Granular Media Are Offering New Insights Into Problems in Condensed-Matter Physics and Materials Science, As Heinrich Jaegerexpl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanics of Granular Materials
Mechanics of Granular Materials: Constitutive Behavior and Pattern Transformation Cover image !c Luca Galuzzi - www.galuzzi.it Sand dunes of Wan Caza in the Sahara desert region of Fezzan in Libya. Used under Creative Commons Attribution-Share Alike 2.5 Generic license. Mechanics of Granular Materials: Constitutive Behavior and Pattern Transformation PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben, voorzitter van het College van Promoties, in het openbaar te verdedigen op maandag 2 juli 2012 om 10.00 uur door Fatih GÖNCÜ Master of Science in Applied Mathematics, École Normale Supérieure de Cachan, France geboren te Ilgaz, Turkije Dit proefschrift is goedgekeurd door de promotoren : Prof. dr. rer.-nat. S. Luding Prof. dr. A. Schmidt-Ott Samenstelling promotiecommissie : Rector Magnificus voorzitter Prof. dr. rer.-nat. S. Luding Universiteit Twente, promotor Prof. dr. A. Schmidt-Ott Technische Universiteit Delft, promotor Dr. K. Bertoldi Harvard University, Verenigde Staten Prof.dr.ir. L.J. Sluys Technische Universiteit Delft Prof.dr.-ing. H. Steeb Ruhr-Universität Bochum, Duitsland Prof.dr.ir. A.S.J. Suiker Technische Universiteit Eindhoven Prof.dr. M. Liu Universität Tübingen, Duitsland Prof.dr. S.J. Picken Technische Universiteit Delft, reservelid This research has been supported by the Delft Center for Computational Science and Engi- neering (DCSE). Keywords: granular materials, pattern transformation, discrete element method Published by Ipskamp Drukkers, Enschede, The Netherlands ISBN: 978-94-6191-341-8 Copyright c 2012 by Fatih Göncü ! All rights reserved. No part of the material protected by thiscopyrightnoticemaybere- produced or utilized in any form or by any means, electronic ormechanical,includingpho- tocopying, recording or by any information storage and retrieval system, without written permission of the author. -
“Phonon” Conductivity Along a Column of Spheres in Contact Relation to Volume Fraction Invariance in the Core of Granular flows Down Inclines
Granular Matter manuscript No. (will be inserted by the editor) \Phonon" conductivity along a column of spheres in contact Relation to volume fraction invariance in the core of granular flows down inclines Michel Y. Louge Received: June 14, 2011 / Accepted: date Abstract We calculate energy conduction and dissipa- as tion along a column of spheres linked with linear springs p ∗ ∗ ∗ du and dashpots to illustrate how grains in simultaneous τ = f1 T ; (1) xyI dy∗ contact may produce a constant \phonon" conductiv- ∗ 2 ity of granular fluctuation kinetic energy. In the core of ∗ ∗ du τ = −f4T + f6 ; (2) dense unconfined granular flows down bumpy inclines, yyI dy∗ we show that phonon conductivity dominates its coun- p dT ∗ dν terpart calculated from gas kinetic theory. However, the q∗ = −f T ∗ − f T ∗3=2 ; (3) I 2 dy∗ 5 dy∗ volume dissipation rate of phonon fluctuation energy is ∗ ∗3=2 of the same order as the kinetic theory prediction. γI = f3T ; (4) Keywords Granular conduction · Dense flows where f1{f6 are functions of ν, the pair distribution function at contact g12(ν), and properties characteriz- PACS 44.10.+i · 46.40.-f · 45.70.Mg · 62.30.+d ing binary impacts [2{4]. (In Eqs. (1) and (2), we define τij as the component of the cartesian stress tensor τ on a surface of normal j directed along i. We also adopt the convention that compressive normal stresses are nega- 1 Introduction tive, and that the shear stress on a surface of normal y^ directed along x^ is positive, where x^ if the unit vector A feature of the core of dense, steady, fully-developed along the flow and y^ is the downward normal to its free free-surface flows of spheres of diameter d and mate- surface). -
The FSC National Forest Stewardship Standard of Romania
Forest Stewardship Council® The FSC National Forest Stewardship Standard of Romania Cover photos: James Morgan/WWF; Doru Oprisan; Radu Grigore Vlad FSC International Center GmbH · ic.f sc.org · FSC® F000100 Adenauer Allee 134 · 53113 Bonn · Germany T +49 (0) 228 367 66 0 · F +49 (0) 228 367 66 30 Geschäf tsf ührer | Chief Policy Officer: Dr. Hans-Joachim Droste Handelsregister | Commercial Register: Bonn HRB12589 Forest Stewardship Council® Title: The FSC National Forest Stewardship Standard of Romania Document reference code: FSC-STD-ROU-01-2017 EN Status: Approved Geographical Scope: National Forest Scope: All forest types Approval body: Policy and Standards Committee Submission date: 15 January 2017 Approval date: 12 July 2017 Effectiveness date: 15 April 2019 Validity Period: Five years after the effectiveness date Marius Turtica Asociatia pentru Certificare Forestiera Country Contact: E-mail: [email protected] [email protected] Mobile: 0040 740 300 616 FSC International Center - Performance and Standards Unit - Adenauer Allee 134 FSC Performance and Stand- 53113 Bonn, Germany ards Unit Contact: +49-(0)228-36766-0 +49-(0)228-36766-30 [email protected] A.C. All rights reserved. No part of this work covered by the publisher’s copyright may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, recording taping, or information retrieval systems) without the written permission of the publish- er. The Forest Stewardship Council® (FSC) is an independent, not for profit, non-government organisation established to support environmentally appropriate, socially beneficial, and eco- nomically viable management of the world's forests. -
LECTURE 2 - Statistical Ensembles for Jammed Granular States
LECTURE 2 - Statistical Ensembles for Jammed Granular States Notes based on Henkes, O'Hern and Chakrabory, PRL 99, 038002 (2007), Henkes and Chakraborty , PRE 79, 061301 (2009), and Henkes, PhD thesis, Brandeis Equilibrium - microcanonical to canonical We quickly review the steps one takes in ordinary equilibrium statistical mechanics, in going from the microcanonical to the canonical ensemble. In the microcanonical ensemble, energy is conserved. One assumes that all states with the same total energy E are equally likely, and computes microcanonical averages by averaging observables over all states with the same E, using equal weights. For N particles in a box of volume V , one counts the number number of states Ω(E; V; N) with total energy E. The temperature is defined by 1=T = @S=@E, with S(E) = ln Ω(E) the entropy. Consider now a small subsystem with N particles in volume V , and the subsystem is in contact with a big reservoir with which it can exchange energy. The reservoir contains NR N particles in a volume VR V . The total system of subsystem + reservoir is treated in the microcanonical ensemble. Since energy is additive, the total energy ET = E + ER is fixed. One assumes the subsystem and the reservoir are uncorrelated and so the number of states of the total system factorizes, X ΩT (ET ) = Ω(E)ΩR(ET − E) E One then expands for E ET , ΩR(ET − E) = expfln ΩR(ET ) − [@ ln ΩR=@ET ]Eg ∼ exp{−E=TRg In equilibrium we know that the temperatures of the subsystem and reservoir equilibrate, T = TR, and so if we assume that the probability to find the subsystem with energy E is proportional to the number of states in which the subsystem has energy E and the reservoir has ET − E, then we get the canonical distribution, P (E) ∼ Ω(E) exp{−E=T g Edwards volume ensemble for granular matter Consider a jammed granular system of N rigid, incompressible, particles confined to a box of volume V . -
Evidence That the Reactivity of the Martian Soil Is Due To
R EPORTS Similar coherence between heavy-hole and 8. E. Hagley et al., Phys. Rev. Lett. 79, 1 (1997). ed. For some carefully arranged excitation (red-side- light-hole excitons has been reported in (33). 9. See the article in the Search and Discovery section band excitation) and a specific initial condition (two-ion [Phys. Today 53, 20 (January 2000)] for discussions ground state with one phonon), no sublevels in the These are examples of quantum coherence in- on entanglement in liquid-state NMR. For experimen- fourth (upper-most) level are resonant with the laser volving a nonradiative superposition of states, tal demonstrations of quantum algorithms using beams, resulting in a zero-probability amplitude of this which leads to many novel phenomena such as NMR, see, for example, I. L. Chuang et al., Phys. Rev. level and therefore a nonfactorizable wavefunction. the Hanle effect, dark states, lasing without Lett. 80, 3408 (1998). 24. N. H. Bonadeo et al., Phys. Rev. Lett. 81, 2759 (1998). 10. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. 25. For our experiment, the pump and probe fields (Epump inversion, electromagnetically induced trans- Wineland, Phys. Rev. Lett. 75, 4714 (1995). and Eprobe) are amplitude-modulated by two standing- parency, and population trapping [see (33) and 11. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, wave acousto-optical modulators at frequency fpump and f , respectively. These frequencies (ϳ100 MHz) references therein]. However, unlike the QD H. J. Kimble, Phys. Rev. Lett. 75, 4710 (1995). probe 12. J. Ahn, T. C. -
Built Upon Sand: Theoretical Ideas Inspired by the Flow of Granular Materials
• Built Upon Sand: Theoretical Ideas Inspired by the Flow of Granular materials Leo P Kadanoff* The James Franck Institute The University of Chicago 5640 S. Ellis Avenue Chicago, IL 60637 USA Abstract Granulated materials, like sand and sugar and salt, are composed of many pieces which can move independently. The study of collisions and flow in these materials requires new theoretical ideas beyond those in the standard statistical mechanics, or hydrodynamics, or traditional solid mechanics. Granular materials differ from standard molecular materials in that frictional forces among grains can dissipate energy and drive the system toward frozen or glassy configurations. In experimental studies of these materials, one sees complex flow patterns similar to those of ordinary liquids, but also freezing, plasticity, and hysteresis. To explain these results, theorists have looked at mQdels based upon inelastic collisions among particles. With the aid of computer simulations of these models they have tried to build a 'statistical dynamics' of inelastic collisions. One effect seen, called inelastic collapse, is a freeZing of some of the degrees of freedom induced by an infinity of inelastic collisions. More often some degrees of freedom are partially frozen, so that we can have a rather cold clump of material in correlated motion. Conversely, thin layers of material may be mobile, while all the material around then is frozen. In these and other ways, granular motion looks different from movement in other kinds of materials. Simulations in simple geometries may also be used to ask questions like 'when does the usual Boltzmann-Gibbs-Maxwell statistical mechanics arise?', 'what are the nature of the probability distributions for forces between the grains?', and whether the system might possibly be described by uniform partial differential equations. -
Nanomagnetism and Spin Electronics: Materials, Microstructure and Novel Properties
40TH ANNIVERSARY J MATER SCI 41 (2006)793–815 Nanomagnetism and spin electronics: materials, microstructure and novel properties K. M. KRISHNAN∗, A. B. PAKHOMOV, Y. BAO, P. BLOMQVIST, Y. CHUN, M. GONZALES, K. GRIFFIN, X. JI, B. K. ROBERTS Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA, 98195-2120 E-mail: [email protected] We present an overview of the critical issues of current interest in magnetic and magnetoelectronic materials. A broad demonstration of the successful blend of materials synthesis, microstructural evolution and control, new physics and novel applications that is central to research in this field is presented. The critical role of size, especially at the nanometer length scale, dimensionality, as it pertains to thin films and interfaces, and the overall microstructure, in determining a range of fundamental properties and potential applications, is emphasized. Even though the article is broad in scope, examples are drawn mainly from our recent work in magnetic nanoparticles and core-shell structures, exchange, proximity and interface effects in thin film heterostructures, and dilute magnetic dielectrics, a new class of materials for spin electronics applications. C 2006 Springer Science + Business Media, Inc. 1. Introduction sions quantum-mechanical tunneling effects are expected Magnetism, subtle in its manifestations, is electronically to predominate [2]. driven but weak compared with electrostatic interactions. In the ideal case, considering only dipolar interactions, It has its origin in quantum mechanics, i.e. the Pauli ex- the spin-flip barrier for a small magnetic object [3]is clusion principle and the existence of electron spin. How- a product of the square of the saturation magnetization, 3 ever, it is also known for a variety of classical effects, Ms and its volume (V ∼ a ). -
Dynamics of Granular Materials . / R. P. Behringer Department Of
Dynamics of Granular Materials _ . _ / R. P. Behringer Department of Physics and Center forNonlinear and Complex Systems _/,_ Duke University Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Practai-like stress chains, convection, s variety of wave dynamics, including waves which resemble capillary waves, 1/f noise, and fractlona] Brown]an motion provide examples. Work beginning at Duke will focus on gravity driven convection, mixing and gravitational collapse. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules. In particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. In the absence of a steady energy input, granular materials undergo a rapid collapse which is strongly influenced by the presence of gravity. Fluctuations on laboratory scales _ such quantities as the stress can be very large-as much as an order of magnitude greater than the mean. I. Introduction In this paper, I briefly given an overview of important aspects of granular flows. I then focus on recent experiments on gravity-driven convective flows. I conclude by indicating future directions. Granular materials _-3 are collections of macroscopic particles or grains typically having inelastic interactions and often surrounded by a fluid, such as air or water. The interactions between granular materials are governed chiefly by the local elastic and frictional forces between particles, or between particles and a wall. The surrounding fluid may also play an important role in the dynamics of the system. -
Master Gardener Newsletter
Master Gardener Newsletter S EPTEMBER 2020 C OWLITZ C OUNTY 1946 3 RD A VE. L ONGVIEW , WA 98632 WSU Extension Office Gary Fredricks Phone: 360-577-3014 Gary Fredricks, WSU I have a plan? Cowlitz County "A year from now, you will wish you had started today." ~ Karen Lamb Extension Director, 360-577-3014 Extension 3 October marks a showcase of fall colors with all the trees changing to different E-mail: [email protected] shades of gold and red. It also means elections are drawing near. Political speeches fill the airways with promises of a better way of doing things. Speech- Carlee Dowell, es in the past were about saving the taxpayers money, but now because budgets Administrative Secretary have been cut, it has become more about accountability. There are promises to 360-577-3014 Extension 0 eliminate wasteful spending and be more efficient in how your dollars are spent. We all should expect that our tax dollars are being used effectively, but how do E-mail: we know? [email protected] As public supported organization, it is expected that WSU Extension is ac- countable for the funds it uses. That means we need to demonstrate that as an WSU Gardening Websites organization we can show our programs have improved the quality of life for mastergardener.wsu.edu/ the general public. WSU Extension has the responsibility to make sure our pro- gardening.wsu.edu grams are relevant and impact Cowlitz County citizens. As MG volunteers, cowlitz.wsu.edu partners with our office, the goal remains the same for you. -
SEDIMENTATION of the BARUN GOYOT FORMATION (Plates XXXIV-XLII )
RYSZARD GRADZINSKI & TOMASZ JERZYKIEWICZ SEDIMENTATION OF THE BARUN GOYOT FORMATION (Plates XXXIV-XLII ) Contents C ontents Pa ge Introduction . 112 Geological setting 112 Stratigraphy . .. 114 Previous work .. .. ... .. 114 Redefinition of the lithostratigraphic divisions. 115 Barun Goyot Formation ... 116 Nemegt Formation. .. .. 116 Relation between the observed profiles . 117 Petrographic description . .. 118 Clay and silt-grade sediments 119 Sand-grade sediments . .. 119 Intraformational gravels . 124 Exotic gravels . 124 Principal sediment types . 125 Flat-bedded sandstone units. 125 Mega cross-stratified units . 127 Massive, "structureless" sandstones. 134 Diversely stratified sandstones . 134 Alternating claystones and sandstones 136 Sedimentological interpretation 136 Occurrence of organic remains 140 Depositional environment . 141 Conclusions 143 Appen dix . 143 References . 144 Abstract. - The Barun Goyot Formation (previously termed Lower Nemegt Beds) is composed of clastic continental sediments of red-beds type; it is probably of Campanian age. The thickness of the formation exceeds 110 m. It is overlain by the Nemegt Formation (previously termed Upper Nemegt Beds), probably of Maast richtian age; the passage between the two format ions is gradual. A formal redefinition of the two Iithostra tigraphic divisions is presented in the paper. Five principal sediment types are distinguished in the Barun Goyot Formation, displaying sedimentary features indicative of various conditions of sedimentation. The lower part of the exposed profile of the Barun Goyot Formation is characterized by mega cross-stratified units, interpreted as dune deposits; they are intertonguing with water-deposited sediments laid in interdune areas. Chan nel deposits, attributed to intermittent streams are subordinate; massive sandstones, probably of various origin are predominating. The upper part of the profile of the formation is characterized by the predominance of flat-bedded sandstone units which were probabl y deposited in an intermittently flooded takyr-like area. -
Dicionarioct.Pdf
McGraw-Hill Dictionary of Earth Science Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro- duced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-141798-2 The material in this eBook also appears in the print version of this title: 0-07-141045-7 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw- Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom- pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. -
Vapor Liquid
U.P.B. Sci. Bull., Series A, Vol. 81, Iss. 3, 2019 ISSN 1223-7027 STUDY OF SURFACE PLASMON RESONANCE STRUCTURE WITH AS2S3 AMORPHOUS CHALCOGENIDE COMPOUND WAVEGUIDE Aurelian A. POPESCU1, Mihai STAFE2*, Dan SAVASTRU1, Laurentiu BASCHIR1*, Constantin NEGUTU2 and Niculae PUSCAS2 In this paper we present theoretical and experimental results regarding the analysis of optimum conditions to couple the light within a BK7-Au-As2S3-Air plasmonic compound. We first determined the characteristic equation for the plasmonic waveguide structure consisting in four thin layers by solving the system of Helmholtz equations and applying continuity conditions at the three interfaces of the structure. Subsequently, numerical calculations have been done to obtain the propagation constant and the field distribution within the structure layers. The plasmonic mode confined to the metal interface corresponds to TM0 waveguide mode. The structure supports higher order waveguide modes which can be exited, for several dielectric thicknesses, using low refractive index prism. The investigations emphasize that the value of the resonance angle is in very good accordance with our theoretical findings. Plasmonic waveguide which contains As2S3 as active optical material is a promising configuration for optical memory and switching devices due to well-known photo-induced phenomena in such materials. Keywords: Surface Plasmon Resonance, Amorphous Chalcogenide Materials, As2S3 thin films. 1. Introduction The ability of light to transmit information is enormous, due to the fact that the light frequency as the electromagnetic wave overpass 100 THz. Beyond of this, in optics there exists the simple possibility of information parallel processing by Fourier transform with the aid of a lens.