Information Retrieval: Web Based Analysis and Searching

Total Page:16

File Type:pdf, Size:1020Kb

Information Retrieval: Web Based Analysis and Searching Information Retrieval: Web Based Analysis and Searching Karan Vombatkere ([email protected]) Avram Webberman ([email protected]) (Dated: 8 December 2017) Department of Computer Science University of Rochester CSC 461: Database Systems Term Paper This paper provides a survey of Information nized data, and are heavily optimized towards fast Retrieval (IR) methods and techniques, in re- querying using a specified language such as SQL. lation to web crawling and web based search- Information retrieval systems on the other hand, ing. The information retrieval model is in- particularly web based search systems, must process troduced and defined as well as compared free-form search input to process unstructured with the structured database model. The data on the Web and return a list of pointers to approaches to IR and query modes are dis- documents. The interesting part of an IR system cussed. Several techniques for performing is that there is often no 'correct' information or and optimizing/improving web based Infor- answer as a consequence of the free-form search mation Retrieval were then evaluated and request, and the documents to be returned must compared. Additionally, the challenges of undergo complex statistical analysis to determine web crawling IR are summarized and avenues the most relevant set (and order) of information for future research and trends are discussed. to be returned. Note that sometimes a search request might even have a 'correct' answer (such as a mathematical query) and the IR system might then be expected to return that answer. A good example of this is a modern search engine such as I. INTRODUCTION Google. Information retrieval is the process of retrieving The following Table 27.1 from Fundamentals documents from a collection in response to a query of Database Systems [1] summarizes the compari- or a search request by a user. An IR system is son between databases and Information Retrieval different from a database system in that it doesn't systems. limit the user to a specific query language (such as SQL or MongoDB). Additionally an IR system has an element of flexibility due to the fact that the user does not need to have any prior knowledge of the schema or structure of a particular database. Thus, the user is able to use free-form search request, that is taken as input by the IR system and then processed to provide the user with desired information. Web search engines are one of the dominant ways to find information and thus it is critical for Information Retrieval systems to have the II. APPROACHES TO INFORMATION RETRIEVAL Web be a quickly accessibly repository of knowl- edge in the form of a virtual digital library. IR Web search combines both browsing and retrieval systems are often characterized at different lev- and is thus one of the main applications of Infor- els: types of users, data and information need. mation Retrieval today, where the web pages are This characterization is essential to design an ef- analogous to the documents mentioned previously. ficient IR system that can address specific problems. Efficient searching and retrieval is achieved using an indexed repository of web pages, usually using It is important to highlight the difference be- the technique of inverted indexing. Web pages are tween database systems and Information retrieval then ranked in order of relevance and information systems. The primary difference lies in the fact retrieved as per the user's query, based on several that databases handle highly structured and orga- web analysis techniques which shall be discussed in 2 more detail subsequently. of discovering useful information from Web content/data/documents which contain a com- There are two main approaches to IR: statistical bination of structured and unstructured data. and semantic. In the statistical approach docu- Structured data extraction usually involves the ments are analyzed and broken down into chunks of use of a wrapper technique that looks for dif- text and each word or phrase is counted, weighted ferent structural characteristics of the informa- and measured for relevance or importance. The tion on the page (either manually encoded or statistical properties are then compared with terms using AI methods) to extract specific content. from the query, and a relevance ranking for each Web crawlers also often integrate information document is generated. The methods/models used from diverse web pages to reduce content re- for this relevance assessment are the Boolean model, dundancy. The generation of concept hier- the Vector Space model and the Probabilistic model. archies and/or clustering methods is another technique used to organize web content in or- In the semantic approach to IR, the syntac- der to facilitate more accurate and efficient IR. tic, lexical, sentential and pragmatic levels of knowledge-understanding are used to generate a 3. Web Usage Analysis: Web usage analysis relevance ranking for documents. The development is the application of data analysis techniques of a sophisticated semantic system requires complex to discover usage patterns from Web data, in knowledge bases of semantic information as well as order to understand and better serve the needs retrieval heuristics. of IR systems. Web usage data describes the pattern of usage of Web pages, such as IP Ad- dresses, page references, and the date and time III. WEB SEARCH AND ANALYSIS of accesses for a user/application. It consists of three main phases of preprocessing, pattern The application of data analysis techniques for the discovery and pattern analysis. Once the data discovery and analysis of useful information from is processed in a form for ready analysis, meth- the Web is known as Web Analysis. The primary ods from statistics, machine learning and data goals of web analysis are to optimize and personal- mining are used to discover various patterns ize the relevance of search results in IR, as well as in the usage data, that might provide insights identify trends that may be of value to users. The and trends and help highlight patterns in the three broad sub-categories of web analysis in terms data. of structure, content and usage are detailed below. Web Crawling: 1. Web Structure Analysis: Web search en- gines crawl the web and create an index to Web Crawlers are programs that "crawl" through the web for searching purposes. The goal is to the internet generating copies of the Web pages generate a structural representation about the that they visit and downloading the content to a website and webpages, by focusing on the inner database. The crawler visits a URL, parses the structure of documents and the linking struc- content of that URL and looks for URLs that have ture defined by the hyperlinks at the inter- not been visited to add to its list to visit in the document level. The PageRank algorithm is future. While Web Crawlers have multiple uses, an example of a method to rank the relevance they are used by search engines to provide fast of web pages based on the importance of all searches to the user. the pages that are linked to it. If we consider a web surfer clicking on links to traverse pages This paper will discuss three main types of randomly, PageRank estimates how often a Web Crawler. These categories are referred to as particular page would be visited, by ranking focused, distributed, and incremental. nodes based on their structural importance. Algorithms like PageRank help identify a suit- Focused Web Crawlers are web crawlers able relevance ranking for information retrieval that collect Web pages according to some specific when there are hundreds of thousands of po- properties by prioritizing a crawler frontier. A tential webpages that are relevant to a par- crawl frontier dictates the logic that the crawler ticular query. The HITS algorithm is another should follow when visiting websites. One type of ranking algorithm that exploits the link struc- focused web crawler is one that uses a keyword ture of the Web. based approach, extracting URLs from Web pages that contain specific keywords and ignoring those 2. Web Content Analysis: This is the process that do not. Another type of focused crawler 3 uses exemplary documents rather than keywords, Web page or a collection of Web pages (Web site). which are information documents that specify the Another challenge related to Web Structure is the intellectual structure of some specific field. connection of pages by hyperlinks, which makes the relevance of different documents dependent on each Distributed Web Crawlers represent a type of other. For example, a Web page itself might not be distributed computing where search engines uses relevant, but it could link to a Web page that is multiple computers for indexing the content of the relevant. internet. There are several varieties of distributed web crawlers. One of these uses a data mining Crawling and Indexing present the challenge based approach, which is a process for analyzing of finding an architecture that provides fresh infor- data across various fields and extracting valuable mation as well as full coverage of the web. This is information. Some of the data mining concepts use problematic when using a centralized search engine. for efficient retrieval of information are clustering, One question is whether it would be beneficial to classification, and fuzzy set. use a distributed architecture instead. A different approach to distributed web crawl- The challenge of Searching is to find techniques ing is based on scalability which refers to increased that use all available evidence to find high quality throughput as the number of crawler nodes in- search results for users. Doing this in an efficient creases. One distributed scalable web crawler way involves using known information about the implementation is the DCrawler.
Recommended publications
  • Metadata for Semantic and Social Applications
    etadata is a key aspect of our evolving infrastructure for information management, social computing, and scientific collaboration. DC-2008M will focus on metadata challenges, solutions, and innovation in initiatives and activities underlying semantic and social applications. Metadata is part of the fabric of social computing, which includes the use of wikis, blogs, and tagging for collaboration and participation. Metadata also underlies the development of semantic applications, and the Semantic Web — the representation and integration of multimedia knowledge structures on the basis of semantic models. These two trends flow together in applications such as Wikipedia, where authors collectively create structured information that can be extracted and used to enhance access to and use of information sources. Recent discussion has focused on how existing bibliographic standards can be expressed as Semantic Metadata for Web vocabularies to facilitate the ingration of library and cultural heritage data with other types of data. Harnessing the efforts of content providers and end-users to link, tag, edit, and describe their Semantic and information in interoperable ways (”participatory metadata”) is a key step towards providing knowledge environments that are scalable, self-correcting, and evolvable. Social Applications DC-2008 will explore conceptual and practical issues in the development and deployment of semantic and social applications to meet the needs of specific communities of practice. Edited by Jane Greenberg and Wolfgang Klas DC-2008
    [Show full text]
  • A Comparison of Information Seeking Using Search Engines and Social Networks
    A Comparison of Information Seeking Using Search Engines and Social Networks Meredith Ringel Morris1, Jaime Teevan1, Katrina Panovich2 1Microsoft Research, Redmond, WA, USA, 2Massachusetts Institute of Technology, Cambridge, MA, USA {merrie, teevan}@microsoft.com, [email protected] Abstract et al. 2009 or Groupization by Morris et al. 2008). Social The Web has become an important information repository; search engines can also be devised using the output of so- often it is the first source a person turns to with an informa- cial tagging systems such as delicious (delicious.com). tion need. One common way to search the Web is with a Social search also encompasses active requests for help search engine. However, it is not always easy for people to from the searcher to other people. Evans and Chi (2008) find what they are looking for with keyword search, and at describe the stages of the search process when people tend times the desired information may not be readily available to interact with others. Morris et al. (2010) surveyed Face- online. An alternative, facilitated by the rise of social media, is to pose a question to one‟s online social network. In this book and Twitter users about situations in which they used paper, we explore the pros and cons of using a social net- a status message to ask questions of their social networks. working tool to fill an information need, as compared with a A well-studied type of social searching behavior is the search engine. We describe a study in which 12 participants posting of a question to a Q&A site (e.g., Harper et al.
    [Show full text]
  • A Federated Search and Social Recommendation Widget
    A Federated Search and Social Recommendation Widget Sten Govaerts1 Sandy El Helou2 Erik Duval3 Denis Gillet4 Dept. Computer Science1,3 REACT group2,4 Katholieke Universiteit Leuven Ecole Polytechnique Fed´ erale´ de Lausanne Celestijnenlaan 200A, Heverlee, Belgium 1015 Lausanne, Switzerland fsten.govaerts1, [email protected] fsandy.elhelou2, denis.gillet4g@epfl.ch ABSTRACT are very useful, but their generality can sometimes be an ob- This paper presents a federated search and social recommen- stacle and this can make it difficult to know where to search dation widget. It describes the widget’s interface and the un- for the needed information [2]. Federated searching over derlying social recommendation engine. A preliminary eval- collections of topic-specific repositories can assist with this uation of the widget’s usability and usefulness involving 15 and save time. When the user sends a search request, the subjects is also discussed. The evaluation helped identify us- federated search widget collects relevant resources from dif- ability problems that will be addressed prior to the widget’s ferent social media sites [3], repositories and search engines. usage in a real learning context. Before rendering aggregated results, the widget calls a per- sonalized social recommendation service deemed as crucial Author Keywords in helping users select relevant resources especially in our federated search, social recommendations, widget, Web, per- information overload age [4,5]. The recommendation ser- sonal learning environment (PLE), Pagerank, social media, vice ranks these resources according to their global popu- Web 2.0 larity and most importantly their popularity within the social network of the target user. Ranks are computed by exploiting attention metadata and social networks in the widget.
    [Show full text]
  • Unicorn: a System for Searching the Social Graph
    Unicorn: A System for Searching the Social Graph Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang Facebook, Inc. ABSTRACT rative of the evolution of Unicorn's architecture, as well as Unicorn is an online, in-memory social graph-aware index- documentation for the major features and components of ing system designed to search trillions of edges between tens the system. of billions of users and entities on thousands of commodity To the best of our knowledge, no other online graph re- servers. Unicorn is based on standard concepts in informa- trieval system has ever been built with the scale of Unicorn tion retrieval, but it includes features to promote results in terms of both data volume and query volume. The sys- with good social proximity. It also supports queries that re- tem serves tens of billions of nodes and trillions of edges quire multiple round-trips to leaves in order to retrieve ob- at scale while accounting for per-edge privacy, and it must jects that are more than one edge away from source nodes. also support realtime updates for all edges and nodes while Unicorn is designed to answer billions of queries per day at serving billions of daily queries at low latencies. latencies in the hundreds of milliseconds, and it serves as an This paper includes three main contributions: infrastructural building block for Facebook's Graph Search • We describe how we applied common information re- product. In this paper, we describe the data model and trieval architectural concepts to the domain of the so- query language supported by Unicorn.
    [Show full text]
  • The Top 10 Alternative Search Engines (ASE) - Within Selected Categories Ranked by Webometric Indicators
    The Top 10 Alternative search Engines (ASE) - within Selected Categories Ranked by Webometric Indicators Bernd Markscheff el Bastian Eine Within the scientifi c fi eld of webometrics many research objects had been analyzed and compared with the help of webometric indicators (e.g., the performance of a whole country, a research group or an indi- vidual). This paper presents a ranking of ASEs which is based on webo- metric indicators. As search engines have become an essential tool for searching for information on the web many alternative search services have specialized in fi nding topic- or format-specifi c search results. By creating a ranking of these ASEs within selected categories we present an overview of the ASEs which are currently available. Through webo- metric indicators the ASEs were compared and the most popular ASEs of the respective categories determined. Keywords: Search engines, Webometric indicators Bernd Markscheff el Chair of Information and 1. Introduction Knowledge Management Technische Universität While searching for information on the web, search en- Ilmenau gines can assist the user to fi nd satisfying results. Although, P.O. Box 100565 just a few dominate the search engine market a large num- 98684 Ilmenau ber of diff erent web search services and tools exist (Maaβ Germany et al., [1]). Beside the well known universal search engines bernd.markscheff el@ like Google, Yahoo and Bing several ASEs are specialized tuilmenau.de in providing options to search for special document types, specifi c topics or time-sensitive information (Gelernter [2]; Bastian Eine Consultant for Search Engine Originally presented at the 7th International Conference on Webometrics, Optimization and Online Informetrics and Scientometrics (WIS) and 12th COLLNET Meeting, Marketing September 20–23, 2011, Istanbul Bilgi University, Istanbul, Turkey.
    [Show full text]
  • Searching the Enterprise
    R Foundations and Trends• in Information Retrieval Vol. 11, No. 1 (2017) 1–142 c 2017 U. Kruschwitz and C. Hull • DOI: 10.1561/1500000053 Searching the Enterprise Udo Kruschwitz Charlie Hull University of Essex, UK Flax, UK [email protected] charlie@flax.co.uk Contents 1 Introduction 2 1.1 Overview........................... 3 1.2 Examples........................... 5 1.3 PerceptionandReality . 9 1.4 RecentDevelopments . 10 1.5 Outline............................ 11 2 Plotting the Landscape 13 2.1 The Changing Face of Search . 13 2.2 DefiningEnterpriseSearch . 14 2.3 Related Search Areas and Applications . 17 2.4 SearchTechniques. 34 2.5 Contextualisation ...................... 37 2.6 ConcludingRemarks. 49 3 Enterprise Search Basics 52 3.1 StructureofData ...................... 53 3.2 CollectionGathering. 59 3.3 SearchArchitectures. 63 3.4 Information Needs and Applications . 68 3.5 SearchContext ....................... 76 ii iii 3.6 UserModelling........................ 78 3.7 Tools, Frameworks and Resources . 81 4 Evaluation 82 4.1 RelevanceandMetrics. 83 4.2 Evaluation Paradigms and Campaigns . 85 4.3 TestCollections ....................... 89 4.4 LessonsLearned ....................... 94 5 Making Enterprise Search Work 95 5.1 PuttingtheUserinControl . 96 5.2 Relevance Tuning and Support . 103 6 The Future 110 6.1 GeneralTrends........................ 110 6.2 TechnicalDevelopments. 111 6.3 Moving towards Cooperative Search . 113 6.4 SomeResearchChallenges . 114 6.5 FinalWords ......................... 117 7 Conclusion 118 Acknowledgements 120 References 121 Abstract Search has become ubiquitous but that does not mean that search has been solved. Enterprise search, which is broadly speaking the use of information retrieval technology to find information within organisa- tions, is a good example to illustrate this.
    [Show full text]
  • Collaborative Information Access: a Conversational Search Approach
    ICCBR Workshop on Reasoning from Experiences on the Web (WebCBR-09), Seattle Collaborative Information Access: A Conversational Search Approach Saurav Sahay, Anushree Venkatesh, and Ashwin Ram College of Computing Georgia Institute of Technology Atlanta, GA Abstract. Knowledge and user generated content is proliferating on the web in scientific publications, information portals and online social me- dia. This knowledge explosion has continued to outpace technological innovation in efficient information access technologies. In this paper, we describe the methods and technologies for ‘Conversational Search’ as an innovative solution to facilitate easier information access and reduce the information overload for users. Conversational Search is an interactive and collaborative information finding interaction. The participants in this interaction engage in social conversations aided with an intelligent information agent (Cobot) that provides contextually relevant search recommendations. The collaborative and conversational search activity helps users make faster and more informed search and discovery. It also helps the agent learn about conversations with interactions and social feedback to make better recommendations. Conversational search lever- agesthe social discovery process by integrating web information retrieval along with the social interactions. 1 Introduction Socially enabled online information search (social search) is a new phenomenon facilitated by recent Web technologies. This collaborative social search involves finding specific people in your network who have the knowledge you’re look- ing for or finding relevant information based on one’s social network. Social psychologists have experimentally validated that the act of social discussions have facilitated cognitive performance[1]. People in social groups can provide solutions (answers to questions)[2], pointers to databases or other people (meta- knowledge)[2][3] , validation and legitimation of ideas[2][4], can serve as mem- ory aids[5] and help with problem reformulation[2].
    [Show full text]
  • Natural Search User Interfaces
    Natural Search User Interfaces Prof. Marti Hearst UC Berkeley March/April , 2012 Book full text freely available at: http://searchuserinterfaces.com What works well in search now? Faceted Navigation 3 Real-Time Suggestions http://netflix.com http://www.imamuseum.org/ 4 Forecasting the Future First: What are the larger trends? In technology? In society? Next: Project out from these. Preferences for Preferences for Preferences for Audio / Video / Touch Social Interaction Natural Language “Natural” Interfaces Statistical Analysis of Wide adoption of social Enormous Collections Advances in media & user-generated UI Design Of Behavioral and Other Data content 6 Trend: More Natural Queries Trend: Longer, more natural queries § The research suggests people prefer to state their information need rather than use keywords. § But after first using a search engine they quickly learned that full questions resulted in failure. 8 Trend: Longer, more natural queries § The research suggests people prefer to state their information need rather than use keywords. § But after first using a search engine they quickly learned that full questions resulted in failure. § Average query length continues to increase § In 2010 vs 2009, searches of 5-8 words were up 10%, while 1-2 word searches were down. 9 Trend: Longer, more natural queries § Social Question Answering Sites: § Information worded as questions increasing available § with the questions that the audience really wants the answers to, and § written in the language the audience wants to use. § AND with
    [Show full text]
  • 1 Public Records Resources Online
    Public Records Resources Online How to Find Everything There Is to Know About "Mr./Ms. X" *Please see disclaimer at end of document* Summary of public records on Mr. / Ms. X . Starting with one or more Background Reports from the sources below can help provide an overview of where the person has lived and worked, as well as other pertinent information for searching, such as middle name or initial. They might also contain adverse filings and licensing information that you can later verify in other sources. Examples of vendors that provide background reports (for a fee): Westlaw/CLEAR (Thomson Reuters) $ Lexis/Accurint $ TLO $ His/her social security number is . These tools can help verify if an SSN is valid and related to a living person. SSN Validator Selective Service Online Verification He/she was born / died / naturalized . In addition to the Summary Reports in the first section of this guide, official death records may be found in resources on the federal, state, and local levels. The Genealogy Resources section of this guide might have other helpful resources for death records. Social Security Death Records The official federal record is the Social Security Death Index (SSDI). Only the subscription databases, such as Lexis, Westlaw, and TLO (all $) will have the most recent SSDI records, due to privacy restrictions. Try variations of spellings, or using only the last name and birth or death year and location if you're not finding an SSDI record. Ancestry Library $ Genealogy Bank SSDI Research Guide SSDI Databases Online State and Local Death, Burial, and Cemetery Records State and local death records will often provide more detailed information than an SSDI record, but they are not as easy to find.
    [Show full text]
  • On the Collaboration Support in Information Retrieval
    Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 19042 To link to this article : DOI : 10.1145/3092696 URL : http://doi.org/10.1145/3092696 To cite this version : Soulier, Laure and Tamine-Lechani, Lynda On the collaboration support in Information Retrieval. (2017) ACM Computing Surveys, vol. 50 (n° 4). pp. 1. ISSN 0360-0300 Any correspondence concerning this service should be sent to the repository administrator: [email protected] On the Collaboration Support in Information Retrieval LAURE SOULIER, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6 LYNDA TAMINE, IRIT, Université de Toulouse, UPS Collaborative Information Retrieval (CIR) is a well-known setting in which explicit collaboration occurs among a group of users working together to solve a shared information need. This type of collaboration has been deemed as bene!cial for complex or exploratory search tasks. With the multiplicity of factors im- pacting on the search e#ectiveness (e.g., collaborators’ interactions or the individual perception of the shared information need), CIR gives rise to several challenges in terms of collaboration support through algorithmic approaches. More particularly, CIR should allow us to satisfy the shared information need by optimizing the collaboration within the search session over all collaborators, while ensuring that both mutually bene!cial goals are reached and that the cognitive cost of the collaboration does not impact the search e#ectiveness.
    [Show full text]
  • Search Engine Optimization and the Connection with Knowledge Graphs
    FACULTY OF EDUCATION AND BUSINESS STUDIES Department of Business and Economics Studies Search Engine Optimization and the connection with Knowledge Graphs Milla Marianna Hietala Oliver Marshall 2021 Student thesis, Master degree (one year), Credits Business Administration Master Programme in Business Administration (MBA): Business Management Master Thesis in Business Administration 15 Credits Supervisor: Ehsanul Huda Chowdhury Examiner: Maria Fregidou-Malama Abstract Title: Search Engine Optimization and the connection with Knowledge Graphs Level: Thesis for Master’s Degree in Business Administration Authors: Milla Marianna Hietala and Oliver Marshall Supervisor: Ehsanul Huda Chowdhury Examiner: Maria Fregidou-Malama Date: 28-01-2021 Aim: The aim of this study is to analyze the usage of Search Engine Optimization and Knowledge Graphs and the connection between them to achieve profitable business visibility and reach. Methods: Following a qualitative method together with an inductive approach, ten marketing professionals were interviewed via an online questionnaire. To conduct this study both primary and secondary data was utilized. Scientific theory together with empirical findings were linked and discussed in the analysis chapter. Findings: This study establishes current Search Engine Optimization utilization by businesses regarding common techniques and methods. We demonstrate their effectiveness on the Google Knowledge Graph, Google My Business and resulting positive business impact for increased visibility and reach. Difficulties remain in accurate tracking procedures to analyze quantifiable results. Contribution of the thesis: This study contributes to the literature of both Search Engine Optimization and Knowledge Graphs by providing a new perspective on how these subjects have been utilized in modern marketing. In addition, this study provides an understanding of the benefits of SEO utilization on Knowledge Graphs.
    [Show full text]
  • An Innovative Approach for Online Meta Search Engine Optimization
    The 6th Conference on Software, Knowledge, Information Management and Applications, Chengdu, China, September 9-11 2012, #57. 1 An Innovative Approach for online Meta Search Engine Optimization Jai Manral and Mohammed Alamgir Hossain Computational Intelligence Research Group School of Computing Engineering and Information Sciences Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK {jai.manral; alamgir.hossain}@northumbria.ac.uk This paper presents an approach to identify efficient techniques used in Web Search Engine Optimization (SEO). Understanding SEO factors which can influence page’s ranking in search engine is significant for webmasters who wish to attract large number of users to their website. Different from previous relevant research, in this study we developed an intelligent Meta search engine which aggregates results from various search engines and ranks them based on several important SEO parameters. The research tries to establish that using more SEO parameters in ranking algorithms helps in retrieving better search results thus increasing user satisfaction. Initial results generated from Meta search engine outperformed existing search engines in terms of better retrieved search results with high precision. Index Terms— Search Engine Optimization, Meta Search Engine, Page Ranking, WWW. selects its preferred web-pages. Ranking is based on various I. INTRODUCTION parameters, some are known others not. Search engine optimizers work hard to use these parameters and rank their The information on the web is prodigious; searching web-pages higher in the result. Every researcher has its own relevant information is difficult for users. The accuracy of opinion of using SEO techniques. In order to learn how to search results is measured by relevancy of query term to web- optimize webpages and their relevancy to search engines page pages ranked and displayed by search engines.
    [Show full text]