RML Nothofagus – Leptospermum Short Rainforest

Total Page:16

File Type:pdf, Size:1020Kb

RML Nothofagus – Leptospermum Short Rainforest Vegetation Condition Benchmarks version 2 Rainforest and Related Scrub RML Nothofagus – Leptospermum short rainforest Community Description: Nothofagus – Leptospermum short rainforest is rainforest in which 15 – 50% of the canopy is mature Leptospermum species. The rainforest is generally thamnic and moderately floristically diverse, with Phyllocladus aspleniifolius, Eucryphia species, Atherosperma moschatum and Anodopetalum biglandulosum and sometimes Acacia melanoxylon co-dominant with Nothofagus cunninghamii. Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 100% - - - Large Trees - 10 15 #250 Organic Litter 80% - Logs ≥ 10 - 10 Large Logs ≥ 10 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Tree or large shrub T 3 10 Large sedge/rush/sagg/lily LSR 1 5 Ground fern GF 1 25 Mosses and Lichens ML 1 3 Total 4 6 Last reviewed – 4 August 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RML Nothofagus – Leptospermum short rainforest Species lists: Canopy Tree Species Common Name Notes Nothofagus cunninghamii myrtle beech Leptospermum glaucescens smoky teatree Leptospermum lanigerum woolly teatree Leptospermum nitidum shiny teatree Leptospermum scoparium common teatree Acacia melanoxylon blackwood Anodopetalum biglandulosum horizontal Atherosperma moschatum sassafras Eucryphia spp. leatherwood Phyllocladus aspleniifolius celerytop pine Typical Understorey Species * Common Name LF Code Anodopetalum biglandulosum horizontal T Anopterus glandulosus Tasmanian laurel T Archeria spp. rainforest-heath T Cenarrhenes nitida native plum T Orites diversifolia variable orites T Richea pandanifolia pandani T Tasmannia lanceolata mountain pepper T Telopea truncata tasmanian waratah T Trochocarpa gunnii fragrant purpleberry T Gahnia grandis cutting grass LSR Lycopodiella spp. clubmoss GF *This list is provided as a guide only. The species listed are typical of this plant community type but may not necessarily be present. .
Recommended publications
  • Vegetation Benchmarks Rainforest and Related Scrub
    Vegetation Benchmarks Rainforest and related scrub Eucryphia lucida Vegetation Condition Benchmarks version 1 Rainforest and Related Scrub RPW Athrotaxis cupressoides open woodland: Sphagnum peatland facies Community Description: Athrotaxis cupressoides (5–8 m) forms small woodland patches or appears as copses and scattered small trees. On the Central Plateau (and other dolerite areas such as Mount Field), broad poorly– drained valleys and small glacial depressions may contain scattered A. cupressoides trees and copses over Sphagnum cristatum bogs. In the treeless gaps, Sphagnum cristatum is usually overgrown by a combination of any of Richea scoparia, R. gunnii, Baloskion australe, Epacris gunnii and Gleichenia alpina. This is one of three benchmarks available for assessing the condition of RPW. This is the appropriate benchmark to use in assessing the condition of the Sphagnum facies of the listed Athrotaxis cupressoides open woodland community (Schedule 3A, Nature Conservation Act 2002). Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 10% - - - Large Trees - 6 20 5 Organic Litter 10% - Logs ≥ 10 - 2 Large Logs ≥ 10 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Immature tree IT 1 1 Medium shrub/small shrub S 3 30 Medium sedge/rush/sagg/lily MSR 2 10 Ground fern GF 1 1 Mosses and Lichens ML 1 70 Total 5 8 Last reviewed – 2 November 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RPW Athrotaxis cupressoides open woodland: Sphagnum facies Species lists: Canopy Tree Species Common Name Notes Athrotaxis cupressoides pencil pine Present as a sparse canopy Typical Understorey Species * Common Name LF Code Epacris gunnii coral heath S Richea scoparia scoparia S Richea gunnii bog candleheath S Astelia alpina pineapple grass MSR Baloskion australe southern cordrush MSR Gleichenia alpina dwarf coralfern GF Sphagnum cristatum sphagnum ML *This list is provided as a guide only.
    [Show full text]
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • Indigenous Plants of Bendigo
    Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • NLM Leptospermum Lanigerum – Melaleuca Squarrosa Swamp Forest
    Vegetation Condition Benchmarks version 3 Non-Eucalypt Forest and Woodland NLM Leptospermum lanigerum – Melaleuca squarrosa swamp forest Community Description: Leptospermum lanigerum – Melaleuca squarrosa swamp forests dominated by Leptospermum lanigerum and/or Melaleuca squarrosa are common in the north-west and west and occur occasionally in the north-east and east where L. lanigerum usually predominates. There are also extensive tracts on alluvial flats of the major south-west rivers. The forests are dominated by various mixtures of L. lanigerum and M. squarrosa but with varying lesser amounts of various species of Acacia and rainforest species also present. Trees are usually > 8 m in height. Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 70% - - - Large Trees - 10 25 800 Organic Litter 40% - Logs ≥ 10 - 20 Large Logs ≥ 12.5 Recruitment Episodic Understorey Life Forms LF code # Spp Cover % Tree or large shrub T 4 20 Medium shrub/small shrub S 3 15 Herbs and orchids H 5 5 Grass G 1 1 Large sedge/rush/sagg/lily LSR 1 1 Medium to small sedge/rush/sagg/lily MSR 2 1 Ground fern GF 2 5 Tree fern TF 1 5 Scrambler/Climber/Epiphytes SCE 2 5 Mosses and Lichens ML 1 20 Total 10 22 Last reviewed – 5 July 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg NLM Leptospermum lanigerum – Melaleuca squarrosa swamp forest Species lists: Canopy Tree Species Common Name Notes Leptospermum lanigerum woolly teatree Melaleuca
    [Show full text]
  • Tasmania - from the Wet West to the Dry East
    This collection is maintained with the assistance of the Tasmania - from the wet west to the dry east. Regional Branch of the Australian Plant Society. Influences on the development of the Tasmanian plant mix Montane moorland and cool oceanic heathland When Gondwana existed as a super Geology of Tasmania Vegetation Map of Tasmania The Tasmanian highland vegetation developed in isolation from the Australian Alps. Even during ice continent, Australia and Tasmania, Africa, ages, hundreds of kilometres of lowland vegetation separated the two high altitude environments. South America, New Zealand and Antarctica shared many plant families and some Montane plants have to cope with wide temperature fluctuations, with periods of below 0°C and Genera. exposure to winds. Cold may be prolonged if the ground freezes. Plants may be blanketed by snow or BASS STRAIT the mountains by cloud. Snowmelt or clear weather can cause intense rays of light, resulting in high For example, the protea family has members temperature. Wind or sun can dry the plant and soil. in all those land masses except Antarctica. The Southern Africa panel covers the protea family more fully. Plants require moisture and warmth. Small hard leaves offer Tasmania was the last land mass to break protection from the drying away from Antarctica. The opening of the effects of sun and wind. Low gap between these land masses allowed the ocean to circulate growth avoids wind. Branches around Antarctica, cooling the earth’s climate and so locking up grow close together to shelter vast quantities of water as ice. the parts of each plant.
    [Show full text]
  • World Heritage Values and to Identify New Values
    FLORISTIC VALUES OF THE TASMANIAN WILDERNESS WORLD HERITAGE AREA J. Balmer, J. Whinam, J. Kelman, J.B. Kirkpatrick & E. Lazarus Nature Conservation Branch Report October 2004 This report was prepared under the direction of the Department of Primary Industries, Water and Environment (World Heritage Area Vegetation Program). Commonwealth Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Department of Primary Industries, Water and Environment or those of the Department of the Environment and Heritage. ISSN 1441–0680 Copyright 2003 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any means without permission from the Department of Primary Industries, Water and Environment. Published by Nature Conservation Branch Department of Primary Industries, Water and Environment GPO Box 44 Hobart Tasmania, 7001 Front Cover Photograph: Alpine bolster heath (1050 metres) at Mt Anne. Stunted Nothofagus cunninghamii is shrouded in mist with Richea pandanifolia scattered throughout and Astelia alpina in the foreground. Photograph taken by Grant Dixon Back Cover Photograph: Nothofagus gunnii leaf with fossil imprint in deposits dating from 35-40 million years ago: Photograph taken by Greg Jordan Cite as: Balmer J., Whinam J., Kelman J., Kirkpatrick J.B. & Lazarus E. (2004) A review of the floristic values of the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2004/3. Department of Primary Industries Water and Environment, Tasmania, Australia T ABLE OF C ONTENTS ACKNOWLEDGMENTS .................................................................................................................................................................................1 1.
    [Show full text]
  • BIOACTIVE LEPTOSPERMUM for GIPPSLAND Rob Waddell Grand Ridge Propagation WHO ARE WE?
    BIOACTIVE LEPTOSPERMUM FOR GIPPSLAND Rob Waddell Grand Ridge Propagation WHO ARE WE? • Grand Ridge Propagation nursery • Based at Seaview, south of Warragul • We have sheep, cattle, a nursery and more recently a bee hive (or 2) • 2017 production about 120,000 native seedlings, planting about 30,000 Which species have potential for Gippsland? Leptospermum scoparium (Manuka) • Grows 3-5m • Flowers November/December • Seed sourced from New Zealand’s North and South islands from wild populations producing MGO 300 to 500 honey Leptospermum polygalifolium ssp polygalifolium (Jelly Bush) • Grows 3-7m • Flowers November/December • Seed sourced from southern NSW Leptospermum lanigerum (Woolly tea tree) • Grows 3-7m • Flowers October/November • Seed sourced locally (test results to come) • Tolerates extremely wet and boggy conditions Leptospermum continentale (Prickly tea tree) • Grows 3-5m • Flowers January/February • Seed sourced locally (test results to come) Some of the key factors for success • Level of genetic bioactivity of the seedlings • Nectar yield-massive flower production • Plant density • Principal nectar source for foraging bees Planting densities for Gippsland What is your end goal? • WINDBREAKS • PLANTATIONS • Tea tree only plant 2m apart • Grazing sheep or slashing grass • Mix species winbreaks (tea tree, plant 5 to 6m apart or 400 to eucalypts etc) plant 3m apart 300 plants/ha • Full coverage of site plant 2 to 3m apart or 2500 to 1150 plants/ha HONEY! • Takes 12 to 18 months to reach peak bioactivity • Can be difficult to extract, could have implications for flow hives? • Potential yields up to 40kg/hive with 1 to 4 hives/ha (New Zealand data) Other considerations • Flowering takes 3 to 4 years from planting depending on site • Ensure species is suitable for the site • Soil types, waterlogging, coastal exposure • Aspect • Shading QUESTIONS?.
    [Show full text]
  • Is Kanuka and Manuka Establishment in Grassland Constrained by Mycorrhizal Abundance?
    172 AvailableNew on-lineZealand at: Journal http://www.newzealandecology.org/nzje/ of Ecology, Vol. 37, No. 2, 2013 Is kanuka and manuka establishment in grassland constrained by mycorrhizal abundance? Murray Davis1*, Ian A. Dickie2, Thomas Paul3 and Fiona Carswell2 1Scion, PO Box 29237, Christchurch 8540, New Zealand 2Landcare Research, PO Box 69040, Lincoln 7640, New Zealand 3Scion, Private Bag 3020, Rotorua 3046, New Zealand *Author for correspondence ([email protected]) Published online: 14 May 2013 Abstract: Two indigenous small tree and shrub species, kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium), have potential as reforestation species in New Zealand as they are forest pioneer species that can invade grassland naturally from present seed sources. The aim of this study was to determine if establishment of kanuka and manuka from seed in grassland distant from stands of these species might be constrained by lack of appropriate mycorrhizal fungi. Both species were grown in an unsterilised grassland soil from a low- productivity montane site assumed to be devoid of appropriate mycorrhizal fungi and inoculated with sterilised or unsterilised O-horizon or mineral soil from beneath three kanuka and three manuka communities expected to contain such fungi. Inoculation with unsterilised O-horizon soil improved kanuka biomass by 36–92%, depending on the source of the inoculant. Inoculation did not improve manuka biomass. No ectomycorrhizal infection was observed on either kanuka or manuka in samples examined under binocular microscope. The biomass response by kanuka to inoculation may be due to introduction of more effective arbuscular mycorrhizal fungi from kanuka communities or possibly to the introduction of soil microorganisms.
    [Show full text]
  • Coastal Tea-Tree
    DECLARED PLANT WHY IS IT A PROBLEM? Coastal tea-tree is often COASTAL TEA-TREE incorrectly assumed to be native to South Australia, and was planted widely last century as an Leptospermum laevigatum amenity plant on exposed coastal sites. It spreads from plantings Coastal tea-tree is a shrub or small tree, native to the into the adjoining native east coast of Australia. vegetation, particularly after fires. It is an invasive plant outside Coastal tea-tree is declared under the DESCRIPTION its natural range in southern Natural Resources Management Act Habit: Shrub or multi-trunked tree 2-5 m Australia, as well as North 2004. Its sale is prohibited, and control tall, with spreading branches and papery America and South Africa. Coastal may be enforced in the South East and brown bark that becomes thick and grey tea-tree is highly flammable and Kangaroo Island NRM regions. on the trunk. may increase fire risk. Other common names: Victorian tea- Leaves: Blue-green or grey-green, tree, Australian myrtle, coast tea-tree, tea obovate, blunt or with a tiny point at the tree. tip, 1-3 cm long, with silky hairs when developing but soon becoming hairless. Family: Myrtaceae. They smell like eucalyptus when crushed. Synonyms: Fabricia laevigata, Fabricia Flowers: 1.5-2 cm wide, in pairs on short myrtifolia. stalks in the axils of leaves. Petals 5, white, Origin: eastern Australia. Introduced as an rounded, 5-9 mm long, widely spaced ornamental and amenity tree as it is easily around a green cup-shaped receptacle. grown and recognised as an Australian Stamens numerous, c.
    [Show full text]
  • Flora Surveys Introduction Survey Method Results
    Hamish Saunders Memorial Island Survey Program 2009 45 Flora Surveys The most studied island is Sarah Results Island. This island has had several Introduction plans developed that have A total of 122 vascular flora included flora surveys but have species from 56 families were There have been few flora focused on the historical value of recorded across the islands surveys undertaken in the the island. The NVA holds some surveyed. The species are Macquarie Harbour area. Data on observations but the species list comprised of 50 higher plants the Natural Values Atlas (NVA) is not as comprehensive as that (7 monocots and 44 dicots) shows that observations for given in the plans. The Sarah and 13 lower plants. Of the this area are sourced from the Island Visitor Services Site Plan species recorded 14 are endemic Herbarium, projects undertaken (2006) cites a survey undertaken to Australia; 1 occurs only in by DPIPWE (or its predecessors) by Walsh (1992). The species Tasmania. Eighteen species are such as the Huon Pine Survey recorded for Sarah Island have considered to be primitive. There and the Millennium Seed Bank been added to some of the tables were 24 introduced species found Collection project. Other data in this report. with 9 of these being listed weeds. has been added to the NVA as One orchid species was found part of composite data sets such Survey Method that was not known to occur in as Tasforhab and wetforest data the south west of the state and the sources of which are not Botanical surveys were this discovery has considerably easily traceable.
    [Show full text]
  • Alsip Home and Nursery Helene Strybing Tea-Tree
    Helene Strybing Tea-Tree* Leptospermum scoparium 'Helene Strybing' Height: 10 feet Spread: 10 feet Sunlight: Hardiness Zone: 9 Other Names: Manuka, New Zealand Tea-Tree Description: Pretty, pink apple-blossom flowers and nice foliage make this drought tolerant plant a lovely hedge or utility plant on dry sites; prune to avoid seed from spreading; flowering stems make nice cutflowers; not to be confused with Melaleuca, Tea-Tree Helene Strybing Tea-Tree flowers Photo courtesy of NetPS Plant Finder Ornamental Features Helene Strybing Tea-Tree is covered in stunning pink flowers along the branches from late spring to early summer. The flowers are excellent for cutting. It has attractive grayish green foliage. The small narrow leaves are highly ornamental and remain grayish green throughout the winter. The fruit is not ornamentally significant. Landscape Attributes Helene Strybing Tea-Tree is a dense multi-stemmed evergreen shrub with an upright spreading habit of growth. Its relatively fine texture sets it apart from other landscape plants with less refined foliage. This is a relatively low maintenance shrub, and should only be pruned after flowering to avoid removing any of the current season's flowers. It has no significant negative characteristics. Helene Strybing Tea-Tree is recommended for the following landscape applications; - Mass Planting - Hedges/Screening Helene Strybing Tea-Tree in bloom - General Garden Use Photo courtesy of NetPS Plant Finder - Container Planting Planting & Growing Helene Strybing Tea-Tree will grow to be about 10 feet tall at maturity, with a spread of 10 feet. It tends to be a little leggy, with a typical clearance of 1 foot from the ground, and is suitable for planting under power lines.
    [Show full text]