Old and New Tick-Borne Rickettsioses

Total Page:16

File Type:pdf, Size:1020Kb

Old and New Tick-Borne Rickettsioses International Health (2009) 1, 17—25 available at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/inhe REVIEW Old and new tick-borne rickettsioses ∗ Aurélie Renvoisé, Oleg Mediannikov, Didier Raoult Downloaded from https://academic.oup.com/inthealth/article/1/1/17/677376 by guest on 28 September 2021 Unité des Rickettsies, CNRS-IRD UMR6236-198, Université de la Méditerranée, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France Received 30 January 2009; received in revised form 10 March 2009; accepted 18 March 2009 KEYWORDS Summary The field of rickettsiology is rapidly evolving. Rickettsiae are small Gram-negative Arthropods; bacteria that can be transmitted to humans by arthropods. In most cases they are transmitted Ticks; transovarially in the arthropod; human beings are incidental hosts. In recent years the use of Emerging infectious cell culture and molecular biology has profoundly changed our knowledge of rickettsiae and has disease; led to the description of several new species. New rickettsial diseases have been found in three Inoculation; main situations: firstly, in places where no new species have been identified, typical rickettsial Eschar; symptoms have been observed (Japan, China); secondly, typical rickettsioses have been found to Rickettsioses be caused by different organisms — in such cases a new Rickettsia species has been misdiagnosed as a previously identified bacterium (for example, R. parkeri was confused with R. rickettsii); thirdly, atypical clinical symptoms have been found to be caused by rickettsial organisms such as R. slovaca. These findings challenge the old dogma that only one tick-borne rickettsiosis is prevalent in one geographical area. Many Rickettsia spp. have been identified in ticks, but have not yet been implicated in human pathology. These rickettsiae should be considered as potential pathogens. All known or suspected rickettsial diseases should be treated (including in children) with doxycycline. © 2009 Published by Elsevier Ltd on behalf of Royal Society of Tropical Medicine and Hygiene. 1. Introduction in the Rickettsia genus are regularly described,3 and some of them have been shown to play a role in human pathology.2 Among the well-known group of diseases named rickettsioses Rickettsiae are small obligate intracellular bacteria that are found both well-characterized diseases1 and emerging are strongly associated with eukaryotic cells. They are often pathologies that have only recently been described.2 The found in arthropods (ticks, mites and other insects, includ- 4 5 latter group represents diseases that have been discovered ing lice, fleas, beetles and homopterans), amoebae and 6 during the last 15—20 years, concurrently with advances in leeches. Only blood-sucking arthropods may transmit the molecular biology and cell culture techniques. New species disease to humans, via transdermal inoculation with the arthropod’s saliva.4 Rickettsia akari and Orientia tsutsug- amushi are transmitted by mites, Candidatus R. felis and R. ∗ typhi are transmitted by fleas, and R. prowazekii is trans- Corresponding author. Tel.: +33 491 385 517; fax: +33 491 387 772. mitted by body lice; the other human rickettsioses, which E-mail addresses: [email protected] (A. Renvoisé), are reviewed here, are transmitted by ticks. [email protected] (O. Mediannikov), [email protected] Tick-borne rickettsioses are diseases of marked endemi- (D. Raoult). city. Their prevalence is strongly linked with vector and 1876-3413/$ — see front matter © 2009 Published by Elsevier Ltd on behalf of Royal Society of Tropical Medicine and Hygiene. doi:10.1016/j.inhe.2009.03.003 18 A. Renvoisé et al. natural host distribution. In those regions where both are Here, we summarize the clinical findings associated with common, morbidity and seropositivity may be high. More- tick-transmitted rickettsiae. The implications of these find- over, recent findings provide evidence that warmer weather ings for human pathology are described (Table 2 and Fig. 1). is linked to an increase in the aggressiveness of the brown dog tick, Rhipicephalus sanguineus.7 Increased aggressive- ness would likely lead to an increased incidence of rickettsial 3. Spotted fever group with inoculation diseases. It must be emphasized that if the proper treatment eschar does not begin shortly after infection, the consequences of rickettsiosis can be very serious. Mortality is as high as 5% Diseases grouped here have some common clinical fea- in cases of Rocky Mountain spotted fever in children, for tures, such as fever, rash, regional lymphadenopathy and example. Another important issue is the significant risk to cutaneous eschar following the tick bite (Fig. 2). The clin- travellers in regions where such diseases are endemic. Anal- ical course is usually mild to moderate. Four subspecies of ysis of data in the GeoSentinel database showed that 3.1% the R. conorii complex were proposed in 2005, based on of febrile travellers have rickettsiosis.8 differences in epidemiology and clinical findings. These sub- The economic aspects of tick-borne rickettsioses have species are R. conorii subsp. conorii, israelensis, caspia and yet to be elucidated, but their significance is evident since indica.12 Downloaded from https://academic.oup.com/inthealth/article/1/1/17/677376 by guest on 28 September 2021 human contact with the natural environment, as well as the The aetiological agent of Mediterranean spotted fever number of emerging rickettsial infections and the morbidity (MSF) is R. conorii subsp. conorii. The main vector is the they cause, is increasing continuously. brown dog tick, Rh. sanguineus, which is found through- out the world.1,4 The agent is found in Europe and Africa. 2. Bacteriology and taxonomy MSF is an urban and peri-urban disease and is endemic in the Mediterranean area, but has also been reported in Rickettsiae are strictly intracellular bacteria whose size central Europe, central Africa and southern Africa.1,4 This ranges from 0.3 × 0.8 ␮mto0.5× 2.0 ␮m. The morphology disease affects all age groups1,4 and occurs mainly in sum- is that of Gram-negative bacteria and the bacterium is sur- mer. Recent findings7 provide evidence that warmer weather rounded by a glycocalyx or slime. Gram staining does not is linked to an increase in the aggressiveness of Rh. san- visualize rickettsiae, but Gimenez9 and Giemsa stains do. guineus. Typically,1,4 the incubation period is asymptomatic For intracellular bacteria, which express few phenotypic and lasts approximately 6 days. At the end of the incubation characteristics, molecular techniques have been particu- period the infected person rapidly develops a high fever, a larly important for classification. Molecular analysis has maculopapular rash, flu-like symptoms and an inoculation significantly altered rickettsial taxonomy, which is a con- eschar (‘tâche noire’). The eschar is painless and is most troversial domain that has undergone many changes over often found on the trunk and the limbs. The rash generally time. The Rickettsiaceae family includes only the genera develops 2—3 days after the fever and is initially macular, Rickettsia and Orientia (Table 1). For the taxonomy of rick- then maculopapular and disseminated; the face is usually ettsiae, the isolated study of 16S rRNA is not useful as this spared. Symptoms usually last for 12—20 days and clinical gene is often highly homologous between species (more than improvement generally occurs following 48 h of antibiotic 97%). Currently, five rickettsial genes have been proposed to treatment. Severe disease occurs in 5—6% of cases and is define the genus, the group and the species.10 They are 16S associated with disseminated vasculitis, with renal, neuro- rRNA (rrs), gltA, ompA, ompB and sca4 (gene D). Members of logical and cardiovascular complications as well as phlebitis. the genus Rickettsia may be classified into the spotted fever Mortality may reach up to 2.5% in this group.1,4 group, the typhus group, R. bellii and R. canadensis; the The aetiological agent of Israeli spotted fever is R. conorii latter two groups lie outside the spotted fever and typhus subsp. israelensis.14 Although, like R. conorii subsp. conorii, groups (Table 2).10,11 it is transmitted by Rh. sanguineus, molecular studies show At this time, there are 25 formally recognized species in differences above the strain level. The bacterium is found in the genus Rickettsia. Many other isolates exist, but they are Israel, but new isolations, for example in Italy and Portugal, either not recognized or not characterized. Official criteria support the suggestion that the geographical distribution is have been proposed for the creation of subspecies within R. wider than previously thought.4,14 An eschar generally does conorii12 and R. sibirica13 based on epidemiological, clini- not develop following infection with R. conorii israelensis, cal, serotypical and genotypical differences that were found which makes the diagnosis more difficult; serious and lethal after multi-spacer typing. forms are more common with this agent.15 The aetiological agent of Astrakhan spotted fever is R. conorii subsp. caspia,12 which is transmitted by Rh. Table 1 Taxonomic position of the genus Rickettsia. pumilio. Acute febrile disease with the characteristic rash was noted in the Astrakhan region of Russia and was pro- Genus Rickettsia visionally named ‘viral exanthema of unknown aetiology’. Family Rickettsiaceae (genera included: Rickettsia It was proved to be a spotted fever group rickettsiosis in and Orientia) 1991.16 Younger men are mostly affected, and most infec- Order Rickettsiales tions take place during the summer.17 Cases are usually Class Alpha-proteobacteria described around the Caspian Sea,17 but the geographic zone Phylum Proteobacteria could be wider than previously thought (Chad, Kosovo).12 Domain Bacteria Clinically, the disease resembles MSF except for the absence of fatal forms and a lower incidence of a cutaneous eschar.12 Old and new tick-borne rickettsioses 19 Table 2 The family Rickettsiaceae, main members of clinical interest. Group Species Disease Typhus group R.
Recommended publications
  • Hplc-Uv Quantitation of Folate Synthesized by Rickettsia
    HPLC-UV QUANTITATION OF FOLATE SYNTHESIZED BY RICKETTSIA ENDOSYMBIONT IXODES PACIFICUS (REIP) By Junyan Chen A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Jianmin Zhong, Committee Chair Dr. David S. Baston, Committee Member Dr. Jenny Cappuccio, Committee Member Dr. Jacob Varkey, Committee Member Dr. Erik Jules, Program Graduate Coordinator December 2017 ABSTRACT HPLC-UV QUANTITATION OF FOLATE SYNTHESIZED BY RICKETTSIA ENDOSYMBIONT IXODES PACIFICUS (REIP) Junyan Chen Ticks are the most important vector of many infectious diseases in the United States. Understanding the nature of the relationship between Rickettsia endosymbiont Ixodes pacificus (REIP) and Exudes pacificus will help develop strategies for the control of tick- borne diseases, such as Lyme disease, and Rocky Mountain spotted fever. Folate, also known as vitamin B9, is a necessary vitamin for tick survival, and plays a central role in one-carbon metabolism in cells. Folate exist as a large family of structurally related forms that transfer one-carbon groups among biomolecules that are important to cell growth, differentiation, and survival. In Dr. Zheng’s lab, REIP were cultured in Ixodes scapularis embryonic tick cell line ISE6. Previous research has shown that REIP in Ixodes pacificus carries all five de novo folate biosynthesis genes. Folate biosynthesis mRNAs were detected and all recombinant rickettsial folate proteins were overexpressed. To determine whether REIP synthesize folate, we sought to measure the folate concentration in REIP using HPLC-UV quantification with a Diamond HydrideTM liquid chromatography column. 5-methyltetrahydrofolate (5-MTHF), the active circulating form of folate in bacteria was detected.
    [Show full text]
  • Molecular Evidence of Novel Spotted Fever Group Rickettsia
    pathogens Article Molecular Evidence of Novel Spotted Fever Group Rickettsia Species in Amblyomma albolimbatum Ticks from the Shingleback Skink (Tiliqua rugosa) in Southern Western Australia Mythili Tadepalli 1, Gemma Vincent 1, Sze Fui Hii 1, Simon Watharow 2, Stephen Graves 1,3 and John Stenos 1,* 1 Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong 3220, Australia; [email protected] (M.T.); [email protected] (G.V.); [email protected] (S.F.H.); [email protected] (S.G.) 2 Reptile Victoria Inc., Melbourne 3035, Australia; [email protected] 3 Department of Microbiology and Infectious Diseases, Nepean Hospital, NSW Health Pathology, Penrith 2747, Australia * Correspondence: [email protected] Abstract: Tick-borne infectious diseases caused by obligate intracellular bacteria of the genus Rick- ettsia are a growing global problem to human and animal health. Surveillance of these pathogens at the wildlife interface is critical to informing public health strategies to limit their impact. In Australia, reptile-associated ticks such as Bothriocroton hydrosauri are the reservoirs for Rickettsia honei, the causative agent of Flinders Island spotted fever. In an effort to gain further insight into the potential for reptile-associated ticks to act as reservoirs for rickettsial infection, Rickettsia-specific PCR screening was performed on 64 Ambylomma albolimbatum ticks taken from shingleback skinks (Tiliqua rugosa) lo- cated in southern Western Australia. PCR screening revealed 92% positivity for rickettsial DNA. PCR Citation: Tadepalli, M.; Vincent, G.; amplification and sequencing of phylogenetically informative rickettsial genes (ompA, ompB, gltA, Hii, S.F.; Watharow, S.; Graves, S.; Stenos, J.
    [Show full text]
  • Babela Massiliensis, a Representative of a Widespread Bacterial
    Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae Isabelle Pagnier, Natalya Yutin, Olivier Croce, Kira S Makarova, Yuri I Wolf, Samia Benamar, Didier Raoult, Eugene V. Koonin, Bernard La Scola To cite this version: Isabelle Pagnier, Natalya Yutin, Olivier Croce, Kira S Makarova, Yuri I Wolf, et al.. Babela mas- siliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biology Direct, BioMed Central, 2015, 10 (13), 10.1186/s13062-015-0043-z. hal-01217089 HAL Id: hal-01217089 https://hal-amu.archives-ouvertes.fr/hal-01217089 Submitted on 19 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pagnier et al. Biology Direct (2015) 10:13 DOI 10.1186/s13062-015-0043-z RESEARCH Open Access Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae Isabelle Pagnier1, Natalya Yutin2, Olivier Croce1, Kira S Makarova2, Yuri I Wolf2, Samia Benamar1, Didier Raoult1, Eugene V Koonin2 and Bernard La Scola1* Abstract Background: Only a small fraction of bacteria and archaea that are identifiable by metagenomics can be grown on standard media.
    [Show full text]
  • Diagnostic Code Descriptions (ICD9)
    INFECTIONS AND PARASITIC DISEASES INTESTINAL AND INFECTIOUS DISEASES (001 – 009.3) 001 CHOLERA 001.0 DUE TO VIBRIO CHOLERAE 001.1 DUE TO VIBRIO CHOLERAE EL TOR 001.9 UNSPECIFIED 002 TYPHOID AND PARATYPHOID FEVERS 002.0 TYPHOID FEVER 002.1 PARATYPHOID FEVER 'A' 002.2 PARATYPHOID FEVER 'B' 002.3 PARATYPHOID FEVER 'C' 002.9 PARATYPHOID FEVER, UNSPECIFIED 003 OTHER SALMONELLA INFECTIONS 003.0 SALMONELLA GASTROENTERITIS 003.1 SALMONELLA SEPTICAEMIA 003.2 LOCALIZED SALMONELLA INFECTIONS 003.8 OTHER 003.9 UNSPECIFIED 004 SHIGELLOSIS 004.0 SHIGELLA DYSENTERIAE 004.1 SHIGELLA FLEXNERI 004.2 SHIGELLA BOYDII 004.3 SHIGELLA SONNEI 004.8 OTHER 004.9 UNSPECIFIED 005 OTHER FOOD POISONING (BACTERIAL) 005.0 STAPHYLOCOCCAL FOOD POISONING 005.1 BOTULISM 005.2 FOOD POISONING DUE TO CLOSTRIDIUM PERFRINGENS (CL.WELCHII) 005.3 FOOD POISONING DUE TO OTHER CLOSTRIDIA 005.4 FOOD POISONING DUE TO VIBRIO PARAHAEMOLYTICUS 005.8 OTHER BACTERIAL FOOD POISONING 005.9 FOOD POISONING, UNSPECIFIED 006 AMOEBIASIS 006.0 ACUTE AMOEBIC DYSENTERY WITHOUT MENTION OF ABSCESS 006.1 CHRONIC INTESTINAL AMOEBIASIS WITHOUT MENTION OF ABSCESS 006.2 AMOEBIC NONDYSENTERIC COLITIS 006.3 AMOEBIC LIVER ABSCESS 006.4 AMOEBIC LUNG ABSCESS 006.5 AMOEBIC BRAIN ABSCESS 006.6 AMOEBIC SKIN ULCERATION 006.8 AMOEBIC INFECTION OF OTHER SITES 006.9 AMOEBIASIS, UNSPECIFIED 007 OTHER PROTOZOAL INTESTINAL DISEASES 007.0 BALANTIDIASIS 007.1 GIARDIASIS 007.2 COCCIDIOSIS 007.3 INTESTINAL TRICHOMONIASIS 007.8 OTHER PROTOZOAL INTESTINAL DISEASES 007.9 UNSPECIFIED 008 INTESTINAL INFECTIONS DUE TO OTHER ORGANISMS
    [Show full text]
  • Phenotypic and Genomic Analyses of Burkholderia Stabilis Clinical Contamination, Switzerland Helena M.B
    RESEARCH Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland Helena M.B. Seth-Smith, Carlo Casanova, Rami Sommerstein, Dominik M. Meinel,1 Mohamed M.H. Abdelbary,2 Dominique S. Blanc, Sara Droz, Urs Führer, Reto Lienhard, Claudia Lang, Olivier Dubuis, Matthias Schlegel, Andreas Widmer, Peter M. Keller,3 Jonas Marschall, Adrian Egli A recent hospital outbreak related to premoistened gloves pathogens that generally fall within the B. cepacia com- used to wash patients exposed the difficulties of defining plex (Bcc) (1). Burkholderia bacteria have large, flexible, Burkholderia species in clinical settings. The outbreak strain multi-replicon genomes, a large metabolic repertoire, vari- displayed key B. stabilis phenotypes, including the inabil- ous virulence factors, and inherent resistance to many anti- ity to grow at 42°C; we used whole-genome sequencing to microbial drugs (2,3). confirm the pathogen was B. stabilis. The outbreak strain An outbreak of B. stabilis was identified among hos- genome comprises 3 chromosomes and a plasmid, shar- ing an average nucleotide identity of 98.4% with B. stabilis pitalized patients across several cantons in Switzerland ATCC27515 BAA-67, but with 13% novel coding sequenc- during 2015–2016 (4). The bacterium caused bloodstream es. The genome lacks identifiable virulence factors and has infections, noninvasive infections, and wound contamina- no apparent increase in encoded antimicrobial drug resis- tions. The source of the infection was traced to contaminat- tance, few insertion sequences, and few pseudogenes, ed commercially available, premoistened washing gloves suggesting this outbreak was an opportunistic infection by used for bedridden patients. After hospitals discontinued an environmental strain not adapted to human pathogenic- use of these gloves, the outbreak resolved.
    [Show full text]
  • Article/25/5/18-0438-App1.Pdf)
    RESEARCH LETTERS Pathology. 2011;43:58–63. http://dx.doi.org/10.1097/ variabilis ticks can transmit the causative agent of Rocky PAT.0b013e328340e431 Mountain spotted fever, and Ixodes scapularis ticks can 8. Rodriguez-Lozano J, Pérez-Llantada E, Agüero J, Rodríguez-Fernández A, Ruiz de Alegria C, Martinez-Martinez L, transmit the causative agents of Lyme disease, babesiosis, et al. Sternal wound infection caused by Gordonia bronchialis: and human granulocytic anaplasmosis (1). Although less identification by MALDI-TOF MS. JMM Case Rep. 2016;3: common in the region, A. maculatum ticks are dominant e005067. in specific habitats and can transmit the causative agent of Rickettsia parkeri rickettsiosis (1). Address for correspondence: Rene Choi, Department of Ophthalmology, Persons who have occupations that require them to be Casey Eye Institute, Oregon Health and Science University, 3375 SW outside on a regular basis might have a greater risk for ac- Terwilliger Blvd, Portland, OR 97239, USA; email: [email protected] quiring a tickborne disease (2). Although numerous stud- ies have been conducted regarding risks for tickborne dis- eases among forestry workers in Europe, few studies have been performed in the United States (2,3). The studies that have been conducted in the United States have focused on forestry workers in the northeastern region (2). However, because of variable phenology and densities of ticks, it is useful to evaluate tick activity and pathogen prevalence in Rickettsiales in Ticks various regions and ecosystems. Burn-tolerant and burn-dependent ecosystems, such as Removed from Outdoor pine (Pinus spp.) and mixed pine forests commonly found Workers, Southwest Georgia in the southeastern United States, have unique tick dynam- and Northwest Florida, USA ics compared with those of other habitats (4).
    [Show full text]
  • Case Report: Coinfection with Rickettsia Monacensis and Orientia Tsutsugamushi
    Am. J. Trop. Med. Hyg., 101(2), 2019, pp. 332–335 doi:10.4269/ajtmh.18-0631 Copyright © 2019 by The American Society of Tropical Medicine and Hygiene Case Report: Coinfection with Rickettsia monacensis and Orientia tsutsugamushi Seok Won Kim,1† Choon-Mee Kim,2† Dong-Min Kim,3* and Na Ra Yun3 1Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea; 2Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea; 3Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea Abstract. Rickettsia monacensis and Orientia tsutsugamushi are bacteria of the family Rickettsiaceae, which causes fever, rash, and eschar formation; outdoor activities are a risk factor for Rickettsiaceae infection. A 75-year-old woman presented with fever, rash, and eschar and was confirmed as being scrub typhus based on a nested-polymerase chain reaction (N-PCR) test for a 56-kDa gene of O. tsutsugamushi; the genome was identified as the Boryong genotype. In addition, a pan-Rickettsia real-time PCR test was positive and a N-PCR test using a Rickettsia-specific partial outer membrane protein A (rOmpA) confirmed R. monacensis. This is the first case wherein a patient suspected of having scrub typhus owing to the presence of rash and eschar was also found to be coinfected with O. tsutsugamushi and R. monacensis based on molecular testing. INTRODUCTION leukocyte count, 7,200/mm3; hemoglobin, 11.6 g/dL; platelet count, 232,000/mm3; and erythrocyte sedimentation rate, 31 Rickettsia monacensis is a pathogen that causes spotted mm/hours. C-reactive protein and procalcitonin levels were fever group rickettsial infection; the main symptoms of in- elevated at 9.26 mg/dL and 0.836 ng/mL (0–0.5 ng/mL), re- fection include fever, headache, and myalgia, as well as es- 1 spectively.
    [Show full text]
  • LC-Locus Alignment Sites Distance, Number of Nodes Supplementary
    12.5 10.0 7.5 5.0 Distance, number of nodes 2.5 0.0 g1 g2 g3 g3.5 g4 g5 g6 g7 g8 g9 g10 g10.1 g11 g12 g13 g14 g15 (11) (3) (3) (10) (3) (3) (3) (3) (3) (3) (3) (4) (3) (3) (3) (2) (3) LC-locus alignment sites Supplementary Figure S1. Compatibility of the evolutionary histories of the LC-locus and of individual LC genes.The sites of the LC-locus alignment are arranged along the X-axis, with the dashed red lines demarcating the alignment boundaries of the individual RcGTA-like genes (labeled with RcGTA gene names, g1 through g15; see Supplementary Table S4). For each alignment site, the Y-axis shows the phylogenetic distance between the optimal placement of a taxon in a phylogeny reconstructed from a 100 amino-acid window that surrounds the site and in the LC-locus phylogeny, averaged across all sliding windows that contain the site. The Y-axis values averaged across all taxa and all sites within a gene is shown in parentheses on the X-axis. For 15 out of 17 genes, only 2-4 nodes separate the optimal taxon position in the LC-locus and gene phylogeny. The inflated distances for g1 and g3.5 are likely because only 15 and 21 of 95 LCs, respectively, have a homolog of these genes and the SSPB analysis is highly sensitive to missing data (Berger et al. 2011). a. Bacteria Unassigned Thermotogae Tenericutes Synergistetes Spirochaetes Proteobacteria ylum Planctomycetes h p Firmicutes Deferribacteres Cyanobacteria Chloroflexi Bacteroidetes Actinobacteria Acidobacteria 1(11,750) 2(1,750) 3(2,538) 4(168) 5(51) 6(54) 7(43) 8(32) 9(26) 10(40) 11(33) 12(198) 13(173) 14(101) 15(98) 16(43) 17(114) Number of rcc01682−rcc01698 homologs in a cluster b.
    [Show full text]
  • Genome Project Reveals a Putative Rickettsial Endosymbiont
    GBE Bacterial DNA Sifted from the Trichoplax adhaerens (Animalia: Placozoa) Genome Project Reveals a Putative Rickettsial Endosymbiont Timothy Driscoll1,y, Joseph J. Gillespie1,2,*,y, Eric K. Nordberg1,AbduF.Azad2, and Bruno W. Sobral1,3 1Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University 2Department of Microbiology and Immunology, University of Maryland School of Medicine 3Present address: Nestle´ Institute of Health Sciences SA, Campus EPFL, Quartier de L’innovation, Lausanne, Switzerland *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: March 1, 2013 Abstract Eukaryotic genome sequencing projects often yield bacterial DNA sequences, data typically considered as microbial contamination. However, these sequences may also indicate either symbiont genes or lateral gene transfer (LGT) to host genomes. These bacterial sequences can provide clues about eukaryote–microbe interactions. Here, we used the genome of the primitive animal Trichoplax adhaerens (Metazoa: Placozoa), which is known to harbor an uncharacterized Gram-negative endosymbiont, to search for the presence of bacterial DNA sequences. Bioinformatic and phylogenomic analyses of extracted data from the genome assembly (181 bacterial coding sequences [CDS]) and trace read archive (16S rDNA) revealed a dominant proteobacterial profile strongly skewed to Rickettsiales (Alphaproteobacteria) genomes. By way of phylogenetic analysis of 16S rDNA and 113 proteins conserved across proteobacterial genomes, as well as identification of 27 rickettsial signature genes, we propose a Rickettsiales endosymbiont of T. adhaerens (RETA). The majority (93%) of the identified bacterial CDS belongs to small scaffolds containing prokaryotic-like genes; however, 12 CDS were identified on large scaffolds comprised of eukaryotic-like genes, suggesting that T.
    [Show full text]
  • Rickettsialpox-A Newly Recognized Rickettsial Disease V
    Public Health Reports Vol. 62 * MAY 30, 1947 * No. 22 Printed With the Approval of the Bureau of the Budget as Required by Rule 42 of the Joint-Committee on Printing RICKETTSIALPOX-A NEWLY RECOGNIZED RICKETTSIAL DISEASE V. RECOVERY OF RICKETTSIA AKARI FROM A HOUSE MOUSE (MUS MUSCULUS)1 By ROBERT J. HUEBNER, Senior Assistant Surgeon, WILLIAm L. JELLISON, Parasitologist, CHARLES ARMSTRONG, Medical Director, United States Public Health Service Ricketttia akari, the causative agent of rickettsialpox, was isolated from the blood of persons ill with this disease (1) and from rodent mites Allodermanyssus sanguineus Hirst inhabiting the domicile of ill per- sons (2). This paper describes the isolation of R. akari from a house mouse (Mus musculus) trapped on the same premises-a housing development in the citr of New York where more than 100 cases of rickettsialpox have occurred (3), (4), (5), (6). Approximately 60 house mice were trapped in the basements of this housing development where rodent harborage existed in store rooms and in incinerator ashpits. Engorged mites were occasionally found attached to the mice, the usual site of attachment being the rump. Mites were frequently found inside the box traps after the captured mice were removed. Early attempts to isolate the etiological agent of rickettisalpox from these mice were complicated by the presence of choriomeningitis among them. Twelve successive suspensions of mouse tissue, repre- senting 16 house mice, inoculated intracerebrally into laboratory mice (Swiss strain) and intraperitoneally into guinea pigs resulted in the production of a highly lethal disease in both species which was identified immunologically as choriomeningitis.
    [Show full text]
  • Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
    Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup
    [Show full text]
  • Rickettsia Helvetica in Dermacentor Reticulatus Ticks
    DISPATCHES The Study Rickettsia helvetica Using the cloth-dragging method, during March–May 2007 we collected 100 adult Dermacentor spp. ticks from in Dermacentor meadows in 2 different locations near Cakovec, between the Drava and Mura rivers in the central part of Medjimurje Coun- reticulatus Ticks ty. This area is situated in the northwestern part of Croatia, at Marinko Dobec, Dragutin Golubic, 46″38′N, 16″43′E, and has a continental climate with an Volga Punda-Polic, Franz Kaeppeli, average annual air temperature of 10.4°C at an altitude of and Martin Sievers 164 m. To isolate DNA from ticks, we modifi ed the method We report on the molecular evidence that Dermacentor used by Nilsson et al. (11). Before DNA isolation, ticks reticulatus ticks in Croatia are infected with Rickettsia hel- were disinfected in 70% ethanol and dried. Each tick was vetica (10%) or Rickettsia slovaca (2%) or co-infected with mechanically crushed in a Dispomix 25 tube with lysis buf- both species (1%). These fi ndings expand the knowledge of fer by using the Dispomix (Medic Tools, Zug, Switzerland). the geographic distribution of R. helvetica and D. reticulatus Lysis of each of the crushed tick samples was carried out in ticks. a solution of 6.7% sucrose, 0.2% proteinase K, 20 mg/mL lysozyme, and 10 ng/ml RNase A for 16 h at 37°C; 0.5 mo- ickettsia helvetica organisms were fi rst isolated from lar EDTA, and 20% sodium dodecyl sulfate was added and RIxodes ricinus ticks in Switzerland and were consid- further incubated for 1 h at 37°C.
    [Show full text]