Aerodynamic Concept of the UAV in the Gyrodyne Configuration
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Loss of Control in Yaw During Take-Off, Collision with the Ground, in Sightseeing Flight
INVESTIGATION REPORT www.bea.aero Accident involving Airbus Helicopters EC130 B4 registered F-GOLH on 24 October 2015 at Megève (74) (1)Unless otherwise Time At 11:45(1) specified, the times in this report Operator Mont-Blanc Hélicoptère MBH are expressed Type of flight Commercial air transport in local time. Persons on board Pilot and six passengers Two passengers injured, the pilot and four Consequences and damage passengers slightly injured, helicopter destroyed Loss of control in yaw during take-off, collision with the ground, in sightseeing flight 1 - HISTORY OF THE FLIGHT During the morning, the pilot made several “Mont Blanc” sightseeing flights with the same helicopter from Megève altiport. During take-off for the fourth flight and as for the previous flights, he stabilized the helicopter in hover in the ground effect and then began to rotate it to the left around its yaw axis in order to face the climb-out path. During this manoeuvre, the pilot lost the yaw control of the aircraft, which turned several times on itself before crashing below a slope adjacent to the take-off area. The BEA investigations are conducted with the sole objective of improving aviation safety and are not intended to apportion blame or liabilities. 1/9 BEA-0647.en/January 2018 2 - ADDITIONAL INFORMATION 2.1 Examination of the accident site and wreckage The wreckage is located 25 meters to the north-north/west below the take-off area. Observations indicate that the engine was providing power and that the rotor struck the ground with energy. The cyclic pitch and collective pitch controls are continuous. -
NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment
NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment NASA’s next Mars exploration ground vehicle, Mars 2020 Rover, will carry along what could become the first aircraft to fly on another planet. By Richard Whittle he world altitude record for a helicopter was set on June 12, 1972, when Aérospatiale chief test pilot Jean Boulet coaxed T his company’s first SA 315 Lama to a hair-raising 12,442 m (40,820 ft) above sea level at Aérodrome d’Istres, northwest of Marseille, France. Roughly a year from now, NASA hopes to fly an electric helicopter at altitudes equivalent to two and a half times Boulet’s enduring record. But NASA’s small, unmanned machine actually will fly only about five meters above the surface where it is to take off and land — the planet Mars. Members of NASA’s Mars Helicopter team prepare the flight model (the actual vehicle going to Mars) for a test in the JPL The NASA Mars Helicopter is to make a seven-month trip to its Space Simulator on Jan. 18, 2019. (NASA photo) destination folded up and attached to the underbelly of the Mars 2020 Rover, “Perseverance,” a 10-foot-long (3 m), 9-foot-wide (2.7 The atmosphere of Mars — 95% carbon dioxide — is about one m), 7-foot-tall (2.13 m), 2,260-lb (1,025-kg) ground exploration percent as dense as the atmosphere of Earth. That makes flying at vehicle. The Rover is scheduled for launch from Cape Canaveral five meters on Mars “equal to about 100,000 feet [30,480 m] above this July on a United Launch Alliance Atlas V rocket and targeted sea level here on Earth,” noted Balaram. -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
A B C D E F 1 A012 A03009 125 DOMINIE 1.72 AIRCRAFT 2 A009 A05871 1804 STEAM LOCO 1.32 STEAM ENGINE 3 A013 A02447 1905 ROLLS ROYCE 1.32 CAR 4 A002 A02444 1911 ROLLS ROYCE 1.32 CAR 5 A002 A02443 1912 MODEL T FORD 1.32 CAR 6 A002 A02450 1926 MORRIS COWLEY 1.32 CAR 7 A002 A02446 1930 BENTLEY 1.32 CAR 8 ROB A20440 1930 BENTLEY 1.12 CAR 9 A028 A08440 1932 CHRYSLER IMPERIAL 1.25 CAR 10 A002 A02441 1933 ALFA ROMEO 1.32 CAR 11 A002 A01305 25PDR FIELD GUN & MORRIS QUAD 1.76 VEHICLE 12 ROB A02552 2ND DRAGOON 1815 54MM FIGURE 13 ROB 50 YEARS OF THE GREATEST PLASTIC KITS BOOK 14 A013 A02303 88MM GUN & TRACTOR 1.76 VEHICLE 15 ROB A02303 88MM GUN & TRACTOR (D-DAY) 1.76 VEHICLE 16 A026 A06012 A-10 THUNDERBOLT II 1.72 AIRCRAFT 17 ROB ITALERI 097 A-10 WARTHOG 1.72 AIRCRAFT 18 A026 REVELL 04206 A300-600 ST BELUGA 1144 AIRCRAFT 19 A008 A01028 A6M2 ZERO (VJ DAY) 1.72 AIRCRAFT 20 ROB A50127 A6M2B -21 (2011) 1.72 AIRCRAFT PAINTS IN BOX 21 ROB A01005 A6M2B ZERO 1.72 AIRCRAFT 22 A031 REVELL 4366 A-7A CORSAIR 1.72 AIRCRAFT 23 A007 A04211 ADMIRAL GRAF SPEE 1600 SHIP 24 ROB A01314 AEC MATADOR (D-DAY) 1.76 VEHICLE 25 A026 A04046 AH-1 T SEA COBRA 1.72 HELICOPTER 26 A005 A03077 AH-64 APACHE LONGBOW 1.72 HELICOPTER 27 A014 A07101 AH-64 APACHE LONGBOW 1.48 HELICOPTER 28 A026 A04044 AH-64 APACHE LONGBOW 1.72 HELICOPTER 29 A008 A02014 AICHI D3AI VAL (VJ DAY) 1.72 AIRCRAFT 30 ROB AIRFIX 1972 CATALOUGE BOOK 31 ROB AIRFIX 1974 CATALOUGE BOOK 32 ROB AIRFIX 1983 CATALOUGE BOOK 33 ROB A78183 AIRFIX 2007 CATALOUGE BOOK 34 ROB A78184 AIRFIX 2008 CATALOUGE BOOK 35 ROB AIRFIX CLUB -
Design, Modelling and Control of a Space UAV for Mars Exploration
Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Space Engineering, master's level (120 credits) 2021 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Department of Computer Science, Electrical and Space Engineering Faculty of Space Science and Technology Luleå University of Technology Submitted in partial satisfaction of the requirements for the Degree of Masters in Space Science and Technology Supervisor Dr George Nikolakopoulos January 2021 Acknowledgements I would like to take this opportunity to thank my thesis supervisor Dr. George Nikolakopoulos who has laid a concrete foundation for me to learn and apply the concepts of robotics and automation for this project. I would be forever grateful to George Nikolakopoulos for believing in me and for supporting me in making this master thesis a success through tough times. I am thankful to him for putting me in loop with different personnel from the robotics group of LTU to get guidance on various topics. I would like to thank Christoforos Kanellakis for guiding me in the control part of this thesis. I would also like to thank Björn Lindquist for providing me with additional research material and for explaining low level and high level controllers for UAV. I am grateful to have been a part of the robotics group at Luleå University of Technology and I thank the members of the robotics group for their time, support and considerations for my master thesis. I would also like to thank Professor Lars-Göran Westerberg from LTU for his guidance in develop- ment of fluid simulations for this master thesis project. -
Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks
Purdue University Purdue e-Pubs Department of Electrical and Computer Department of Electrical and Computer Engineering Technical Reports Engineering August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Purdue University School of Electrical Engineering Shaheen Ahmad Purdue University School of Electrical Engineering Follow this and additional works at: https://docs.lib.purdue.edu/ecetr Pallett, Tobias J. and Ahmad, Shaheen, "Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks" (1991). Department of Electrical and Computer Engineering Technical Reports. Paper 317. https://docs.lib.purdue.edu/ecetr/317 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Shaheen Ahmad TR-EE 91-35 August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Lineal-ization and Neural Networks Tobias J. Pallett and Shaheen Ahmad Real-Time Robot Control Laboratory, School of Electrical Engineering, Purdue University West Lafayette, IN 47907 USA ABSTRACT In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed. -
Montgomerie-Bensen B8MR, G-BXDC
Montgomerie-Bensen B8MR, G-BXDC AAIB Bulletin No: 1/2001 Ref: EW/C2000/04/03 - Category: 2.3 Aircraft Type and Registration: Montgomerie-Bensen B8MR, G-BXDC No & Type of Engines: 1 Rotax 582 piston engine Year of Manufacture: 1999 Date & Time (UTC): 16 April 2000 at 1411 hrs Location: Carlisle Airport, Cumbria Type of Flight: Private Persons on Board: Crew - 1 - Passengers - None Injuries: Crew - 1 - Passengers - N/A Nature of Damage: Aircraft destroyed Commander's Licence: Private Pilot's Licence (gyroplanes) Commander's Age: 51 years Commander's Flying Experience: 67 hours (of which 30 were on type) Last 90 days - 44 hours Last 28 days - 43 hours Information Source: AAIB Field Investigation Background information The pilot first showed an active interest in autogyros when in March 1999 he visited Carlisle Airport for a trial lesson. He had not flown before and enjoyed the experience so much that he flew again the same day and agreed to embark on a formal training programme with an instructor who was authorised by the CAA to conduct dual and single seat autogyro training as well as flight examinations. The instructor reported that his student approached all matters to do with his flying 'with a great deal of enthusiasm and a fair degree of ability'. From the start of his course until January 2000 the pilot undertook dual instruction, mainly at weekends, on a two seater VPM M16 autogyro. By March 2000 he was sufficiently experienced to transfer to the 'open frame' single-seat Benson autogyro. He flew this for approximately 20 hours, carrying out mainly short 'hops' along the length of the runway and practising balancing on the main wheels before progressing to flying the aircraft in the visual circuit and carrying out general handling exercises. -
Book Reviews the SYCAMORE SEEDS
Afterburner Book Reviews THE SYCAMORE SEEDS Early British Helicopter only to be smashed the following night in a gale. The book then covers the Cierva story in some detail, the Development chapter including, out of context, two paragraphs on By C E MacKay the Brennan propeller-driven rotor driven helicopter [helicogyro] fl own in 1924 at Farnborough but Distributed by A MacKay, 87 Knightscliffe Avenue, aborted by the Air Ministry the next year, stating that Netherton, Glasgow G13 2RX, UK (E charlese87@ there was no future for the helicopter and backing btinternet.com). 2014. 218pp. Illustrated. £12.95. Cierva’s autogyro programme contracting Avro to build ISBN 978-0-9573443-3-4. the fi rst British machines. Good coverage is given to the range of Cierva autogyros culminating in the Avro Given the paucity of coverage of British helicopter C30 Rota and its service use by the RAF. development I approached this slim (218 A5 pp) The heart of the book begins with a quotation: publication with interest. While autogyros have been “Morris, I want you to make me blades, helicopter well documented, Charnov and Ord-Hume giving blades,” with which William Weir, the fi rst Air Minister, exhaustive and well documented treatments of the founder of the RAF and supporter of Cierva, brought helicopter’s predecessor, the transition to the directly furniture maker H Morris & Co into the history of driven rotor of the helicopter is somewhat lacking. rotorcraft pulling in designers Bennett, Watson, Unfortunately MacKay’s book only contributes a Nisbet and Pullin with test pilots Marsh and Brie fi nal and short chapter to the ‘British Helicopter’ to form his team. -
Adventures in Low Disk Loading VTOL Design
NASA/TP—2018–219981 Adventures in Low Disk Loading VTOL Design Mike Scully Ames Research Center Moffett Field, California Click here: Press F1 key (Windows) or Help key (Mac) for help September 2018 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or co- helping NASA maintain this important role. sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NTRS substantial public interest. Registered and its public interface, the NASA Technical Reports Server, thus providing one of • TECHNICAL TRANSLATION. the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing • TECHNICAL PUBLICATION. Reports of specialized research announcements and feeds, completed research or a major significant providing information desk and personal search phase of research that present the results of support, and enabling data exchange services. -
Helicopter Physics by Harm Frederik Althuisius López
Helicopter Physics By Harm Frederik Althuisius López Lift Happens Lift Formula Torque % & Lift is a mechanical aerodynamic force produced by the Lift is calculated using the following formula: 2 = *4 '56 Torque is a measure of how much a force acting on an motion of an aircraft through the air, it generally opposes & object causes that object to rotate. As the blades of a Where * is the air density, 4 is the velocity, '5 is the lift coefficient and 6 is gravity as a means to fly. Lift is generated mainly by the the surface area of the wing. Even though most of these components are helicopter rotate against the air, the air pushes back on the rd wings due to their shape. An Airfoil is a cross-section of a relatively easy to measure, the lift coefficient is highly dependable on the blades following Newtons 3 Law of Motion: “To every wing, it is a streamlined shape that is capable of generating shape of the airfoil. Therefore it is usually calculated through the angle of action there is an equal and opposite reaction”. This significantly more lift than drag. Drag is the air resistance attack of a specific airfoil as portrayed in charts much like the following: reaction force is translated into the fuselage of the acting as a force opposing the motion of the aircraft. helicopter via torque, and can be measured for individual % & -/ 0 blades as follows: ! = #$ = '()*+ ∫ # 1# , where $ is the & -. Drag Force. As a result the fuselage tends to rotate in the Example of a Lift opposite direction of its main rotor spin. -
Helicopter Flying Handbook (FAA-H-8083-21B) Chapter 8
Chapter 8 Ground Procedures and Flight Preparations Introduction Once a pilot takes off, it is up to him or her to make sound, safe decisions throughout the flight. It is equally important for the pilot to use the same diligence when conducting a preflight inspection, making maintenance decisions, refueling, and conducting ground operations. This chapter discusses the responsibility of the pilot regarding ground safety in and around the helicopter and when preparing to fly. 8-1 Preflight There are two primary methods of deferring maintenance on rotorcraft operating under part 91. They are the deferral Before any flight, ensure the helicopter is airworthy by provision of 14 CFR part 91, section 91.213(d) and an FAA- inspecting it according to the rotorcraft flight manual (RFM), approved MEL. pilot’s operating handbook (POH), or other information supplied either by the operator or the manufacturer. The deferral provision of 14 CFR section 91.213(d) is Remember that it is the responsibility of the pilot in command widely used by most pilot/operators. Its popularity is due (PIC) to ensure the aircraft is in an airworthy condition. to simplicity and minimal paperwork. When inoperative equipment is found during preflight or prior to departure, the In preparation for flight, the use of a checklist is important decision should be to cancel the flight, obtain maintenance so that no item is overlooked. [Figure 8-1] Follow the prior to flight, determine if the flight can be made under the manufacturer’s suggested outline for both the inside and limitations imposed by the defective equipment, or to defer outside inspection. -
Paper Helicopters Preparation
Paper Helicopters Preparation CLASS LEVEL First – sixth class OBJECTIVES Content Strand and Strand Unit Energy & forces, Forces Through investigation the child should be enabled to come to appreciate that gravity is a force, SESE: Science Curriculum page 87. In this activity children explore how some things fall and how varying the size of the rotor blades, the shape of the rotor blades and the weight of a paper helicopter affect the way a helicopter spins. Skill development Through completing the strand units of the science curriculum the child should be enabled to design, plan and carry out simple experiments, having regard to one or two variables and the need to sequence tasks and tests, SESE: Science Curriculum page 79. This activity helps them understand fair testing by changing only one variable (i.e. shape only or length only) at a time. Investigating; experimenting; observing; analysing; measuring/timing; recording and communicating. CURRICULUM LINKS Mathematics Data / representing and interpreting data SESE: History Continuity and change over time/ technological and scientific developments over long periods BACKGROUND A previous activity on how things fall (i.e. the weight of the object is not a factor – Galileo and the Leaning Tower of Pisa) would help understanding of this activity, but not essential. MATERIALS/EQUIPMENT Paper, Ruler, Paper Clips, Scissors Templates of different sizes PREPARATION Test out a few thicknesses of paper/cardboard first to see that some of them spin. BACKGROUND The shape of the helicopter rotor blades make it spin INFORMATION when dropped from a height. Gravity pulls the helicopter down. The air resists the movement and pushes up each rotor separately, causing the helicopter to spin. -
Over Thirty Years After the Wright Brothers
ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).