Syrup Process Optimization
Total Page:16
File Type:pdf, Size:1020Kb
Western Michigan University ScholarWorks at WMU Honors Theses Lee Honors College 10-4-2019 Syrup Process Optimization Anelis Susana Chiluisa Calvache Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/honors_theses Part of the Chemical Engineering Commons Recommended Citation Chiluisa Calvache, Anelis Susana, "Syrup Process Optimization" (2019). Honors Theses. 3195. https://scholarworks.wmich.edu/honors_theses/3195 This Honors Thesis-Open Access is brought to you for free and open access by the Lee Honors College at ScholarWorks at WMU. It has been accepted for inclusion in Honors Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. Marshmallow Syrup Process Optimization Senior Design Project Spring 2019 For Dr. James Springstead Assistant Professor Chemical Engineering Department Prepared By: Daisy Barreto Michael Boyd Anelis Chiluisa Lluis Guardiola April 22, 2018 1 Table of Contents Page Number I. Introduction…………………………………………………..……………………………....7 1.1 Problem Statement……………….………………………………………………………...7 1.2 Current Process Flow Diagram…………………………………………………………….7 1.3 Current Process Description……………………………………………………………......8 1.3.1 Material Balance………………………..…………....………………..………....9 1.3.2 Energy Balance…………………….……………………………..…………….11 1.4 Syrup research………………………………………………………………....………….11 1.4.1 Marshmallow Production research………………...……..…..………...……….12 1.4.2 Syrup handling………….……………………………..…….....……………….12 1.4.3 Gelling agent ………………………..……………..……..………...………......13 II. Market Survey……………………………………………………………………..……………...14 2.1 High Fructose Corn Syrup (HFCS).....................................................................................15 2.2 Inverted Sugar Syrup……………………………………………………………………..15 2.3 High Fructose Corn Syrup vs Inverted Sugar Syrup……………………………………...16 III. Marshmallow Syrup Continuous Process Design……….…………………….………………….16 3.1 Process Flow Diagram…….………………………………………………….……..…....17 3.2Overall Process Discussion…...………………………………………….…………...…...17 3.2.1 Process Description………………………………………………………......…17 3.2.2 Material Balance ………………………...…………………………………......18 3.2.3 Energy Balance……………………………………………………………...….21 3.3 Major Equipment Specifications…………………………………………………..……..25 3.3.1 Scraped Surface Heat Exchangers…………………………………………...…25 3.3.2 In-line Blending Mixers………………………………………………………..26 3.3.3 Positive Displacement Pumps………………………………………………......26 3.3.4 Dry Raw Material Dosing Systems………………………………………..…...27 3.4 Vendor Research………………….…………………………………………………...….27 3.4.1 Alfa Laval………………………………………………………………...…….28 3.4.2 Daxner Dosing Systems…………………………………………….……...…...29 IV. Economic Analysis…………………………………………...…………………………….....….30 4.1 Equipment cost……..…………………………………………………………....…….....30 4.2 Fixed Capital Investment, Total Capital Investment, and Working Capital………….......30 4.3 Cash Flow Table Analysis…………………………...……………………………....…..31 4.4 Expenses Calculations…………………………………………………………………….32 4.5 Expenses Analysis Assumptions………………………………………………………….32 2 4.5.1 Economic Analysis of Expenses Best and Worst Case…………………....…....33 4.5.1.1 Worst Case Scenario, Expenses Analysis…………………………………….33 4.5.1.2 Best Case Scenario Expenses Analysis………………………………………………...…….34 4.6 Incremental Investment Opportunity………………………………….…………..……...35 V. Alternative Design …………………….....……………………………………………...…...…...36 5.1 Marshmallow Syrup Batch Process Optimization ……………………………………....36 5.1.1 Process Flow Diagram……………………………………………………..…..36 5.1.2 Overall Process Discussion…...……………………………….………….…....36 5.1.3 Material Balance………………………………………………………….….....37 5.2 Unsuccessful Alternative Designs…………………………………………………..…....38 5.2.1 PFD 1……………………………....…………………………………….…......38 5.2.2 PFD 2……………………………………………………………………….......39 5.2.3 PFD 3…………………………………………………………………………...40 5.2.4 PFD 4……………………………………………………………………..….....41 VI. Safety Constraints……………………………………………………………………………...…42 6.1 Control of Hazardous Energy...……………………………………………...…….…..…42 6.2 Lock Out-Tag-Out (LOTO)................................................................................................42 6.3 Training and Hazard Communication……………………..…………………………...…43 6.4 HACCP Principles…………………………………………………………………...…...43 6.4.1 Conduct a Hazard Analysis……………………………..……………….....…...44 6.4.2 Determine the Critical Control Points (CCPs).....................................................44 6.4.3 Establish Critical Limits…………………………….…………………….….....44 6.4.4 Establish Monitoring Procedures……………………………………...………..45 6.4.5 Establish Corrective Actions…………………………………..………………..45 6.4.6 Establish Verification Procedures………………………………...…………….45 6.4.7 Establish Record-Keeping and Documentation procedures………………….....45 VII. Conclusions……………………………………………………………………………...............46 VII. Recommendations …………………………....………...……………………………………....46 8.1 Current batch process recommendations…………………………….….....….……….....46 8.2 Continuous process recommendations……………………………………………………47 VIII. References…………………………………………………………………………....………....48 IX. Appendix………...………………………..………………………………………………...........49 A.1 Mass Balance by Streams for Current Process…………………………………..............49 Table A.1.1: Mass Balance For Syrup Tank………………………………..………..49 3 Table A1.2: Mass Balance For Gelling Mix Tank ……………………………...........49 Table A1.3: Mass Balance For Cool Tank (same as Use Tank) ………………...…..49 A.2 Mass Balance by Streams for Continuous Design Process……………………………... 50 Table A2.1: Mass Balance Around Premixer …………………………...…………...50 Table A2.2: Mass Balance Around Inline Blending Unit 1 ……………………….....50 Table A2.3: Mass Balance Around Contherm Units ……………………...…............51 Table A2.4: Mass Balance Around Inline Blending Unit 2 ………………………….52 A.3 Mass Balance by Streams for Continuous Process Achieving Goal Production…...........53 Table A3.1: Mass Balance Around Premixer ………………………………...……...52 Table A3.2: Mass Balance Around Inline Blending Unit 1 ………………….……....52 Table A3.3: Mass Balance Around Contherm Units ……………………...…............53 Table A3.4: Mass Balance Around Inline Blending Unit 2…………………………..53 A.4 Mass Balance by Streams for Batch Design Process…………………………………….54 Table A.4.1: Material Balance Around Supramix ……………………………...........54 Table A.4.2: Material Balance around Scraped Surface Heat Exchanger……… …...55 Table A.4.3: Material Balance Around Mix Tank…………………………….... …...55 A.5 Mass Balance by Streams for Batch Process Achieving End-Goal Production…………55 Table A.5.1: Material Balance Around Supramix…………………...…………….....55 Table A.5.2: Material Balance around Scraped Surface Heat Exchanger………...….56 Table A.5.3: Material Balance Around Mix Tank…………………..……………….57 A.6 Enthalpy Requirements for estimated energy Required for Current Production Process…………………………………………………………………………..….………...57 A.6.1 Enthalpy values used for Syrup Mix Tank……………………………………..57 A.6.2 Enthalpy values used for Gelling Mix Tank………………………….………..57 A7. Energy Balance by streams for Continuous Design……………………………………..58 A.7.1: Energy Balance Around Premixer……………………………………..……...58 A.7.2: Energy Balance Around Inline Blending Unit ………………….….…............58 A.7.3: Energy Balance Around Contherms one, two and, three………………...........58 A.7.4: Energy Balance Around Inline Blending Unit 2……………………...……….59 A.8 Energy Balance for Continuous Design Achieving End-Goal Production……….... …...59 A.8.1: Energy Balance Around Premixer…………………………………………….59 A.8.2: Energy Balance Around Inline Blending Unit 1……………………………....59 A.8.3: Energy Balance Around Contherms one, two and, three……………………...60 A.8.4: Energy Balance Around Inline Blending Unit 2……………………………....60 A.9:Volumetric Flow rates in each unit for Continuous Design for Volume Finding Calculation……………………………………………………………………………............61 A.10 Volume Calculation of Buffer Tanks and In-line Blending Units………………...........61 A.11. Cash Flow Table…………………………………,,,…………………………………..62 A12. Discarded Major Equipment Research………………………………………………….62 4 List of Figures Page Number Figure 1: Current batch process for syrup manufacturing………………………………………...…...8 Figure 2: High Fructose Corn Syrup (HFCS) Market Survey………………………………………..14 Figure 3: Inverted Sugar Syrup…………………………………………...…………………………..15 Figure 4: Continuous Process Design for Syrup Production…………………………………………17 Figure 5: Contherm Scraped Wall Heat Exchangers in-series style………………………...………..28 Figure 6: Loss-in-weight Dosing System pictured from below the silos……………………………..29 Figure 7: Optimization of a Semi-batch Process for Syrup Production……………………………....32 Figure 8: Modified batch process with an addition of a coil cooker followed by a scraped surface heat exchanger……………………………………….…………………………………………………….35 Figure 9: Continuous process configuration using four premixers followed by four heat exchangers…………………………………………………………………………………………….36 Figure 10: Second Batch process optimization with a high capacity heat exchanger………………..37 Figure 11: Theoretical model of a jacketed scraped surface heat exchanger w/ different inlets……..37 5 List of Tables Page Number Table 1: Mass Balance for Current Process in lbs and as a “continuous rate” of 32.86 lbs./min……...9 Table 1.1: Material Balance around Syrup Mix Tank……………………………….………………....9 Table 1.2: Material Balance around Gelling Tank …………………………………………………...10 Table 1.3: Material Balance around Cool Tank………………………………………………………10 Table 1.4: Flow rates for current batch process and goal flow rate…………………………………..10 Table 2: Current energy balance