The Quality of Syrups Used for Bee Feeding Before Winter and Their Suitability for Bee Wintering

Total Page:16

File Type:pdf, Size:1020Kb

The Quality of Syrups Used for Bee Feeding Before Winter and Their Suitability for Bee Wintering Vol. 50 No. 1 2006 Journal of Apicultural Science 5 THE QUALITY OF SYRUPS USED FOR BEE FEEDING BEFORE WINTER AND THEIR SUITABILITY FOR BEE WINTERING Violeta Ceksteryte, Jurgis Racys Lithuanian Institute of Agriculture, Instituto Aleja 1, Akademija, 58344 Kedainiai distr. Received 31 March 2005; accepted 07 March 2006 Summary The quality of several inverted syrups was assessed: Bioinwert, Apiinvert, HI, GF56, GF85, GF56+GF85 and Pchelit. Variations in the quality of the syrups Bioinwert, Apiinvert and HI were determined in the experiments carried out in summer in the isolators after bees had deposi- ted the food in the nucleus combs. Our tests showed that bees purified syrups. The sugar syrups Bioinwert A, Apiinvert A from 1999 and HI from 2001 had content of hydroxymethylfurfural (HMF) 85.9, 32.7 and 1.43 mg/kg, respectively. HMF declined when bees processed those syrups and deposited in the combs. The content of HMF in syrups Bioinwert B, Apiinvert B, HI amounted to 16.1, 2.64 and 0, respectively. The content of HMF in sugar syrups GF 85, GF 56, GF 85+GF 56 used for feeding wintering bees was 5.8, 48.0, 27.7 mg/kg. No HMF was identi- fied in Pchelit. The food deposited in the nucleus combs by bees had more biological active components compared with the food fed to bees. Diastase activity does not exist in Bioinwert A from 1999 and 2000 nor does it in Apiinvert A from 1999. This component appears in Bioinwert B – 3.88 and 6.07 Gothe units and Apiinvert B – 6.69 Gothe units. Saccharose present in the syrups S (A) from 2000 and 2001 was 47.0% and 47.8%. Due to the effect of invertase present in the bee se- cretion, the syrups S (B) contained only 11.6 and 6.75 % of saccharose. Low invertase activity 2.18 and 16.9 IU was determined in Bioinwert A from 1999 and 2000, however the activity of this enzyme increased after processing of the syrups by bees – in the Bioinwert B from 1999 it amounted to 64.6 and 53.6 IU and in Apiinvert B to 41.9 UI. The sugar syrups GF 56, GF 85, GF 56+GF 85 and Pchelit were used for feeding wintering bees. The highest food consumption 1.9 kg/comb was identified for bees fed on GF 56, however those colonies reared fewer brood. In spring crystallisation of GF 56 syrup was observed in few cells of the comb. The strength of the bee colonies after wintering on this syrup slightly de- clined from 5 points estimated in the autumn to 4.5 estimated in the spring. The best wintering of bee colonies was observed on syrups Pchelit and GF 56+GF 85. The number of brood after wintering in those bee colonies in spring was 220 and 162 in hundred cells; the food consump- tion in those colonies was 1.4 and 1.5 kg/comb, respectively. All bee colonies survivied through winter. Keywords: inverted sugar syrup, diastase, invertase, hydroxymethylfurfural, wintering of bee colonies. INTRODUCTION lisation in combs (Ohe andSchönberger During the honey flow bees provide 2000). themselves with food and accumulate win- When melezitose content in honeydew ter food supplies. Rape honey is not suita- honey is 8.0 – 12.0% or more, such honey ble for bee wintering due to the high glu- crystallises in the combs. During winter cose concentration – fructose/glucose ratio bees are not able to consume such honey from 0.86 to 1.0, which causes its crystal- because they are short of water to dissolve 6 the crystals and consequently, bees die of wheat starch was detrimental to bees since thirst (Ga³uszka et al 1996). it contained undigested polysaccharides, In the autumn, when honey is removed especially starch (Doull 1974). from hives, food reserves in the bee colo- Sugar syrups low in saccharose, but con- nies are replenished with sugar syrup. taining galactose, arabinose, xylose, When transferring sugar syrup to combs mannose, raffinose, and lactose were not bees break down saccharose present in the suitable for bee feeding (Barker and syrup into glucose and fructose, for this Lehner 1974b). The highest quality syrup they use their biological resources and up is achieved using the enzyme invertase for to 23.0% of the sugar syrup fed. These pro- the breakdown of saccharose. This enzyme cesses exhaust bees and they start wintering present in honey breaks down saccharose in a weakened condition. In order to pre- to glucose and fructose. Therefore, using vent bee exhaustion resulting from syrup natural honey it is possible to produce in- processing, it is expedient before winter to verted syrup. The Russian Institute of Api- supply bees with ready made food, i.e. with culture in Rybnoje uses such sugar inver- syrup in which sugar has already been in- sion: 72.5 kg of sugar, 7.5 kg of honey, 20 verted. In inverted sugar saccharose is bro- litres of water and 24 g of concentrated ken down into glucose and fructose, there- acetic acid (adjusted to 100%). The inver- fore the use of such food for bee feeding sion of saccharose lasts for5–6days at 34 before winter exhausts bees less – 36°C (Strojkov 1990). In different (Zaboenko 2000). Jachimowicz honey types invertase activity is diverse (1976) is of different opinion. According to and lower compared with that of commer- this author, the bees must use up their cially produced invertase, therefore pro- hypopharyngeal glands secretion transfer- duction of inverted sugar with honey addi- ring the inverted syrup to the combs ex- tion is time consuming. When pure actly the same as transferring the syrup invertase enzyme isolated from yeast is made of refined sugar (saccharose). used for saccharose breakdown, Sugar syrups produced from refined microbiologically clean inverted sugar free beet sugar and cane sugar are suitable for of bee disease causal agents (pathogenic bee feeding. Impurities present in non-re- microorganisms) as well as noxious sub- fined sugar are noxious to bees (Bailey stances, is obtained (Strojkov 1990). En- 1966). It is suggested that refined sugar zymatic yeast agent Pchelit is currently be- syrups are more suitable for bee feeding ing recommended for the production of in- before winter compared with honey. The verted sugar syrup in Russia. This agent German factory Südzucker produces high has been tested at the Institute of Apicul- quality inverted sugar syrup, which con- ture in Rybnoje. According to producer’s tains 72.7% of sugar and 27.3% of water. description Pchelit enriches inverted syrup The sugar content is composed of 30.0% with amino acids, lipids, B-group vitamins, sucrose, 31.0% glucose, 39.0% fructose, and microelements. Wintering bees fed on (Kammerer 1989). sugar syrup inverted by Pchelit, consume It is convenient for beekeepers to use in- less pollen (by 40%) and sugar (by 20- verted sugar syrup since it involves lower -30%) compared with the bees fed on sugar labour input. Some authors report that in- syrup (Bilash 2005). verted syrup is less attractive to foraging Sugar syrup should be acidified with or- bees, therefore robbing is not a problem ganic acids (citric, oxalic, acetic, lactic). with inverted sugar (Barker and Lehner The best wintering results were obtained 1974a). Inverted syrup produced from when 0.3 g acetic acid was added per kilo- Vol. 50 No. 1 2006 Journal of Apicultural Science 7 gram of sugar to the sugar syrup, prepeared El Sherbiny 1975). for feeding of wintering bees. The fecula Experimental objectives: mass in spring bees was lower when they — to assess the quality of differently pre- were fed on sugar syrup, acidified with ace- pared food for bee wintering; tic acid, compared to those, fed on non — to estimate the quality of syrups before acidified sugar syrup (Taranov 1986). feeding the bees and those stored in Old honey (Jachimowicz and El combs (after transferring them by the Sherbiny 1975) or poorly inverted syrup bees to the combs). high in HMF is not suitable for autumn — to compare the effects of various foods feeding of bees, since this substance is on wintering of honey bee colonies. toxic to bees. Jachimowicz and El Sherbiny 1975 found, that HMF is the MATERIAL AND METHODS factor that causes bee mortality. They re- port that the HMF content of 15 mg/100 g Laboratory and outdoor experiments on in commercially acid hydrolyzed invert bee winter feeding were performed at the sugar syrup significantly increased mortal- Lithuania Institute of Agriculture, Depart- ity of bees. After feeding sugar syrup with ment of Apiculture during the period 2000 a HMF content of 15 mg/100 g, in average – 2004. 58% of bees died within 20 days from the The details on the characteristics of start of feeding. HMF concentrations sugar syrups, used for feeding bees in nu- 3 mg/100 g and 6 mg/100 g were harmless cleus and for bees wintering are shown in to the bees. As a result, many specialists Table1. recommend the proper concentration of PRODUCTION OF INVERTED this compound in inverted syrups not to ex- SUGAR SYRUP WITH HONEY (HI) ceed 2 mg/100 g as it is in most honeys Three kilograms of sugar were added (Kammerer 1989). The inverted sugar into2lofboiling water and the solution syrup should be used for bees only after was stirred until sugar dissolved. When the checking HMF content in it (Jachimo- syrup’s temperature had dropped to 35°C, wicz 1976). 0.38 kg of honey was added and the syrup When saccharose is inverted with or- was well mixed. The syrup was kept for five ganic acids, HMF formation is lower com- days at 38 – 40°C and mixed twice a day.
Recommended publications
  • Prevention of Cap-Locking of Syrup Product by Treating the Manufacturing Process of Sugar Syrup with Citric Acid Monohydrate
    Bangladesh Pharmaceutical Journal 19(2): 190-196, 2016 Prevention of Cap-Locking of Syrup Product by Treating the Manufacturing Process of Sugar Syrup with Citric Acid Monohydrate Mia Mohammad Dulal1, Md. Kaisarul Islam2, Abu Asad Chowdhury2 and Jakir Ahmed Chowdhury3 1Julphar Gulf Pharmaceuticals Ltd, R.A.K.,UAE. 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh 3Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh Received: May 13, 2016; Accepted: June 29, 2016; Published (Web): July 31, 2016 Abstract The aim of the study was to prevent crystallization of sucrose on the bottle neck and cap of sugar syrup containing products by treating the manufacturing process with citric acid monohydrate. Diphenhydramine HCl syrup was selected as a model product for the experiment. Sugar syrup (66% w/w sucrose) and partially inverted sugar syrup (in which 66% w/w sucrose was treated with citric acid monohydrate for partially conversion of sucrose into invert sugars) were prepared and the content of invert sugar of both the sugar syrups were determined. Sugar syrup and citric acid monohydrate treated sugar syrup (partially inverted) were considered as control and test sugar syrup, respectively which were used to manufacture the Diphenhydramine HCl syrup product. The Diphenhydramine HCl syrup product that prepared using sugar syrup was considered as control syrup product and that was prepared using citric acid monohydrate treated sugar syrup (partially inverted) was considered as the test syrup product. Then experiments were designed in such a way that both control (sugar syrup and product prepared by it) and test samples (partially inverted syrup and product prepared by it) were spread on open petridishes and also spread on the neck of filled bottle, inside of caps and the bottles, which were kept at room temperature (25 C) for 2 weeks observation.
    [Show full text]
  • Nutrition & Allergen Guide
    Home > Bakery Menu > Breakfast Menu > Lunch Menu > Impulse Items > NUTRITION & ALLERGEN GUIDE AUTUMN TO HOLIDAY (SEPTEMBER TO DECEMBER 2021) Bakery Menu > Breakfast Menu > Lunch Menu > Impulse Items > CORE FOOD Home > Bakery Menu > Breakfast Menu > Lunch Menu > Impulse Items > This guide will provide nutritional and allergen information for core food. Allergens can be found in BOLD CAPITALS within the ingredient declaration. Please ensure you take extra care to identify all the possible allergens present in our food, if you require support please ask one of our trained baristas. Within this booklet it will provide information on the following 14 allergens: • Cereals Containing Gluten • Fish (Wheat, Rye, Barley, Oats, Spelt, Kamut) • Crustaceans • Nuts • Sesame (Almond, Hazelnut, Walnut, Cashew, Pecan Nut, Brazil Nut, • Celery Pistachio Nut, Macadamia Nut, Queensland Nut) • Mustard • Egg • Peanuts • Milk • Sulphur Dioxide and Sulphites • Soya Cross Contamination Due to the nature of how our partners handle our bakery and heated food items equipment and utensils there is a risk of cross-contamination of other allergens. Whilst our partners try to keep things separate there is no guarantee any item is allergen free. Please remember to check this information regularly as we’re always working on our recipes. For more allergen information please ask your barista. This information is updated regularly to reflect our procedures instore. Please check www.starbucks.co.uk for the most up to date information. Home > Bakery Menu > Breakfast Menu >
    [Show full text]
  • Effects of the Carbohydrate Sources Nectar, Sucrose and Invert Sugar on Antibacterial Activity of Honey and Bee-Processed Syrups
    antibiotics Article Effects of the Carbohydrate Sources Nectar, Sucrose and Invert Sugar on Antibacterial Activity of Honey and Bee-Processed Syrups Veronika Bugarova 1, Jana Godocikova 1, Marcela Bucekova 1, Robert Brodschneider 2 and Juraj Majtan 1,3,* 1 Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; [email protected] (V.B.); [email protected] (J.G.); [email protected] (M.B.) 2 Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; [email protected] 3 Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia * Correspondence: [email protected]; Tel.: +421-903-869413 Abstract: Honey is a functional food with health-promoting properties. Some types of honey are used in wound care for the treatment of acute and chronic infected wounds. Increased interest in using honey as a functional food and as a base for wound care products causes limited availability of raw honey. Numerous studies suggest that the protein content of honey is mainly comprised of bee-derived proteins and peptides, with a pronounced antibacterial effect. Therefore, the aim of our study was to characterize for the first time the antibacterial activity of raw honeys and bee-processed Citation: Bugarova, V.; Godocikova, syrups which were made by processing sucrose solution or invert sugar syrup in bee colonies under J.; Bucekova, M.; Brodschneider, R.; field conditions. Furthermore, we compared the contents of glucose oxidase (GOX) and the levels Majtan, J.
    [Show full text]
  • Complete Sucrose Hydrolysis by Heat-Killed Recombinant Pichia Pastoris Cells Entrapped in Calcium Alginate
    Martínez et al. Microbial Cell Factories 2014, 13:87 http://www.microbialcellfactories.com/content/13/1/87 RESEARCH Open Access Complete sucrose hydrolysis by heat-killed recombinant Pichia pastoris cells entrapped in calcium alginate Duniesky Martínez1, Carmen Menéndez2, Félix M Echemendia1, Enrique R Pérez1, Luis E Trujillo2*, Alina Sobrino1, Ricardo Ramírez2, Yamira Quintero2 and Lázaro Hernández2 Abstract Background: An ideal immobilized biocatalyst for the industrial-scale production of invert sugar should stably operate at elevated temperatures (60-70°C) and high sucrose concentrations (above 60%, w/v). Commercial invertase from the yeast Saccharomyces cerevisiae is thermolabile and suffers from substrate inhibition. Thermotoga maritima β-fructosidase (BfrA) is the most thermoactive and thermostable sucrose-hydrolysing enzyme so far identified and allows complete inversion of the substrate in highly concentrated solutions. Results: In this study, heat-killed Pichia pastoris cells bearing N-glycosylated BfrA in the periplasmic space were entrapped in calcium alginate beads. The immobilized recombinant yeast showed maximal sucrose hydrolysis at pH 5–7 and 90°C. BfrA was 65% active at 60°C and had no activity loss after incubation without the substrate at this temperature for 15 h. Complete inversion of cane sugar (2.04 M) at 60°C was achieved in batchwise and continuous operation with respective productivities of 4.37 and 0.88 gram of substrate hydrolysed per gram of dry beads per hour. The half-life values of the biocatalyst were 14 and 20 days when operated at 60°C in the stirred tank and the fixed-bed column, respectively. The reaction with non-viable cells prevented the occurrence of sucrose fermentation and the formation of by-products.
    [Show full text]
  • Inverted Sugar Syrup - Wikipedia
    Inverted sugar syrup - Wikipedia https://en.wikipedia.org/wiki/Inverted_sugar_syrup Inverted sugar syrup Inverted sugar syrup (also called invert syrup , or simply invert Invert sugar sugar ) is an edible mixture of two simple sugars—glucose and fructose— that is made by heating sucrose (table sugar) with water. [1] It is thought to be sweeter than table sugar, [2] and foods that contain it retain moisture and crystallize less easily. Bakers, who call it invert syrup , may use it more than other sweeteners.[3] Though inverted sugar syrup can be made by heating table sugar in water alone, the reaction can be sped up by adding lemon juice, cream of tartar or other catalysts often without changing the flavor noticeably. Identifiers The mixture of the two simple sugars is formed by a process of hydrolysis of sucrose. This mixture has the opposite direction of optical rotation as the CAS Number 8013-17-0 (http://ww original sugar, which is why it is called an invert sugar. w.commonchemistry. org/ChemicalDetail.a spx?ref=8013-17-0) Contents ChEMBL ChEMBL1201647 (ht Chemistry tps://www.ebi.ac.uk/c Optical rotation Definition and measurement hembldb/index.php/c Definition of the inversion point ompound/inspect/Ch Chirality and specific rotation EMBL1201647) Effects of water ChemSpider none Mixtures in general Fully hydrolyzed sucrose ECHA 100.029.446 (https:// Partly hydrolyzed sucrose InfoCard echa.europa.eu/subs Monitoring reaction progress tance-information/-/s Production ubstanceinfo/100.02 9.446) Shelf life In other foods and products PubChem 21924868 (https://pu CID See also bchem.ncbi.nlm.nih.
    [Show full text]
  • 19 Do Not Duplicate Functional Oligosaccharides a Trisaccharide Of
    Do not duplicate Introduction to Carbohydrates: Oligosaccharides Dr. Yuan Yao Whistler Center for Carbohydrate Research Short Course October 3, 2017 Basic Concepts 2 Do not duplicate • “Oligo-” is the prefix from Greek language “few”; Poly- “many” • Oligosaccharides: Products of glycosidic linkages of 2-20 monosaccharide units (most commonly 2-9). Polysaccharides: More than 20 units • In the disaccharides: the aglycone is a monosaccharide unit; higher order oligosaccharides are named “tri-”, “tetra-”, “penta-”, etc. • There can be α-/β-(1→2), (1→3), (1→4) or (1→6) glycosidic linkages, with different stabilities & digestibilities (as for human body) • The structures of oligosaccharides could be linear or branched. Linear: head-to-tail linkage, 1 reducing end, 1 non-reducing end Branched: 1 reducing end, multiple non-reducing ends Common Disaccharides 3 Do not duplicate • Disaccharides are the simplest oligosaccharides that are only composed of two monosaccharide units o Highly abundant in nature; or the products of incomplete hydrolysis of higher oligosaccharides or polysaccharides o Water-soluble, with sweet taste • Most Common: Sucrose, Maltose, Lactose, & Trehalose o Naturally occurring o As the main product of photosynthesis, sucrose is ubiquitous in all plants, with high abundance in sugar cane and beet, as well as fruits o Commonly known as table sugar, sucrose usually serves as a “standard” of sweetness for other sweeteners Common Disaccharides 4 Do not duplicate Sucrose • A disaccharide of one glucose and one fructose unit, connected via β-(1,2)-glycosidic linkage • The “head-to-head” linkage is unstable due to high strain, and is therefore easily hydrolyzed (acid-catalyzed, or enzymatic) • Sucrose is a non-reducing sugar α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside 5 Common Disaccharides Inverted sugarDo (syrup) not duplicate • Sucrose could be readily hydrolyzed.
    [Show full text]
  • Assessment of the Annual Number of Newly Available Products That Are Sweetened with Fructose-Glucose Syrup Or Glucose-Fructose Syrup
    www.bfr.bund.de DOI 10.17590/20210615-084339 Assessment of the annual number of newly available products that are sweetened with fructose-glucose syrup or glucose-fructose syrup Joint Opinion No 018/2021 by the BfR and MRI from 15 June 2021 A mixture of fructose (fruit sugar) and glucose (dextrose) is often used to sweeten foods. De- pending on which of the fructose or glucose components predominates in a mixture, this is referred to as fructose-glucose syrup (contains at least 50 % fructose) or glucose-fructose syrup (contains at least 50 % glucose and more than 5 % fructose). This also includes high- fructose corn syrup (HFCS) obtained from corn starch. The syrup can contain various propor- tions of fructose. Compared to sucrose, it has a slightly higher sweetening power, and is more cost-effective and easier to process in food production. The German Federal Institute for Risk Assessment (BfR), together with the Max Rubner Insti- tute (MRI), has evaluated how often the aforementioned mixtures of fructose and glucose are used in processed, newly introduced foods available on the German market. For this re- search, the institutes compared the results of the Mintel Global New Product Database and Innova Database, in which new product launches are being registered since 1996 and 1994, respectively. It turns out that fructose-glucose syrup or HFCS are rarely used on the German market. Less than 1 % of all foods recorded in those databases have either one of these substances in their list of ingredients. Foods that contain them particularly fall within the categories of baked goods (e.g.
    [Show full text]
  • Compositions with a Surfactant System Comprising Saponins, and Lecithin
    (19) TZZ ¥_T (11) EP 2 359 698 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A23L 1/22 (2006.01) A23L 2/44 (2006.01) 04.12.2013 Bulletin 2013/49 A23L 2/56 (2006.01) A23D 9/00 (2006.01) A23L 2/52 (2006.01) A23L 2/58 (2006.01) (21) Application number: 10151491.7 (22) Date of filing: 22.01.2010 (54) Compositions with a surfactant system comprising saponins, and lecithin Zusammensetzungen mit einem Tensidsystem mit Saponinen und Lecithin Compositions avec système d’agent de surface comportant des saponines, et de la lécithine (84) Designated Contracting States: • Sabater-Lüntzel, Christopher AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 37603, Holzminden (DE) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Homner, Cornelia PT RO SE SI SK SM TR 37603, Holzminden (DE) (43) Date of publication of application: (74) Representative: Eisenführ, Speiser & Partner 24.08.2011 Bulletin 2011/34 Postfach 10 60 78 28060 Bremen (DE) (73) Proprietor: Symrise AG 37603 Holzminden (DE) (56) References cited: EP-A1- 1 533 313 WO-A1-2007/026271 (72) Inventors: JP-A- 2006 055 137 JP-A- 2006 249 037 • Schrader, Dirk US-A- 5 057 540 37603 Holzminden (DE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Influence of Corn Syrup and Inverted Sugar Adulteration on Physicochemical Properties of Romanian Acacia Honey
    Scientific Bulletin. Series F. Biotechnologies, Vol. XXIV, No. 2, 2020 ISSN 2285-1364, CD-ROM ISSN 2285-5521, ISSN Online 2285-1372, ISSN-L 2285-1364 INFLUENCE OF CORN SYRUP AND INVERTED SUGAR ADULTERATION ON PHYSICOCHEMICAL PROPERTIES OF ROMANIAN ACACIA HONEY Paula CIURSA*, Mircea OROIAN “Stefan cel Mare” University of Suceava, Faculty of Food Engineering, 13 University Street, Suceava, Romania *Corresponding author email: [email protected] Abstract The aim of this study was to analyze the influence of corn and inverted sugar syrups adulteration on physicochemical parameters of acacia honey. The adulteration of the acacia honey samples analyzed was done by the addition of concentrated corn syrup. For this purpose, acacia honey was adulterated with different percentages (5%, 10%, 20% and 50%) of corn syrup and inverted sugar. The color, pH, free acidity, electrical conductivity, moisture content, hydroxymethylfurfural content, as well as the sugar content (fructose, glucose, sucrose, turanose, maltose, trehalose, melesitose, and raffinose) were chosen as parameters for evaluating the influence of adulteration agents in honey. The moisture content of the honey samples were below the maximum level established by Codex Alimentarius (≤ 20%). The hidroxymethylfurfural content increased considerably from 18.97 in authentic honey to 337.31 mg/kg honey adulterated with 50% inverted sugar syrup, while a decrease occurred from 18.97 to 10.89 mg/kg honey adulterated with 50% corn syrup. Electrical conductivity decreased from 122.26 µS/cm to 107.08 µS/cm and from 122.26 µS/cm to 69.34 µS/cm with the addition of inverted sugar syrup and of corn syrup respectively.
    [Show full text]
  • Sweet to Nature Sugar Has No Secrets for Us
    Sweet to nature Sugar has no secrets for us. We are one of the market leaders, drawing on more than 25 years’ experience in developing intermediate goods based on naturally selected sugars: from liquid syrups and a full range of sugar pastes to dry specialities Our extensive range is distributed to the artisanal and industrial food industry in more than 40 countries. Quality is our speciality and it clearly hits the spot. We distribute our products to specialists in the food and non-food industry. “ Cutting edge in innovation There is a reason why our company continues to grow Our production facilities, from machinery to production lines, constantly. Alongside our permanent concern for the quality are high-tech. The entire production process at our new state- of our products, innovation, sustainability and flexibility are of-the-art premises is automated and digitised, end to end, to the main ingredients in our recipe for success. We continue the highest quality standards. That ensures fast lead times, but to develop new products in our laboratories, with due respect also superior products that win customers over with the help of for the environment and tailored to our customers. competitive pricing. Belgosuc is a forward-looking company in all respects. We Our unremitting innovation drive is precisely where our power as use the latest technology to optimise the production process a company lies. We have a strong R&D department to develop and the end product. ingenious, creative sugar solutions that inspire customers and allow them to innovate themselves. We translate your creativity in our “products.
    [Show full text]
  • Inverted Sugar Syrup)
    (Inverted Sugar Syrup) www.entrepreneurindia.co Introduction The invert sugar syrups or invert sugars are chemically made up of a mixture of glucose and fructose. These products are known to have greater digestibility than the commonly used table sugar. Due to their unique properties, invert sugar syrups have been used extensively in the food and beverage industry. The appearance of the invert sugar syrups is transparent and sometimes yellow-brown and sticky consistency. The properties like providing extra sweetness, texturizing properties, etc. have provided an extra edge for invert syrup sugars over other natural sugars. They are also a potent substitutes for honey and sucrose. www.entrepreneurindia.co Uses & Application: Invert syrup is used to keep product moist, extending except able shell life of products. • It can be used to slow down the crystallization that may occur. • Thus the main uses of Invert sugar are in: www.entrepreneurindia.co Food and Confectionery Industry Bakeries & Biscuits - It can be used for carmellisation, enhancement of flavour and texture improvement. Bread, Cakes & Pastries - Invert sugar improves the quality of the crust and makes the bread crumb softer. Yeast activation also becomes faster. Fruit Processing - When used for fruit processing, invert sugar increases the shelf life due to good humectants properties. It also enhances taste and flavor. Honey - Invert sugar can be used for bee feeding and can be blended with honey. Chemically and physically it has the same properties as honey. www.entrepreneurindia.co Herbal Cosmetics - As invert sugar restricts bacterial activity and is a chemically purer replacement of honey, it can be used in herbal cosmetics.
    [Show full text]
  • Sugar: How Sweet It Is
    1 Copyright © 2014 The Health Coach Group, Inc. All Right Reserved. No part of this book may be reproduced or redistributed in any form or by any electronic or mechanical means, including information storage and retrieval systems, without permission in writing from the publisher. Published in the United States by: The Health Coach Group, Inc. 7601 Military Avenue, Omaha, NE 68134 http://www.thehealthcoachgroup.com. The information contained in this book is intended to help readers make informed decisions about their health. It should not be used as a substitute for treatment by or the advice of a physician. Although the author and publisher have worked hard to ensure that the information provided here is complete and accurate, they will not be held responsible for loss or damage of any nature suffered as a result of reliance on any of this book’s contents or any errors or omissions herein. Copyright 2014 2 The Health Coach Group FACT: • Sugar is 8 x’s more addictive than cocaine. • Sugar cause obesity, inflammation (disease), feeds cancer, dementia, type 2 diabetes, depression, infertility, impotence, depression and brain function. “The average American consumes about 152 pounds of sugar a year. That’s roughly 22 teaspoons every day for every person in America. And our kids consume about 34 teaspoons every day — that’s more than two 20-ounce sodas — making nearly one in four teenagers pre-diabetic or diabetic. Flour is even worse than sugar. We consume about 146 pounds of flour a year. Think about it. That’s about one pound of sugar and flour combined every day for every man, woman and child in America.
    [Show full text]