APPENDIX E-1

Total Page:16

File Type:pdf, Size:1020Kb

APPENDIX E-1 Gordon et al 1 APPENDIX e-1 Clinically Pure PLS A 40 year-old man first noted difficulty getting out of a bathtub and rising from a kneeling position due to stiffness in 1970. He continued to walk to work each day until about 1990 when he began to have more difficulty with his gait. A neurologist noted hyperreflexia including up-going toes in 1993, but MRI of the brain, and cervical and thoracic spine were unremarkable. Laboratory studies including tests for available HSP genes, CBC, chemistries, RPR, protein electrophoresis, ANA, rheumatoid factor, Lyme serology and CSF analysis were normal or negative. In 1996 he received a course of IVIG which did not result in improvement, and he underwent a prostate procedure which led to some urinary incontinence. He stopped working at retirement age. His legs continued to worsen and by 1997 he was using a walker. On examination he was again noted to be spastic and hyperreflexic, worse in the legs than the arms, but to have normal strength. He was given vitamin B12 therapy without improvement in symptoms. By 2001 he had some trouble with his hands and his handwriting deteriorated such that he was forced to use a typewriter. By 2004 he was using a scooter for mobility outside the house. He hired an aide to help him at home. His voice changed and he had trouble managing his saliva. On examination speech was described as high pitched, strangulated, and slow. There was no focal weakness, wasting or fasciculation including in the tongue. Tone was increased in all limbs, worse in the legs. He was hyperreflexic throughout with bilateral Hoffmann and Babinski signs. EMG was repeatedly normal, Gordon et al 2 showing no evidence of denervation. In 2006, at age 76, 35 years after symptom-onset, he continued to live independently at home, but by that time the ALSFRS-R had deteriorated to 23 and FVC was 82% of predicted. UMN-Dominant ALS with transition to ALS A 47-year-old man first noticed a speech disorder in 1999. Several months later he became aware of emotional lability. The symptoms progressed slowly, but in 2002 his leg seemed uncoordinated and he had occasional urinary urgency. He did not have dysphagia, arm weakness, or pain in the neck or legs. On examination in 2002, speech was slurred, but the tongue appeared normal. The pharyngeal reflex was overactive and he had a prominent jaw jerk. Muscle tone and strength were normal and there was no atrophy or fasciculation. Alternating movements were slow, more so on the right. Tendon reflexes were overactive in the arms and legs with bilateral Hoffmann and Babinski signs and clonus at the right ankle. Gait was normal. MRI of the brain in 2000 and EMG in 2002 were normal. In January 2003 MRS showed NAA/Cr ratio 2.22 on the right and 2.04 on the left (normal > 2.50). Laboratory studies, including HPS gene tests and analysis of the CSF, were normal or negative. On examination in 2003, 4 years after onset, there was mild dysarthria and some lower facial weakness. The tongue seemed slightly weak but there was no atrophy or fasciculation. Gag reflex was overactive. There was slight weakness in most muscles in the arms and hands bilaterally as well as in the right leg. The left leg had normal strength except for mild weakness of the iliopsoas. There was no atrophy or fasciculation anywhere. Reflexes were overactive with bilateral Hoffmann and Babinski signs and ankle clonus. Gait was spastic and finger and foot tapping were slow. FVC was 89% of predicted and ALSFRS-R was 39/48. Gordon et al 3 EMG in 2003 showed evidence of active and chronic denervation in the right arm and leg, thoracic paraspinal muscles and the tongue, with sparing of the left arm and the cervical and lumbosacral paraspinal muscles. Nerve conduction studies were normal. Examination in 2004 was unchanged except that fasciculations were seen in both FDI muscles as well as the right deltoid. FVC was 81% of predicted and ALSFRS-R was 32/48. His symptoms progressed. By 2008, 9 years after onset, he was able to stand only for transferring to a chair, and he spent most of his time in a wheelchair. His ALSFRS-R score was 19/48 and his FVC was 70%. UMN-Dominant ALS A 67 year-old woman was a normal volunteer for evaluation of MRS in 1995. NAA/Cr ratio was 3.3 on the right and 2.6 on the left. In 1996 she noted hoarseness of her voice, then dysarthria and swallowing difficulties. She had no facial weakness, chewing difficulty, limb weakness, sensory loss, sphincter disturbance, or gait disorder. Examination in 1997 showed dysarthria without facial or lingual weakness, wasting, or fasciculation. There was no limb weakness, focal sensory loss, tendon reflex overactivity or asymmetry, Babinski sign, clonus, or overactive jaw jerk. EMG was normal in the left arm with mild fasciculations and fibrillations in the tongue and borderline evidence of chronic denervation in the limbs. Vastus lateralis muscle biopsy showed mild neurogenic abnormalities. Laboratory studies, including HSP gene and CSF analysis, were normal or negative. Increased MRI signal was noted in the corticospinal tracts bilaterally. Dysarthria was severe on examination in 1998. Movements of the tongue were limited and slow. There was overt atrophy of the margins of the tongue and there were fasciculations. There was no facial weakness. The uvula did not move on volition but did on reflex stimulation. There was no weakness, wasting, or fasciculation in limb muscles. Tendon reflexes were brisk but there were no Hoffmann signs. There was a left Babinski sign. Alternating movements were carried out well in the arms but slow in the legs. There was no overt emotional lability. Gordon et al 4 EMG in 1998 showed fasciculation potentials in several muscles of the left leg. There were rare positive sharp waves in the medial gastrocnemius. Motor units were of normal configuration but recruitment was diffusely mildly reduced compatible with UMN firing pattern. On examination in 2000 she was almost completely anarthric. There was bifacial weakness and almost complete inability to move the tongue. Her palate did not elevate volitionally but did have brisk reflex elevation. Tendon reflexes were overactive throughout with bilateral Hoffmann signs and left Babinski sign. The jaw jerk was brisk with clonus. Alternating movements in the arms were slow. Deltoid muscles showed full strength, but biceps were mildly weak on the right and triceps were mildly weak on the left. Wrist flexors, extensors, and finger-flexors were full strength. Finger extensors were mildly weak. There was mild proximal weakness in the legs with good distal strength. She could walk only with assistance and was extremely stiff. Sensation was intact. She reported urinary frequency without incontinence. She began having leg cramps and dysphagia, but maintained body mass with soft foods. In 2002, the ALSFRS-R score was 27/48 and FVC was 10% of predicted. She was anarthric and now had marked weakness in her arms and legs as well as facial weakness. On examination in 2004 she was anarthric, though she could move her tongue slightly. There was no obvious atrophy or fasciculation of the tongue. Glabellar and snout reflexes were present. Her left arm was non-functional and she had limited function of the right arm. She was severely spastic. Atrophy was seen only in the hands and fasciculation only in the right gastrocnemius muscle. She could stand to assist for transfers but was unable to walk. Her arms and legs were very weak. Tendon reflexes were all overactive and bilateral Hoffmann signs were elicited. Sensation was normal. ALSFRS-R score was 21/48. By 2007, 13 years after onset, she was quadriplegic and dependent on a caregiver for all activities. Her ALSFRS-R score was 14/48..
Recommended publications
  • Diabetic Ketoacidosis Associated with Guillain-Barre Syndromewith
    CASE REPORT Diabetic Ketoacidosis Associated with Guillain-Barre Syndromewith AutonomicDysfunction Setsuko Fujiwara, Hiroyuki Oshika, Kenzo Motoki, Kenji Kubo*, Yukiaki Ryujin*, Masahiro Shinozaki**, Takuzo Hano*** and Ichiro Nishio*** Abstract Case Report A37-year-old womanwas admitted in a comatosestate, In March 1996, a 37-year-old womanwas admitted to Koyo after exhibiting fever and diarrhea. Diabetic ketoacidosis Hospital in a comatose state after fever, diarrhea and vomiting was diagnosed due to an increased blood glucose level (672 of 1-week duration. Diabetes mellitus was diagnosed in 1990, mg/dl), metabolic addosis, and positive urinary ketone bod- and the patient had taken anti-diabetic drugs for five years, but ies. On the fifth hospital day, despite recovery from the criti- follow-up was discontinued in 1995. She had no episodes of cal state of ketoacidosis, the patient suffered from dyspha- neurological deficit or fainting and was workingas a nurse. gia, hypesthesia and motor weakness, followed by respira- On admission, Kussmaul's breathing, blood pressure of 96/ tory failure. Cerebrospinal fluid analysis was suggestive of 56 mmHg,and a heart rate of 122/min were observed. DKA Guillain-Barre syndrome (GBS). Autonomic dysfunction was diagnosed on the basis of an increased blood glucose level was manifested as tachycardia and mild hypertension in (672 mg/dl), severe metabolic acidosis (arterial blood gas analy- the acute stage. Marked orthostatic hypotension persisted sis: pH 6.703, PCO2 13.8 mmHg, PO2 281.4 mmHg, HCO3 1.7 long after paresis was improved, indicating an atypical clini- jjmol//, BE -36.3 jimol//) and urinary ketone bodies. Other labo- cal course of GBS.
    [Show full text]
  • High-Yield Neuroanatomy
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • Immobilization and Anaesthesia in Asiatic Lions (Panthera Leo Persica)
    Advances in Animal and Veterinary Sciences Research Article Immobilization and Anaesthesia in Asiatic Lions (Panthera leo persica) 1 2 1 MURUGAN BHARATHIDASAN , BENJAMIN JUSTIN WILLIAM *, RAMAMURTHY JAYAPRAKASH , THANDAVAN 2 3 1 ARTHANARI KANNAN , RAJARTHANAM THIRUMURUGAN , RAVI SUNDAR GEORGE 1Department of Veterinary Surgery and Radiology, Tamil Nadu Veterinary and Animal Sciences University, India; 2Centre for Stem Cell Research and Regenerative Medicine, Madras Veterinary College, Chennai – 600007, Tamil Nadu, India; 3Veterinary Assistant Surgeon, Arignar Anna Zoological Park, Chennai, India. Abstract | A total of 12 trials were conducted in 8 Asiatic and hybrid lions (Panthera leo persica) for diagnostic and surgical procedures. All the lions were immobilized with a combination of xylazine and ketamine at the rate of 1.00 mg/kg and 2.00 mg/kg body weight, respectively, using darts based on assumed body weight. Ketamine and propofol intravenously were used as induction agents sufficiently to achieve deep plane of anaesthesia and good jaw muscle relaxation in six trials each of treatment I and II. The commercially available large animal endotracheal tubes and cus- tom made silicon medical grade tubes were used for intubation either by direct visualization or by digital palpation of glottis. Anaesthesia was maintained with isoflurane. The study revealed that the young lions required 1.08±0.10 and 2.70±0.26 mg/kg and adult required 1.06±0.30 and 2.64±0.08 mg/kg body weight of xylazine and ketamine, respec- tively for immobilization. Ear flick reflex was taken as an indicator for safe and appropriate time for approaching the lion after immobilization, which was completely abolished only after 1.37 and 2.01 minutes after recumbency in young and adult lions, respectively.
    [Show full text]
  • A Dictionary of Neurological Signs
    FM.qxd 9/28/05 11:10 PM Page i A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION FM.qxd 9/28/05 11:10 PM Page iii A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION A.J. LARNER MA, MD, MRCP(UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. FM.qxd 9/28/05 11:10 PM Page iv A.J. Larner, MA, MD, MRCP(UK), DHMSA Walton Centre for Neurology and Neurosurgery Liverpool, UK Library of Congress Control Number: 2005927413 ISBN-10: 0-387-26214-8 ISBN-13: 978-0387-26214-7 Printed on acid-free paper. © 2006, 2001 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dis- similar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to propri- etary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omis- sions that may be made.
    [Show full text]
  • High-Yield Neuroanatomy, FOURTH EDITION
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • The Human Nervous System S Tructure and Function
    The Human Nervous System S tructure and Function S ixth Ed ition The Human Nervous System Structure and Function S ixth Edition Charles R. Noback, PhD Professor Emeritus Department of Anatomy and Cell Biology College of Physicians and Surgeons Columbia University, New York, NY Norman L. Strominger, PhD Professor Center for Neuropharmacology and Neuroscience Department of Surgery (Otolaryngology) The Albany Medical College Adjunct Professor, Division of Biomedical Science University at Albany Institute for Health and the Environment Albany, NY Robert J. Demarest Director Emeritus Department of Medical Illustration College of Physicians and Surgeons Columbia University, New York, NY David A. Ruggiero, MA, MPhil, PhD Professor Departments of Psychiatry and Anatomy and Cell Biology Columbia University College of Physicians and Surgeons New York, NY © 2005 Humana Press Inc. 999 Riverview Drive, Suite 208 Totowa, New Jersey 07512 www.humanapress.com All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission from the Publisher. All papers, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect the views of the publisher. This publication is printed on acid-free paper. h ANSI Z39.48-1984 (American Standards Institute) Permanence of Paper for Printed Library Materials. Production Editor: Tracy Catanese Cover design by Patricia F. Cleary Cover Illustration: The cover illustration, by Robert J. Demarest, highlights synapses, synaptic activity, and synaptic-derived proteins, which are critical elements in enabling the nervous system to perform its role.
    [Show full text]
  • Electrophysiological Evaluation of Oropharyngeal Swallowing in Myotonic Dystrophy
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.70.3.363 on 1 March 2001. Downloaded from J Neurol Neurosurg Psychiatry 2001;70:363–371 363 Electrophysiological evaluation of oropharyngeal swallowing in myotonic dystrophy C Ertekin, N Yüceyar,~ I Aydog˘du, H Karasoy Abstract Myotonic dystrophy (MyD) is the most Objective—Oropharyngeal dysphagia is a common adult form of muscular dystrophy common feature of patients with myotonic and pneumonia was reported to be the most dystrophy and is not usually perceived due common cause of death in these patients.1 to their emotional deficits and lack of Pneumonia in MyD results from a multiplicity interest. The aim was to show the existence of problems. Oropharyngeal dysphagia and and frequency of subclinical electrophysi- oesophageal motility disorders were found to ological abnormalities in oropharyngeal be the most important reasons causing aspira- swallowing and to clarify the mechanisms tion pneumonia.2–6 Dysphagia may be even a of dysphagia in myotonic dystrophy. more prominent problem when the swallowing Methods—Eighteen patients with myot- disorder seems to be present early in the course onic dystrophy were examined for of disease but is not usually subjectively oropharyngeal phase of swallowing by perceived until the advanced stages of disease clinical and electrophysiological methods. are reached.6 Ten patients had dysphagia whereas 11 Patients with MyD often exhibit disorders of patients had signs and symptoms reflect- personality and impairment of intellectual and ing CNS involvement. Four patients with cognitive functions, especially lack of interest in myotonia congenita and 30 healthy volun- their disease.7 This might play a part in the teers served as controls.
    [Show full text]
  • Neural Control of Swallowing
    AG-2018-48 REVIEW dx.doi.org/10.1590/S0004-2803.201800000-45 Neural control of swallowing Milton Melciades Barbosa COSTA Received 11/4/2018 Accepted 9/5/2018 ABSTRACT – Background – Swallowing is a motor process with several discordances and a very difficult neurophysiological study. Maybe that is the reason for the scarcity of papers about it. Objective – It is to describe the chewing neural control and oral bolus qualification. A review the cranial nerves involved with swallowing and their relationship with the brainstem, cerebellum, base nuclei and cortex was made. Methods – From the reviewed literature including personal researches and new observations, a consistent and necessary revision of concepts was made, not rarely conflicting. Re- sults and Conclusion – Five different possibilities of the swallowing oral phase are described: nutritional voluntary, primary cortical, semiautomatic, subsequent gulps, and spontaneous. In relation to the neural control of the swallowing pharyngeal phase, the stimulus that triggers the pharyngeal phase is not the pharyngeal contact produced by the bolus passage, but the pharyngeal pressure distension, with or without contents. In nutritional swallowing, food and pressure are transferred, but in the primary cortical oral phase, only pressure is transferred, and the pharyngeal response is similar. The pharyngeal phase incorporates, as its functional part, the oral phase dynamics already in course. The pharyngeal phase starts by action of the pharyngeal plexus, composed of the glossopharyngeal (IX), vagus (X) and accessory (XI) nerves, with involvement of the trigeminal (V), facial (VII), glossopharyngeal (IX) and the hypoglossal (XII) nerves. The cervical plexus (C1, C2) and the hypoglossal nerve on each side form the ansa cervicalis, from where a pathway of cervical origin goes to the geniohyoid muscle, which acts in the elevation of the hyoid-laryngeal complex.
    [Show full text]
  • Clinical Manifestations of Severe Enterovirus 71 Infection and Early
    Yang et al. BMC Infectious Diseases (2017) 17:153 DOI 10.1186/s12879-017-2228-9 RESEARCHARTICLE Open Access Clinical manifestations of severe enterovirus 71 infection and early assessment in a Southern China population Si-da Yang1*, Pei-qing Li1†, Yi-min Li2*, Wei Li3†, Wen-ying Lai4†, Cui-ping Zhu1, Jian-ping Tao1, Li Deng1, Hong-sheng Liu1, Wen-cheng Ma1, Jia-ming Lu1, Yan Hong1, Yu-ting Liang1, Jun Shen1, Dan-dan Hu1, Yuan-yuan Gao1, Yi Zhou1, Min-xiong Situ1 and Yan-ling Chen3 Abstract Background: Enterovirus 71 (EV-A71) shows a potential of rapid death, but the natural history of the infection is poorly known. This study aimed to examine the natural history of EV-A71 infection. Methods: This was a prospective longitudinal observational study performed between January 1st and October 31st, 2012, at three hospitals in Guangdong, China. Subjects with positive EV-A71 RNA laboratory test results were included. Disease progression was documented with MRI, autopsies, and follow-up. Symptoms/signs with potential association with risk of death were analyzed. Results: Among the 288 patients, neurologic symptoms and signs were observed (emotional movement disorders, dyskinesia, involuntary movements, autonomic dysfunction, and disturbance of consciousness). Some of them occurred as initial symptoms. Myoclonic jerks/tremors were observed among >50% of the patients; nearly 40% of patients presented fatigue and 25% were with vomiting. Twenty-eight patients (9.7%) presented poor peripheral perfusion within 53.4 ± 26.1 h; 23 patients (8.0%) presented pulmonary edema and/or hemorrhage within 62.9 ± 28. 6 h. Seventeen (5.9%) patients were in a coma.
    [Show full text]
  • A Dictionary of Neurological Signs.Pdf
    A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A.J. LARNER MA, MD, MRCP (UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. 123 Andrew J. Larner MA MD MRCP (UK) DHMSA Walton Centre for Neurology & Neurosurgery Lower Lane L9 7LJ Liverpool, UK ISBN 978-1-4419-7094-7 e-ISBN 978-1-4419-7095-4 DOI 10.1007/978-1-4419-7095-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010937226 © Springer Science+Business Media, LLC 2001, 2006, 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
    [Show full text]
  • 685 Mechanisms and Controllers of Eccrine Sweating in Humans Manabu Shiba
    [Frontiers in Bioscience S2, 685-696, January 1, 2010] Mechanisms and controllers of eccrine sweating in humans Manabu Shibasaki1, Craig G. Crandall2,3 1Department of Environmental and Life Sciences, Nara Women's University Graduate School of Humanities and Sciences, Nara Japan, 2Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 3Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, TX TABLE OF CONTENTS 1. Abstract 2. Introduction and historical perspective 3. Neural pathway from the brain to sweat gland 4. Non-thermal modulators of sweat rate 4.1. Effect of exercise in modulating sweat rate 4.2. Effect of baroreceptors in modulating sweat rate 4.3. Effect of body fluid status and osmolality on sweat rate 5. Summary 6. Acknowledgement 7. References 1. ABSTRACT 2. INTRODUCTION AND HISTORICAL PERSPECTIVE Human body temperature is regulated within a very narrow range. When exposed to hyperthermic conditions, via Evaporative heat loss is critical for human survival in environmental factors and/or increased metabolism, heat a hot environment, particularly when environmental dissipation becomes vital for survival. In humans, the temperature is higher than skin temperature. Exercise or primary mechanism of heat dissipation, particularly when exposure to a hot environment elevates internal and skin ambient temperature is higher than skin temperature, is temperatures, and subsequently increases sweat rate and evaporative heat loss secondary to sweat secretion from skin blood flow. Historically it was thought that skin eccrine glands. While the primary controller of sweating is temperature was more important than internal temperature the integration between internal and skin temperatures, a in the control of sweating (24, 109).
    [Show full text]
  • Collet-Sicard Syndrome in a Patient with Jefferson Fracture
    Case Report Ann Rehabil Med 2011; 35: 934-938 pISSN: 2234-0645 • eISSN: 2234-0653 http://dx.doi.org/10.5535/arm.2011.35.6.934 Annals of Rehabilitation Medicine Collet-Sicard Syndrome in a Patient with Jeff erson Fracture Hee Chung Kwon, M.D.1, Dae Kyung Cho, M.D.1, Yoon Young Jang, M.D.1, Seong Jae Lee, M.D., Ph.D.1, Jung Keun Hyun, M.D., Ph.D.1,2,3, Tae Uk Kim, M.D.1 1Department of Rehabilitation Medicine, College of Medicine, Dankook University, 2Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, 3Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-715, Korea Collet-Sicard syndrome is a rare condition characterized by the unilateral paralysis of the 9th through 12th cranial nerves. We describe a case of a 46-year-old man who presented with dysphagia after a falling down injury. Computed tomography demonstrated burst fracture of the atlas. Physical examination revealed decreased gag reflex on the left side, decreased laryngeal elevation, tongue deviation to the left side, and atrophy of the left trapezius muscle. Videofl uoroscopic swallowing study (VFSS) revealed frequent aspirations of a massive amount of thick liquid and incomplete opening of the upper esophageal sphincter during the pharyngeal phase. We report a rare case of Collet-Sicard syndrome caused by Jeff erson fracture. Key Words Collet-Sicard syndrome, Jeff erson fracture, Cranial nerve injury INTRODUCTION occurring in the 1st cervical vertebra, it rarely induces cranial nerve damage. In Korea, 2 cases of Collet-Sicard Collet-Sicard syndrome is a condition showing unila- syndromes due to tumor and thrombosis have been teral paralysis of the lower cranial nerves (9, 10, 11 and reported so far.
    [Show full text]