVOLVE inductive loads. s$ONTBEMISLEDBYTHEWATTAGERATINGSOFLOADS,OWWATTAGELOADSAREOFTENHIGH inductive devices, making contact protection very important. Contact Protection Requirements When switching inductive loads such as relays, solenoids and transformers, reed switch contacts require protection in order to ensure long, dependable life. When current is interrupted, the inductance or electrical inertia of the load generates a large high frequency voltage, which appears across the switch contacts. If the voltage is large enough, it can break down the medium in the gap between them, making a conductive path. This phenomenon, called “arcing,” is the spark you see. Arcing can cause the contacts to burn, weld together or stick; thus, giving unreliable performance. The purpose of protection circuits is to prevent arcing, by shorting this voltage through an alternate path. Recommended Protection D.C. A 1N4004 diode (or equivalent) connected cathode-to-positive, as shown in Figure 1, is recommended. The diode does not conduct when the load is energized, but conducts and shorts out the generated voltage when the switch opens. The generated voltage Figure 1 always acts in series with the applied voltage. $##ONTACT (DRAIN THE LOAD) Protection $RAINTHE,OAD A.C. REED INDUCTIVE A resistor and capacitor, connected in parallel with the switch, as shown in Figure 2, SWITCH LOAD is recommended.
    [Show full text]