1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Total Page:16

File Type:pdf, Size:1020Kb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 A B C D E F 1 A012 A03009 125 DOMINIE 1.72 AIRCRAFT 2 A009 A05871 1804 STEAM LOCO 1.32 STEAM ENGINE 3 A013 A02447 1905 ROLLS ROYCE 1.32 CAR 4 A002 A02444 1911 ROLLS ROYCE 1.32 CAR 5 A002 A02443 1912 MODEL T FORD 1.32 CAR 6 A002 A02450 1926 MORRIS COWLEY 1.32 CAR 7 A002 A02446 1930 BENTLEY 1.32 CAR 8 ROB A20440 1930 BENTLEY 1.12 CAR 9 A028 A08440 1932 CHRYSLER IMPERIAL 1.25 CAR 10 A002 A02441 1933 ALFA ROMEO 1.32 CAR 11 A002 A01305 25PDR FIELD GUN & MORRIS QUAD 1.76 VEHICLE 12 ROB A02552 2ND DRAGOON 1815 54MM FIGURE 13 ROB 50 YEARS OF THE GREATEST PLASTIC KITS BOOK 14 A013 A02303 88MM GUN & TRACTOR 1.76 VEHICLE 15 ROB A02303 88MM GUN & TRACTOR (D-DAY) 1.76 VEHICLE 16 A026 A06012 A-10 THUNDERBOLT II 1.72 AIRCRAFT 17 ROB ITALERI 097 A-10 WARTHOG 1.72 AIRCRAFT 18 A026 REVELL 04206 A300-600 ST BELUGA 1144 AIRCRAFT 19 A008 A01028 A6M2 ZERO (VJ DAY) 1.72 AIRCRAFT 20 ROB A50127 A6M2B -21 (2011) 1.72 AIRCRAFT PAINTS IN BOX 21 ROB A01005 A6M2B ZERO 1.72 AIRCRAFT 22 A031 REVELL 4366 A-7A CORSAIR 1.72 AIRCRAFT 23 A007 A04211 ADMIRAL GRAF SPEE 1600 SHIP 24 ROB A01314 AEC MATADOR (D-DAY) 1.76 VEHICLE 25 A026 A04046 AH-1 T SEA COBRA 1.72 HELICOPTER 26 A005 A03077 AH-64 APACHE LONGBOW 1.72 HELICOPTER 27 A014 A07101 AH-64 APACHE LONGBOW 1.48 HELICOPTER 28 A026 A04044 AH-64 APACHE LONGBOW 1.72 HELICOPTER 29 A008 A02014 AICHI D3AI VAL (VJ DAY) 1.72 AIRCRAFT 30 ROB AIRFIX 1972 CATALOUGE BOOK 31 ROB AIRFIX 1974 CATALOUGE BOOK 32 ROB AIRFIX 1983 CATALOUGE BOOK 33 ROB A78183 AIRFIX 2007 CATALOUGE BOOK 34 ROB A78184 AIRFIX 2008 CATALOUGE BOOK 35 ROB AIRFIX CLUB AIRFIX 2008 CLUB BADGE (SPITFIRE) BADGE 36 ROB A78185 AIRFIX 2009 CATALOUGE BOOK 37 ROB AIRFIX CLUB AIRFIX 2009 CLUB BADGE (SWORDFISH X2) BADGE 38 ROB AIRFIX CLUB AIRFIX 2010 CALENDER BOOK A B C D E F 39 ROB A78186 AIRFIX 2010 CATALOUGE BOOK 40 ROB AIRFIX CLUB AIRFIX 2010 CLUB BADGE (HARRIER X2) BADGE 41 ROB AIRFIX CLUB AIRFIX 2011 CALENDER X3 BOOK 42 ROB AIRFIX 2011 CATALOUGE X2 BOOK 43 ROB AIRFIX CLUB AIRFIX 2011 CLUB BADGE (SABRE) BADGE 44 ROB A78188 AIRFIX 2012 CATALOUGE BOOK 45 ROB AIRFIX BOOK OF SCALE MODELLING B00K 46 ROB AIRFIX CLUB AIRFIX CLUB BADGE (NEW X2) BADGE 47 ROB AIRFIX CLUB AIRFIX CLUB BADGE (OLD) BADGE 48 ROB AIRFIX CLUB AIRFIX CLUB MAG (1-18) BOOK 49 ROB AIRFIX DOGFIGHTER PC-CDROM 50 ROB ISSUE 1 - 15 AIRFIX MODEL WORLD BOOK 51 ROB AIRFIX MODEL WORLD CALENDER 2012 X2 BOOK 52 ROB RFS8835 AIRFIX PLAYING CARD GAMES SET CARDS 53 ROB GIBSONS G7017 AIRFIX THROUGH THE AGES 1000 JIGSAW 54 A030 A01078 ALBATROS DVA 1.72 AIRCRAFT 55 A008 A06501 ALPHA JET 1.72 AIRCRAFT 56 ROB A02026 ANGEL INTERCEPTOR (2011) 1.72 SCI FI 57 ROB A02026 ANGEL INTERCEPTOR (2011) 1.72 SCI FI 58 ROB A02026 ANGEL INTERCEPTOR (2011) 1.72 SCI FI 59 ROB A02026 ANGEL INTERCEPTOR (2011) 1.72 SCI FI 60 ROB A02026 ANGEL INTERCEPTOR (2011) 1.72 SCI FI 61 ROB A02026 ANGEL INTERCEPTOR (MODEL BOX SET) 1.72 SCI FI 62 A029 A02502 ANNE BOLEYN 1.12 FIGURE 63 A007 A50106 APOLLO LUNAR MODULE + ASTRONAUNTS (BOX SET) 1.72 SPACE 64 A014 A11170 APOLLO SATURN V 1144 SPACE 65 A008 REVELL 04828 APOLLO: LUNAR MODULE EAGLE 1.48 SPACE 66 A005 REVELL 04829 APOLLO: SPACECRAFT & INTERIOR 1.32 SPACE 67 A031 A02019 ARADO AR 196A-3 1.72 AIRCRAFT 68 A006 FROG F207 ARMSTRONG WHITWORTH WHITLEY MKV/MKVII 1.72 AIRCRAFT 69 A003 A01306 ASSAULT GUN 1.76 TANK 70 A006 A50111 AST0N MARTIN DBR9 (2010) BOX SET 1.32 CAR 71 A012 A01023 AUSTER ANTARTIC 1.72 AIRCRAFT 72 A028 A02421 AUSTIN HEALEY SPRITE MK1 1.32 CAR 73 A002 A01048 AVRO 504K 1.72 AIRCRAFT 74 A012 A02009 AVRO ANSON I 1.72 AIRCRAFT 75 A015 72-050 AVRO SHACKLETON 1.72 AIRCRAFT 76 A026 ACADEMY 2141 B-17E FLYING FORTRESS RAF COSTAL COMMAND 1.72 AIRCRAFT A B C D E F 77 A012 REVELL 04395 B-17F FLYING FORTRESS (UNBOXED) 1.72 AIRCRAFT 78 A007 A08005 B-17G FLYING FORTRESS 1.72 AIRCRAFT 79 ROB A98005 B-17G FLYING FORTRESS 1.72 AIRCRAFT 80 ROB A08005 B-17G FLYING FORTRESS (SPARES) 1.72 AIRCRAFT 81 A001 A05006 B-24J LIBERATOR 1.72 AIRCRAFT 82 A026 A04005 B-25 MITCHELL 1.72 AIRCRAFT 83 A012 A04015 B-26 C MARAUDER MARTIN 1.72 AIRCRAFT 84 A014 A07001 B-29 SUPERFORTRESS 1.72 AIRCRAFT 85 ROB ITALERI 1142 B-58 HUSTLER (2011) 1.72 AIRCRAFT 86 A029 AOSHIMA 027875 BACK TO THE FUTURE CAR + DRIVER 1.24 SCI FI 87 ROB AOSHIMA 0279181 BACK TO THE FUTURE II 1.24 SCI FI DAMAGED WINDOW 88 A005 AOSHIMA 027882 BACK TO THE FUTURE III CAR + DRIVER 1.24 SCI FI 89 A001 A50009 BATTLEFRONT BOX SET (2010) 1.76 DIORAMA PAINTS IN BOX 90 ROB BEACH DIORAMA BASE (D-DAY) 1.76 BUILDING 91 A029 A05870 BEAM ENGINE 1.32 STEAM ENGINE 92 A002 A02329 BEDFORD MK TACTICAL AIRCRAFT REFUELLER 1.76 VEHICLE 93 A013 A02326 BEDFORD MK1 1.76 VEHICLE 94 A004 A03306 BEDFORD QLT & BEDFORD QLD TRUCKS 1.72 VEHICLES 95 A005 ITALERI BELL AHI/AB-47 1.72 HELICOPTER 96 A002 REVELL 8619 BELL X-5 1.4 AIRCRAFT 97 A030 A0402 BISMARCK 1600 SHIP 98 A029 REVELL 04100 BLACKBURM SKUA 1.72 AIRCRAFT 99 A029 A03014 BLOHM & VOSS BV141 1.72 AIRCRAFT 100 ROB A03831 BLUETITS 1.1 NATURE 101 A004 A06402 BMW 3.5 CSL 1.24 CAR 102 A004 A05401 BMW M1 1.24 CAR 103 A031 AJ2100 BOB MEMORIAL FLIGHT 1000 JIGSAW 104 ROB A04170 BOEING 707 1144 AIRCRAFT 105 A016 A04177 BOEING 727 (2011) 1144 AIRCRAFT 106 A016 A04178 BOEING 737 (2011) 1144 AIRCRAFT 107 ROB A08174 BOEING 747 1144 AIRCRAFT 108 A026 A04172 BOEING CLIPPER 1144 AIRCRAFT 109 A030 REVELL 04624 BOEING X-32A JSF 1.72 AIRCRAFT 110 A012 A01031 BOULTON PAUL DEFIANT NF.I 1.72 AIRCRAFT 111 ROB BOYS BOOK OF AIRFIX BOOK 112 ROB A04653 BR MOGUL 1.72 TRAIN 113 A003 A01309 BREN GUN CARRIER & 6PDR ANTI TANK GUN 1.76 VEHICLE 114 A008 A02050 BREWSTER BUFFALO F2A-2/I (VJ DAY) 1.72 AIRCRAFT A B C D E F 115 A013 A03002 BRISTOL 192 BELVEDERE 1.72 HELICOPTER 116 A004 A02003 BRISTOL BEAUFIGHTER TFX 1.72 AIRCRAFT 117 A012 A02027 BRISTOL BLENHEIM MKIV 1.72 AIRCRAFT 118 ROB A50129 BRISTOL BLENHEIM MKIV (VC ICONS) 2011 1.72 AIRCRAFT PAINTS IN BOX 119 A002 A02309 BRISTOL BLOODHOUND 1.76 MISSILE 120 A008 A02309 BRISTOL BLOODHOUND 1.76 MISSLE 121 A008 A01083 BRISTOL BULLDOG IIA (SWEDISH AIR FORCE) 1.72 AIRCRAFT 122 A002 A01080 BRISTOL F.2B FIGHTER 1.72 AIRCRAFT 123 A013 A01746 BRITISH ARTILLARY (WATERLOO SET) 1.72 FIGURE 124 A029 A03178 BRITISH CALEDONIAN BAC 111 1144 AIRCRAFT 125 A013 A01743 BRITISH CAVALRY HUSSARS (WATERLOO SET) 1.72 FIGURE 126 ROB A01762 BRITISH INFANTRY (D-DAY) 1.76 FIGURE 127 A013 A02035 BRONCO OV-10A 1.72 AIRCRAFT 128 A014 A08680 BRONTOSAURUS (DINOSAUR) FIGURE 129 A002 A03004 BUCCANEER NA.39 1.72 AIRCRAFT 130 A029 A04049 BUCCANEER S.2B/S 1.72 AIRCRAFT 131 A031 A08101 BUCCANEER S2/S2C/S2D/SMK50 1.48 AIRCRAFT 132 A001 A03055 BUCCANEER S2B 1.72 AIRCRAFT 133 A002 A03055 BUCCANEER S2B 1.72 AIRCRAFT 134 A014 A08100 BUCCANEER S2B 1.48 AIRCRAFT 135 ROB A09180 BUCCANEER S2B 1.48 AIRCRAFT 136 A002 A03442 BUGATTI 35B 1.32 CAR 137 ROB A03830 BULLFINCHES 1.1 NATURE 138 A028 A03083 CANADAIR SABRE F4/NORTH AMERICAN F-86E (M) 2011 1.72 AIRCRAFT 139 A001 A05012 CANBERRA B(I)6 1.72 AIRCRAFT 140 A026 A10102 CANBERRA B(I)8 1.48 AIRCRAFT 141 A029 A05038 CANBERRA B(I)8 1.72 AIRCRAFT 142 A006 A10101 CANBERRA B.2/B.20/B.62/B(1)6 1.48 AIRCRAFT 143 ROB A10101 CANBERRA B.2/B.20/B.62/B(1)6 1.48 AIRCRAFT 144 A007 A10104 CANBERRA B-57B 1.48 AIRCRAFT 145 A012 A05018 CANBERRA MARTIN B-57B/RB-57E 1.72 AIRCRAFT 146 A004 A10103 CANBERRA PR.9 1.48 AIRCRAFT 147 A029 A05039 CANBERRA PR.9 1.72 AIRCRAFT 148 A009 A05007 CATALINA PBY-5A 1.72 AIRCRAFT 149 A026 A06409 CATALINA PBY-5A BLACK CAT 1.72 AIRCRAFT 150 A007 A02307 CENTURION MK.8 TANK 1.72 MILITARY 151 A012 A01058 CESSNA 0-1E/F BIRD DOG 1.72 AIRCRAFT 152 A013 A02305 CHIEFTAIN TANK 1.76 TANK A B C D E F 153 A008 A05035 CHINOOK HC.1 1.72 HELICOPTER 154 A008 A01054 CHIPMUNK 1.72 AIRCRAFT 155 A001 A20442 CHRISTIE STEAM ENGINE 1.12 STEAM 156 ROB A06706 COASTAL DEFENCE FORT (D-DAY) 1.76 BUILDING 157 A002 A01013 COMET D.H.88 (2010) 1.72 AIRCRAFT 158 A029 A08666 CONCORDE 1144 AIRCRAFT PAINTS IN BOX 159 A012 A03016 CORSAIR II L.T.V. A-7D/E 1.72 AIRCRAFT 160 A028 A05410 CORVETTE 1.24 CAR 161 A029 A02338 CROMWELL IV TANK (2011) 1.76 TANK 162 ROB A01003 CURTIS HAWK 81-A-2 (2011) 1.72 AIRCRAFT 163 A008 A02031 CURTISS HELLDIVER SB2C (VJ DAY) 1.72 AIRCRAFT 164 ROB A50127 CURTISS P-40B WARHAWK (2011) 1.72 AIRCRAFT PAINTS IN BOX 165 A012 A01038 CURTISS P-40E KITTYHAWK 1.72 AIRCRAFT 166 ROB A50045 CUTTY SARK 1130 SHIP PAINTS IN BOX 167 A012 REVELL 04309 D.H.2 (UNBOXED) 1.72 AIRCRAFT 168 A005 A04022 DASSAULT MIRAGE F.1 1.72 AIRCRAFT 169 A004 A08655 DASSAULT MIRAGE IIIC (90 YEARS COLLECTION) 1.72 AIRCRAFT PAINTS IN BOX 170 A003 A03176 DC-930 1144 AIRCRAFT 171 ROB A03001 DE HAVILLAND HERON II 1.72 AIRCRAFT 172 ROB A08674 DE HAVILLAND HERON II 1.72 AIRCRAFT 173 ROB DAPOL COO9 DELTIC DIESEL 1.72 TRAIN 174 A028 A06442 DENNIS FIRE ENGINE 1.32 VEHICLE 175 ROB J0503 DENNIS FIRE ENGINE JIGSAW 176 A008 A02034 DEVASTATOR TBD-1 (VJ DAY) 1.72 AIRCRAFT 177 ROB A08674 DHC-2 BEAVER 1.72 AIRCRAFT 178 ROB A03017 DHC-2 BEAVER 1.72 AIRCRAFT 179 A005 HELLER 71261 DIABLO VT 1.24 CAR 180 A014 A08680 DIMETRODON (DINOSAUR) FIGURE 181 A028 A04014 DORNIER Do217 E/F 1.72 AIRCRAFT 182 A008 A04014 DORNIER Do217E/ Me328 V-1 1.72 AIRCRAFT 183 A001 A05011 DOUGLAS A-26 INVADER 1.72 AIRCRAFT 184 A012 A04033 DOUGLAS BOSTON III 1.72 AIRCRAFT 185 A008 A50028 DOUGLAS C-47 DAKOTA (BBMF) 1.72 AIRCRAFT 186 A001 A04016 DOUGLAS DAKOTA AC-47 GUNSHIP 1.72 AIRCRAFT 187 A008 A05031 DOUGLAS DC3 DAKOTA 1.72 AIRCRAFT 188 A029 A03182 DOUGLAS DC9 1144 AIRCRAFT 189 ROB A03027 DOUGLAS F4D-1 SKYRAY 1.72 AIRCRAFT BUILDING 190 A008 A02022 DOUGLAS SBD-5 DAUNTLESS (VJ DAY) 1.72 AIRCRAFT A B C D E F 191 A016 A02030 DOUGLAS SKYRAIDER A-IJ 1.72 AIRCRAFT 192 ROB A50007 DR WHO DALEKS IN MANHATTAN 1.12
Recommended publications
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • The Fairey Rotodyne
    THE FAIREY ROTODYNE The Rotodyne represents an entirely new approach to air transport, and its amazing performance is a triumph for the British Au.i4.ii Industry. It is the first true vertical take-off airliner, and is capable of carrying a full load of passengers or freight, operating from airlicUU no larger than two tennis courts. Unlike the conventional helicopter the Rotodyne is economical to operate, and also capable of much hijr.lin speeds and greater range. The prototype Rotodyne, built under a Ministry of Supply contract, first flew on 6th November, 1957, and achieved its first transition to complete autorotative flight in April, 1958. This prototype, the subject of this model, is capable of carrying 48 passengers or five tun» of freight; the eventual production version will be larger, carrying up to 70 passengers or 8 tons of freight, and will be powered by the more powerful Rolls-Royce Tyne engines in place of the present Elands. A striking demonstration of the Rotodyne's performance was given in January, 1959, when it set up a record 191 m.p.h. on a 100 kin closed circuit. This exceeds the previous record by 49 m.p.h.j and is even 29 m.p.h. faster than the previous absolute speed record for heli- copters. This speed, together with the range of 450 miles, to be increased to 650 miles in the developed version, and of course the weighi lifting and vertical take-off performance, puts the Fairey Rotodyne into a class of its own. Already three airline operators have indicated their intention of buying the Rotodyne, and great interest is being shown by civilian and military operators throughout Europe and America.
    [Show full text]
  • Thrust Control of Vtol Aircraft – Part Deux Daniel C. Dugan
    THRUST CONTROL OF VTOL AIRCRAFT – PART DEUX DANIEL C. DUGAN [email protected] Aero Engineer/Research Pilot´‡ NASA Ames Research Center Moffett Field, California ABSTRACT Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still “Up is Up and Down is Down,” and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol’s tiltwing, Mcdonnell’s compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country’s aviation heritage. INTRODUCTION During the design phase of an aircraft, the control of Vertical Takeoff and Landing (VTOL) aircraft, thrust should be a straightforward process.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,991,744 B1 Khan (45) Date of Patent: Mar
    USOO899.174.4B1 (12) United States Patent (10) Patent No.: US 8,991,744 B1 Khan (45) Date of Patent: Mar. 31, 2015 (54) ROTOR-MAST-TILTINGAPPARATUS AND 4,099,671 A 7, 1978 Leibach METHOD FOR OPTIMIZED CROSSING OF 35856 A : 3. Wi NATURAL FREQUENCIES 5,850,6154. W-1 A 12/1998 OSderSO ea. 6,099.254. A * 8/2000 Blaas et al. ................... 416,114 (75) Inventor: Jehan Zeb Khan, Savoy, IL (US) 6,231,005 B1* 5/2001 Costes ....................... 244f1725 6,280,141 B1 8/2001 Rampal et al. (73) Assignee: Groen Brothers Aviation, Inc., Salt 6,352,220 B1 3/2002 Banks et al. Lake City, UT (US) 6,885,917 B2 4/2005 Osder et al. s 7,137,591 B2 11/2006 Carter et al. (*) Notice: Subject to any disclaimer, the term of this 16. R 1239 sign patent is extended or adjusted under 35 2004/0232280 A1* 11/2004 Carter et al. ............... 244f1725 U.S.C. 154(b) by 494 days. OTHER PUBLICATIONS (21) Appl. No.: 13/373,412 John Ballard etal. An Investigation of a Stoppable Helicopter Rotor (22) Filed: Nov. 14, 2011 with Circulation Control NASA, Aug. 1980. Related U.S. Application Data (Continued) (60) Provisional application No. 61/575,196, filed on Aug. hR". application No. 61/575,204, Primary Examiner — Joseph W. Sanderson • Y-s (74) Attorney, Agent, or Firm — Pate Baird, PLLC (51) Int. Cl. B64C 27/52 (2006.01) B64C 27/02 (2006.01) (57) ABSTRACT ;Sp 1% 3:08: A method and apparatus for optimized crossing of natural (52) U.S.
    [Show full text]
  • Aerodynamic Concept of the Uav in the Gyrodyne Configuration
    TRANSACTIONS OF THE INSTITUTE OF AVIATION 1 (250) 2018, pp. 49–66 DOI: 10.2478/tar-2018-0005 © Copyright by Wydawnictwa Naukowe Instytutu Lotnictwa AERODYNAMIC CONCEPT OF THE UAV IN THE GYRODYNE CONFIGURATION Jan Muchowski*, Marek Szumski*, Andrzej Krzysiak** *Department of Fluid Mechanics and Aerodynamics, Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszow **Aerodynamics Department, Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw [email protected], [email protected], [email protected], Abstract The article presents an aerodynamic concept of UAV in the gyrodyne configuration, as a more efficient one than the currently used UAV airframe configuration applied for monitoring tasks of pow- er lines and railway infrastructure. A sample task which is realised by conceptual gyrodyne based on monitoring aerial power lines was characterised and described . The assumed idea of UAV was shown in comparison to the currently used aircraft configuration presented in the introduction. Referring to momentum theory, hover efficiency of the multicopter and the helicopter was evaluated. In relation to the helicopter, an initial draft of the airframe conception accompanied by a description of advan- tages of the gyrodyne configuration was exposed. Problems related to the gyrodyne configuration were emphasised in the summary. Keywords: aerodynamic concept, UAV, VTOL, gyrodyne, airframe configuration 1. INTRODUCTION In recent years a dynamic growth of the UAV (Unmanned Aerial Vehicle) usage in civil and mili- tary missions can be observed . Economic aspects are the main reasons of that increase, i.e. the purchas- ing cost of the UAS (Unmanned Aircraft System) varies from 40% up to 80% of the manned system cost.
    [Show full text]
  • Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration
    Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration Matthew W. Floros Wayne Johnson Raytheon ITSS Army/NASA Rotorcraft Division Moffett Field, California NASA Ames Research Center Moffett Field, California The calculated performance of a slowed-rotor compound aircraft, particularly at high flight speeds, is exam- ined. Correlation of calculated and measured performance is presented for a NASA Langley high advance ratio test and the McDonnell XV-1 demonstrator to establish the capability to model rotors in such flight conditions. The predicted performance of a slowed-rotor vehicle model based on the CarterCopter Technology Demonstra- tor is examined in detail. An isolated rotor model and a model of a rotor and wing are considered. Three tip speeds and a range of collective pitch settings are investigated. A tip Mach number of 0.2 and zero collective pitch are found to be the optimum condition to minimize rotor drag. Performance is examined for both sea level and cruise altitude conditions. Nomenclature Much work has been focused on tilt rotor aircraft; both military and civilian tilt rotors are currently in development. But other configurations may provide comparable benefits to CT thrust coefficient tilt rotors in terms of range and speed. Two such configura- CQ torque coefficient tions are the compound helicopter and the autogyro. These CH longitudinal inplane force coefficient configurations provide STOL or VTOL capability, but are ca- D drag pable of higher speeds than a conventional helicopter because L lift the rotor does not provide the propulsive force or at high MTIP tip Mach number speed, the vehicle lift. The drawback is that redundant lift VT tip speed and/or propulsion add weight and drag which must be com- q dynamic pressure pensated for in some other way.
    [Show full text]
  • Download (6MB)
    Trchalik, Josef (2009) Aeroelastic modelling of gyroplane rotors. PhD thesis. http://theses.gla.ac.uk/1232/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Aeroelastic Modelling of Gyroplane Rotors Josef Trchalík, Dipl.Ing. Ph. D. Thesis Department of Aerospace Engineering University of Glasgow July 2009 Thesis submitted to the Faculty of Engineering in fulfillment of the requirements for the degree of Doctor of Philosophy c J. Trchalík, 2009 Abstract The gyroplane represents the first successful rotorcraft design and it paved the way for the development of the helicopter during the 1940s. Gyroplane rotors are not powered in flight and work in autorotative regime and hence the characteristics of a helicopter rotor during powered flight and a rotor in autorotation differ sig- nificantly. Gyroplanes in the UK have been involved in number of fatal accidents during the last two decades. Despite several research projects focused on gyroplane flight dynamics, the cause of some of gyroplane accidents still remains unclear. The aeroelastic behaviour of autorotating rotors is a relatively unexplored problem and it has not yet been investigated as possible cause of the accidents.
    [Show full text]
  • World War I: the Beginning Westland 1915-2015
    WORLD WAR I: THE BEGINNING WESTLAND 1915-2015 From Petters Ltd to Our People THE PETTER BROTHERS OFFERED TO Sopwith 1½ Strutter EVOLUTION OF THE WESTLAND SITE Westland Aircraft Works • Women played an important part in Westland’s origins DEVOTE THEIR ENTIRE CAPABILITY • Established in Yeovil in 1865, as they did in many other industrial trades at this time. TO THE WAR EFFORT, AND WERE JB Petter & Sons expanded their • The First World War was a catalyst for women’s roles PROMPTLY AWARDED A CONTRACT thriving ironmongery and en- in the workplace, which signified part of the vast FROM THE ADMIRALTY TO PRODUCE gineering business on various cultural shift that would take place during the early SHORT TYPE 184 SEAPLANES. sites in Yeovil, producing 1500 20th century. agricultural oil engines per year • Women workers manufactured munitions at the Westland built 125 of these well-established fighter sold worldwide. Reckleford site and constructed aircraft at the Westland’s first aircraft, Short 184 bomber aircraft under licence for the Royal Naval Air Service and the Royal Flying Corps. • In 1910 Petters Ltd was found- Westland Aircraft Works. Seaplane ed and a new foundry was es- • Local skills, developed from Yeovil’s gloving and tablished on a site west of Yeo- engineering industries, were used to build the wooden Airco DH4 vil. frames and stitch the fabric coverings of Westland’s • James Petter’s twin sons Perciv- early aircraft. al and Ernest had a flair for en- The First Assembly Hall Under Construction gineering and with Ben Jacobs, another talented engineer, de- signed an early car called the ‘Horseless Carriage’ and also designed experimental forms of Westland was contracted in 1917 to build 175 of • Designed by Short Brothers Ltd as a torpedo- this two-seat Airco day bomber.
    [Show full text]
  • The Magic School Bus
    Kennesaw State University DigitalCommons@Kennesaw State University Southern Polytechnic College of Engineering Senior Design Project For Engineers and Engineering Technology Winter 12-3-2020 The Magic School Bus Thomas Murdoch Kennesaw State University Hassan Hassan Kennesaw State University Nardeen Saleb Kennesaw State University Follow this and additional works at: https://digitalcommons.kennesaw.edu/egr_srdsn Part of the Engineering Commons Recommended Citation Murdoch, Thomas; Hassan, Hassan; and Saleb, Nardeen, "The Magic School Bus" (2020). Senior Design Project For Engineers. 40. https://digitalcommons.kennesaw.edu/egr_srdsn/40 This Senior Design is brought to you for free and open access by the Southern Polytechnic College of Engineering and Engineering Technology at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Senior Design Project For Engineers by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. The Magic School Bus (FDR) Team: The Magic School Bus Due: DEC/3rd/2020 Member: Thomas Murdoch: Product Manager Hassan Hassan: Engineering Manager Nardeen Saleb: Software Leader 1 I) Abstract: This report recreates the Fairey Rotodyne in modern, electric form. Extensive research into the market requirements and history of the autogiro are presented as justification for the implementation of such a design. The design criteria and mission profile are selected in order to compete with inter-city commuting in the range of 20 to 30 statute miles or with longer range travel at roughly 100 miles. Cost estimations are also made in order to gauge the feasibility of this design from an economic standpoint. Achieving the design criteria and desired mission profile are done through numerical integration and analysis through CFD to optimize the initial design detailed below.
    [Show full text]
  • Obituary Prepared for the Royal Aeronautical Society by David Gibbings
    Obituary prepared for the Royal Aeronautical Society by David Gibbings ROGERS, Victor Alfred Baden - CBE MSc FREng FRAeS FIMechE CEng 1926 - 2015 Vic Rogers, retired, formerly Group & Technical Director of Westland plc, died on 23 January aged 88 years. Vic joined Fairey Aviation’s inspection department as a shop boy at the age of 15 becoming a Junior Inspector before transitioning through craft apprentice to the graduate stream as an Aeronautical Engineering Apprentice. In 1946 he was awarded an SBAC scholarship to attend the newly formed College of Aeronautics at Cranfield, gaining a Diploma in Aeronautical Engineering (DCAe) with Distinction in Aircraft Design. Returning to Fairey in 1948, Vic joined the new Helicopter section playing a key role within the Stress Office. He was instrumental in establishing a sound analytical approach to stress and dynamic analysis and other technical challenges within the emerging field of helicopter design with specific responsibility for stress and dynamics development throughout the Fairey Rotodyne programme. During the 1960s, in line with British government policy, the early work undertaken by Fairey, Bristol & Saunders-Roe was consolidated into Westland Aircraft Ltd. Vic moved to Westland Helicopters in Yeovil as Deputy Chief Designer in 1963 and was appointed Chief Designer in 1966. Responsible for the initial development and flight programme for the Westland Lynx, Vic was appointed Technical Director in 1972. He joined the Westland board in 1980 and retained responsibility for technical issues until he retired in 1988. Vic also served on multiple industry boards and committees associated with design and airworthiness standards. Joining the Royal Aeronautical Society in 1944, Vic was elected a Fellow in 1963.
    [Show full text]
  • Advantageous Autorotation
    The DARPA Heliplane aimed to Advantageous double helicopter performance in a VTOL platform without the complexity of a helicopter transmission or anti-torque system. Autorotation (All images via Skyworks Global) Skyworks Global plans to commercialize affordable autorotating aircraft in regions without aviation infrastructure and looks to revive DARPA Heliplane technology for speed, range and vertical takeoff. By Frank Colucci hile sustained autorotative flight found a lasting market in recreational gyroplanes, the technology Whas broader potential. Skyworks Global last year re- branded the Groen Aeronautics line of gyrocraft and plans to What’s in a Name? commercialize the technology for more users — this summer with the SparrowHawk III kit gyroplane, then with the larger Autogiro: the original term, trademarked and licensed by Juan de la Cierva, for an aircraft using an Hawk 5 gyroplane built offshore, and potentially with big, tip-jet- autorotating rotor for lift plus one or more propellers driven gyrodynes that can take off and land vertically and hover. for thrust. “What we’re going to solve is two-thirds of the world’s aviation autogyro: the general term for an autorotating requirements,” stated Skyworks’ executive committee director, aircraft, particularly one that was not a licensed retired US Air Force Brig. Gen. John Michel. “No one has paid Cierva Autogiro. The FAA recognizes the name attention to the two-thirds of the world with no infrastructure, “gyroplane” instead. no educated workforce — gyrocraft are built for that.” Skyworks AutoGyro: a German company that produces over Global’s “simple, elegant solution” of a freewheeling rotor with 300 gyroplanes annually. collective pitch control is protected by patents to make gyrocraft Gyrocopter: this term was trademarked by Igor safer and more flexible.
    [Show full text]
  • An Overview of Autogyros and the Mcdonnell XV-1 Convertiplane
    NASA/CR—2003–212799 An Overview of Autogyros and The McDonnell XV-1 Convertiplane Franklin D. Harris Prepared for Ames Research Center under Contract NAG2-1597 October 2003 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. the advancement of aeronautics and space Collected papers from scientific and science. The NASA Scientific and Technical technical conferences, symposia, Information (STI) Program Office plays a key seminars, or other meetings sponsored or part in helping NASA maintain this important co-sponsored by NASA. role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA’s scientific and technical information. The often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. • TECHNICAL TRANSLATION. English- The Program Office is also NASA’s institutional language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to research and development activities. These results NASA’s mission. are published by NASA in the NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office’s diverse offerings include • TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing research phase of research that present the results of results ... even providing videos. NASA programs and include extensive data or theoretical analysis.
    [Show full text]