How Does Calcium Affect Muscle Contraction
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Skeletal Muscle Tissue in Movement and Health: Positives and Negatives Stan L
© 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 183-188 doi:10.1242/jeb.124297 REVIEW Skeletal muscle tissue in movement and health: positives and negatives Stan L. Lindstedt* ABSTRACT This observation prompted the Swiss scientist von Haller (credited ‘ ’ The history of muscle physiology is a wonderful lesson in ‘the as the Father of Neurobiology ) to suggest that it was irritability, not scientific method’; our functional hypotheses have been limited by a humor, which is transmitted to the muscle through the nerve. For a our ability to decipher (observe) muscle structure. The simplistic wonderful comprehensive examination of muscle history, the ‘ ’ understanding of how muscles work made a large leap with the definitive source is the book Machina Carnis by Needham (1971). remarkable insights of A. V. Hill, who related muscle force and power The first Professor of Physiology in the USA (Columbia to shortening velocity and energy use. However, Hill’s perspective University) was the Civil War surgeon J. C. Dalton, who authored ‘ was largely limited to isometric and isotonic contractions founded on the first USA textbook of physiology ( Treatise on Human ’ isolated muscle properties that do not always reflect how muscles Physiology ). He observed that irritability (which he noted could function in vivo. Robert Josephson incorporated lengthening be triggered with an electric shock) is an inherent property of the ‘ ’ contractions into a work loop analysis that shifted the focus to muscle fiber, not communicated to it by other parts (Dalton, ‘ ’ dynamic muscle function, varying force, length and work done both 1864). The consequence of this irritability is that muscles produce by and on muscle during a single muscle work cycle. -
Aetiology of Skeletal Muscle 'Cramps' During Exercise: a Novel Hypothesis
Journal of Sports Sciences ISSN: 0264-0414 (Print) 1466-447X (Online) Journal homepage: http://www.tandfonline.com/loi/rjsp20 Aetiology of skeletal muscle ‘cramps’ during exercise: A novel hypothesis M. P. Schwellnus , E. W. Derman & T. D. Noakes To cite this article: M. P. Schwellnus , E. W. Derman & T. D. Noakes (1997) Aetiology of skeletal muscle ‘cramps’ during exercise: A novel hypothesis, Journal of Sports Sciences, 15:3, 277-285, DOI: 10.1080/026404197367281 To link to this article: http://dx.doi.org/10.1080/026404197367281 Published online: 01 Dec 2010. Submit your article to this journal Article views: 942 View related articles Citing articles: 68 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=rjsp20 Download by: [Australian Catholic University] Date: 24 September 2017, At: 18:51 Journal of Sports Sciences, 1997, 15, 277-285 Aetiology of skeletal muscle `cramps’ during exercise: A novel hypothesis M .P. SCH WELLN US,* E.W. D ERM AN and T.D. N OAKES M RC/UCT B ioenergetics of Exercise Research Unit, University of Cape Town M edical School, Sports Science Institute of South Africa, PO B ox 115, Newlands 7725, South Africa Accepted 3 September 1996 The aetiology of exercise-associated muscle cramps (EAMC), de® ned as `painful, spasmodic, involuntary contractions of skeletal muscle during or immediately after physical exercise’ , has not been well investigated and is therefore not well understood. This review focuses on the physiological basis for skeletal muscle relaxation, a historical perspective and analysis of the commonly postulated causes of EAMC, and known facts about EAMC from recent clinical studies. -
Power and Efficiency of Insect Flight Muscle
J. exp. Biol. 115, 293-304 (1985) 293 Printed in Great Britain © The Company of Biologists limited 1985 POWER AND EFFICIENCY OF INSECT FLIGHT MUSCLE BY C. P. ELLINGTON Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, England SUMMARY The efficiency and mechanical power output of insect flight muscle have been estimated from a study of hovering flight. The maximum power output, calculated from the muscle properties, is adequate for the aerodynamic power requirements. However, the power output is insufficient to oscillate the wing mass as well unless there is good elastic storage of the inertial energy, and this is consistent with reports of elastic components in the flight system. A comparison of the mechanical power output with the metabolic power input to the flight muscles suggests that the muscle efficiency is quite low: less than 10%. INTRODUCTION In recent years the mechanical analysis of animal locomotion has become increasingly sophisticated, resulting in accurate estimates of the sustained, aerobic mechanical power output required of the locomotor muscles. These estimates have been compared with the metabolic power input, as measured by the rate of oxygen consumption, to determine the muscle efficiency. Two major studies, one on running birds and mammals (Heglund, Fedak, Taylor & Cavagna, 1982) and the other on hovering insects (Ellington, 1984), have both concluded that the muscle efficiency can be much lower than the commonly expected 20-30%. The results for terrestrial locomotion are discussed elsewhere in this volume (Heglund, 1985), and I shall review the power and efficiency of insect flight muscle during hovering, a type of flight so energetically demanding that only hummingbirds and insects can sustain it aerobically. -
Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment
Review Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment Louise Conrard and Donatienne Tyteca * CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B‐1200 Brussels, Belgium * Correspondence: [email protected]; Tel.: +32‐2‐764.75.91; Fax: +32‐2‐764.75.43 Received: 8 August 2019; Accepted: 10 September 2019; Published: 20 September 2019 Abstract: Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein–lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non‐annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+‐ related diseases. -
Crystal Structure of the Calcium Pump of Sarcoplasmic Reticulum at 2.6 AÊ Resolution
articles Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 AÊ resolution Chikashi Toyoshima*², Masayoshi Nakasako*²³, Hiromi Nomura* & Haruo Ogawa* * Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan ² The Harima Institute, The Institute of Physical and Chemical Research, Sayo-gun, Hyo-go 679-5143, Japan ³ PRESTO, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan ............................................................................................................................................................................................................................................................................ Calcium ATPase is a member of the P-type ATPases that transport ions across the membrane against a concentration gradient. Here we have solved the crystal structure of the calcium ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) at 2.6 AÊ resolution with two calcium ions bound in the transmembrane domain, which comprises ten a-helices. The two calcium ions are located side by side and are surrounded by four transmembrane helices, two of which are unwound for ef®cient coordination geometry. The cytoplasmic region consists of three well separated domains, with the phosphorylation site in the central catalytic domain and the adenosine-binding site on another domain. The phosphorylation domain has the same fold as haloacid dehalogenase. Comparison with a low-resolution electron density map of the enzyme in the absence -
Molecular Cloning, Expression, and Protein Interaction of Avian Muscle Titin Kuan Onn Tan Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1993 Molecular cloning, expression, and protein interaction of avian muscle titin Kuan Onn Tan Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Tan, Kuan Onn, "Molecular cloning, expression, and protein interaction of avian muscle titin " (1993). Retrospective Theses and Dissertations. 10555. https://lib.dr.iastate.edu/rtd/10555 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. U'M'I MICROFILMED 1994 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Chapter 7 Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling
C H A P T E R 7 U N I T I I Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling TRANSMISSION OF IMPULSES cytoplasm of the terminal, but it is absorbed rapidly into FROM NERVE ENDINGS TO many small synaptic vesicles, about 300,000 of which are SKELETAL MUSCLE FIBERS: THE normally in the terminals of a single end plate. In the syn- NEUROMUSCULAR JUNCTION aptic space are large quantities of the enzyme acetylcho- linesterase, which destroys acetylcholine a few milliseconds Skeletal muscle fibers are innervated by large, myelinated after it has been released from the synaptic vesicles. nerve fibers that originate from large motoneurons in the anterior horns of the spinal cord. As discussed in Chapter SECRETION OF ACETYLCHOLINE 6, each nerve fiber, after entering the muscle belly, nor- BY THE NERVE TERMINALS mally branches and stimulates from three to several hundred skeletal muscle fibers. Each nerve ending makes When a nerve impulse reaches the neuromuscular junc- a junction, called the neuromuscular junction, with the tion, about 125 vesicles of acetylcholine are released from muscle fiber near its midpoint. The action potential initi- the terminals into the synaptic space. Some of the details ated in the muscle fiber by the nerve signal travels in both of this mechanism can be seen in Figure 7-2, which directions toward the muscle fiber ends. With the excep- shows an expanded view of a synaptic space with the tion of about 2 percent of the muscle fibers, there is only neural membrane above and the muscle membrane and one such junction per muscle fiber. -
Structural Changes in the Calcium Pump Accompanying the Dissociation of Calcium
articles Structural changes in the calcium pump accompanying the dissociation of calcium Chikashi Toyoshima & Hiromi Nomura Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan ........................................................................................................................................................................................................................... In skeletal muscle, calcium ions are transported (pumped) against a concentration gradient from the cytoplasm into the sarcoplasmic reticulum, an intracellular organelle. This causes muscle cells to relax after cytosolic calcium increases during excitation. The Ca21 ATPase that carries out this pumping is a representative P-type ion-transporting ATPase. Here we describe the structure of this ion pump at 3.1 A˚ resolution in a Ca21-free (E2) state, and compare it with that determined previously for the Ca21- bound (E1Ca21) state. The structure of the enzyme stabilized by thapsigargin, a potent inhibitor, shows large conformation differences from that in E1Ca21. Three cytoplasmic domains gather to form a single headpiece, and six of the ten transmembrane helices exhibit large-scale rearrangements. These rearrangements ensure the release of calcium ions into the lumen of sarcoplasmic reticulum and, on the cytoplasmic side, create a pathway for entry of new calcium ions. P-type ion transporting ATPases, which include NaþKþ-ATPase mined to 3.1 A˚ resolution, is very different from that of E1Ca2þ,yet and gastric HþKþ-ATPase among others, are fundamental in can be compared directly, because no ATP or phosphorylation is establishing ion gradients by pumping ions across biological mem- involved in the transition between them. The movements of branes (reviewed in ref. 1). Of many P-type ATPases known today, cytoplasmic domains are even larger than we described for the Ca2þ-ATPase (SERCA1a) from skeletal muscle sarcoplasmic reti- tubular crystals10. -
Plasma Membrane Calcium Pump: Structure, Function and Relationships
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Basic Res Cardio192: Suppl. 1, 59 - 61 SteinkopffVerlag 1997 E. Carafoli Plasma membrane calcium pump: structure, function and relationships Abstract The plasma membrane spicing. Most of the pump mass prot- (N-terminal) protruding unit. The Ca-pump (134 kDa) is stimulated by rudes into the cytoplasm with three isoforms of the pump show variations calmodulin and by other treatments main units. The calmodulin binding in the regulatory domains, e.g., alter- (exposure to acidic phospholipids, domain is located in the C-terminal native mRNA splicing can eliminate treatments with proteases, phos- protruding unit. The domain is a the domain phosphorylated by pro- phorylation by protein kinases A or positively charged segment of about tein kinase A, or alter the sensitivity C, self-association to form oligom- 25 residues. The calcium-activated of the pump to calmodulin. This ers). It is the product of four genes protease calpain activates the pump occurs by inserting sequences rich in (in humans), but additional isoforms by removing its calmodulin binding His between calmodulin binding originate through alternative mRNA domain and the portion C-terminal subdomains A and B. The inserted to it. The-resulting 124 KDa fragment domain(s) confer pH sensitivity to has been used to test the suggestion the binding of calmodulin. Calcium of an autoinhibitory function of the binding sites have been found in Ernesto Carafoli (5:~) calmodulin binding domain. The acidic regions preceding and follow- Laboratory of Biochemistry III latter interacts with two domains of ing the calmodulin binding domain. -
Cardiac Calcium Atpase Dimerization Measured by Fluorescence Resonance Energy Transfer and Chemical Cross-Linking
Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2016 Cardiac Calcium Atpase Dimerization Measured by Fluorescence Resonance Energy Transfer and Chemical Cross-Linking Daniel Blackwell Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Physiology Commons Recommended Citation Blackwell, Daniel, "Cardiac Calcium Atpase Dimerization Measured by Fluorescence Resonance Energy Transfer and Chemical Cross-Linking" (2016). Dissertations. 2120. https://ecommons.luc.edu/luc_diss/2120 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2016 Daniel Blackwell LOYOLA UNIVERSITY CHICAGO CARDIAC CALCIUM ATPASE DIMERIZATION MEASURED BY FLUORESCENCE RESONANCE ENERGY TRANSFER AND CHEMICAL CROSS-LINKING A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN CELL AND MOLECULAR PHYSIOLOGY BY DANIEL J. BLACKWELL CHICAGO, ILLINOIS AUGUST 2016 Copyright by Daniel J. Blackwell, 2016 All rights reserved. To my parents and my wife for their love and support ACKNOWLEDGEMENTS This work could not have been done without the outstanding mentorship of Dr. Seth Robia. He dedicated a truly staggering amount of time to my education and I am fortunate to have been trained by him. It is difficult to overestimate his contributions to my instruction, goals, development, and direction. He possesses all the qualities of an exceptional mentor and I am grateful for his help. -
Primary Active Ca2+ Transport Systems in Health and Disease
Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Primary Active Ca2+ Transport Systems in Health and Disease Jialin Chen,1 Aljona Sitsel,1 Veronick Benoy,1 M. Rosario Sepúlveda,2,3 and Peter Vangheluwe1,3 1Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium 2Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain Correspondence: [email protected] Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure–function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strate- gies that target Ca2+ pumps. a2+ signaling is crucial for many physiolog- cus on the primary active Ca2+-transporters or Cical processes and is dysregulated in a mul- Ca2+-ATPases, which are responsible for keep- titude of pathological conditions. -
Mechanics of the Thorax in Flies Tanvi Deora1, Namrata Gundiah2 and Sanjay P
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1382-1395 doi:10.1242/jeb.128363 REVIEW Mechanics of the thorax in flies Tanvi Deora1, Namrata Gundiah2 and Sanjay P. Sane1,* ABSTRACT body size, which greatly facilitated adaptability by increasing their Insects represent more than 60% of all multicellular life forms, and are ecological range; and two, the evolution of flight, which enabled easily among the most diverse and abundant organisms on earth. dispersal, migration, predation or rapid escape from predator They evolved functional wings and the ability to fly, which enabled attacks. them to occupy diverse niches. Insects of the hyper-diverse orders Although miniature body forms are a common evolutionary trend show extreme miniaturization of their body size. The reduced body among other animals, including birds and mammals (e.g. Hanken size, however, imposes steep constraints on flight ability, as their and Wake, 1993), miniaturization takes on a rather extreme form in wings must flap faster to generate sufficient forces to stay aloft. Here, insects. For example, the size of adult parasitic chalcid wasps such ∼ we discuss the various physiological and biomechanical adaptations as Kikiki huna ( 150 µm) or the trichogrammatid wasp ∼ of the thorax in flies which enabled them to overcome the myriad Megaphragma mymaripenne ( 170 µm) is comparable to that of constraints of small body size, while ensuring very precise control of some unicellular protozoan organisms (Polilov, 2012, 2015); these their wing motion. One such adaptation is the evolution of specialized wasps are among the smallest metazoans ever described. Such myogenic or asynchronous muscles that power the high-frequency extreme miniaturization is especially common among parasitoid – wing motion, in combination with neurogenic or synchronous steering insects belonging to three of the five insect groups Diptera (flies), – muscles that control higher-order wing kinematic patterns.