And Pomatoschistus Minutus (Pallas, 1770) in a Temperate Estuary, Portugal

Total Page:16

File Type:pdf, Size:1020Kb

And Pomatoschistus Minutus (Pallas, 1770) in a Temperate Estuary, Portugal Estuarine, Coastal and Shelf Science 66 (2006) 231e239 www.elsevier.com/locate/ecss Feeding ecology, population structure and distribution of Pomatoschistus microps (Krøyer, 1838) and Pomatoschistus minutus (Pallas, 1770) in a temperate estuary, Portugal R. Leita˜o a,*, F. Martinho a, J.M. Neto a, H. Cabral b, J.C. Marques a, M.A. Pardal a a Institute of Marine Research (IMAR), c/o Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal b Instituto de Oceanografia, Faculdade de Cieˆncias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal Received 25 April 2005; accepted 30 August 2005 Available online 23 November 2005 Abstract The feeding ecology, growth and spatialetemporal abundance and distribution of Pomatoschistus microps (Krøyer, 1838) and Pomatoschistus minutus (Pallas, 1770) were studied between June 2003 and June 2004, based on beam trawl surveys and macrobenthic samples conducted in the Mondego estuary, Portugal. Polychaetes, molluscs and amphipods were the most important items in the diet of P. microps, while for P. minutus the dominant preys were polychaetes, mysids and decapods. Pomatoschistus microps’ recruitment lasted for six months and was composed of three new cohorts per year. Pomatoschistus minutus had an uncommon long reproductive season, from April to November, and population seg- regation was found, corresponding to the two reproductive peaks. Populations of both species were composed mainly of 0-group individuals with sand gobies presenting a more extended life span. In the Mondego estuary, inter- and intra-specific spatial segregation occurred between the two species and between the 0C and 1C age groups of P. microps. Ó 2005 Elsevier Ltd. All rights reserved. Keywords: Pomatoschistus; diet overlap; life cycle; competition; resource partitioning; Mondego estuary 1. Introduction this resource. The study of diet is often used to evaluate com- petition between fish species (Elliott et al., 2002). High fish abundance concentrated in particular areas, is Trophic and habitat segregation are among the most impor- a common feature in estuarine fish communities (Elliott tant aspects of resource partitioning in fish communities but it et al., 2002). Consequently, co-occurrence of several similar has been difficult to assess and prove the main force behind morphological types (e.g. species of Soleidae, Mugilidae, Go- this process (Ross, 1986a). Evidences of coexistent Gobiidae biidae) with overlap of ecological niches within the communi- species exhibiting vertical spatial segregation, temporal segre- ties is expected. Spatial and temporal distribution, abundance gation in spawning and absence of niche shifts when one patterns of fish assemblages as well as resource partitioning, species was temporarily absent have been reported by Norte- are therefore, important and interesting issues for understand- Campos and Temming (1994). The Gobiidae is a particularly ing the structure and dynamics of these communities (Cabral, successful family in both tropical and temperate seas, well rep- 2000). Competition exists when the requirements of two or resented in estuarine and freshwater environments. Gobiidae more individuals for a particular resource exceed the supply present more than 2000 species (Bouchereau and Guelorget, of that resource in the environment; or, if their demands do 1998) and virtually all gobies exhibit demersal eggs, male not exceed the supply, but they compete directly to obtain parental care and highly variable number of spawnings per season (Miller, 1984). * Corresponding author. In the Mondego estuary, four species of Gobiidae are pres- E-mail address: [email protected] (R. Leita˜o). ent: Pomatoschistus microps (Krøyer, 1838), Pomatoschistus 0272-7714/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.ecss.2005.08.012 232 R. Leita˜o et al. / Estuarine, Coastal and Shelf Science 66 (2006) 231e239 minutus (Pallas, 1770), Gobius niger Linnaeus, 1758, and Aphia estuary, with an area of 3.4 km2, and a Mediterranean temper- minuta (Risso, 1810), the two Pomatoschistus species being the ate climate. The estuary comprises two arms, north and south, most abundant fishes in the Mondego estuary assemblage with very different hydrologic characteristics suffering also (Leita˜o et al., in press). The common goby, P. microps, is a sed- different human impacts. The northern arm is deeper, 5e entary species of semi-enclosed lagoon-like environments, 10 m deep at high tide (tidal range 1e3 m), highly hydrody- which undertakes thermic migration in northern Europe (Jones namic and constitutes the main navigation channel and the lo- and Miller, 1966). Although it is usually an annual species in the cation of the Figueira da Foz harbour. The southern arm is Mediterranean Sea (Bouchereau and Guelorget, 1998; Pampou- shallower (2e4 m during high tide, tidal range 1e3 m), and lie, 2001), it can live up to two years in the northern Europe is characterized by large areas of intertidal flats exposed dur- (Jones and Miller, 1966). The main food items for this fish con- ing low tide. sist of meiofauna and small macrofauna (Pihl, 1985; Salgado Fish were collected, monthly, between June 2003 and June et al., 2004). Similarly, the sand goby, P. minutus, is a ubiquitous 2004, using a 2 m beam trawl, with one tickler chain and estuarine and inshore marine fish with a short generation time 5 mm stretched mesh size in the cod end. Sampling was car- (12e18 months) being able to spend its entire life cycle within ried out during the night, at low water of spring tides, in an estuary (Healey, 1971). In both species, young gobies start five stations (A, B, C, D and E) (Fig. 1). Each survey consisted their life form as suprabenthic organisms, changing to epi- of three hauls, at each of the five sampling stations, in a total benthic with one or two months old (Zander, 1990). of 15 min per station. All fish captured were identified, mea- Considering the importance of these species in the marine sured (total length) and weighted (wet weight). Stomachs and estuarine ecosystems (Miller, 1972), especially their role were removed and contents preserved in 4% buffered formalin as intermediate predators in the food-web connecting micro- for later identification. Each prey item was identified to the benthos with large predator fish (Raffaelli and Milne, 1987; lowest taxonomic level possible, counted and weighted (wet Raffaelli et al., 1989), few studies (Arruda et al., 1993; weight). Temperature, salinity, pH and dissolved oxygen Salgado et al., 2004) have focused on the ecology of these spe- near the bottom were measured during sampling. Algae col- cies in the Atlantic coast of Southern Europe (the literature is lected together with fish in beam trawl samples were also particularly scarce for Pomatoschistus microps). weighted (total wet weight). Each season (summer, autumn, The purpose of the present study was (a) to analyze the dis- winter and spring), sediment samples were collected using tribution and abundance patterns of Pomatoschistus microps a Van Veen grab in all sampling stations, in order to determine and Pomatoschistus minutus in a temperate estuary; (b) to granulometry and benthic macroinvertebrates biomass (g mÿ2 compare the feeding ecology and growth of P. microps and AFDW e ash free dry weight). Granulometry was determined P. minutus; and (c) to evaluate the potential for competition after incinerating dried sediment samples at 450 C for 7 h, between the two species. being afterwards sorted in a sieve series and weighed accord- ing to grain size. 2. Material and methods 2.1. Study site and sampling procedures 2.2. Feeding The Mondego estuary is located on the Atlantic coast of The stomach contents of 103 Pomatoschistus microps and Portugal (40 08#N, 8 50#W) (Fig. 1). It is a small intertidal 101 Pomatoschistus minutus were analyzed. The relative Fig. 1. Location of sampling stations within the Mondego estuary. R. Leita˜o et al. / Estuarine, Coastal and Shelf Science 66 (2006) 231e239 233 importance of each prey item in the diet was expressed by of this software is based on the probability paper method, as three indices: the numerical index (NI) e percentage of the proposed by Cassie (1963). number of individuals of a prey over the total number of indi- viduals of all preys; the occurrence index (OI) e percentage of non-empty stomachs in which a prey occurred; and the gravi- 2.4. Distribution and abundance patterns metric index (GI) e percentage in wet weight of a prey in re- lation to the total wet weight of all prey. Feeding activity was A canonical correspondence analysis was performed to evaluated by the vacuity index defined as the percentage of evaluate spatial and temporal variation of both Pomatoschistus empty stomachs (Hyslop, 1980). A mixed method, proposed species, using CANOCO 4.0 (Ter Braak, 1988). This multivar- by Hureau (1970) and adapted by Salgado et al. (2004), the di- iate technique allows one to directly relate the pattern of com- etary coefficient (QI) was also used. Defined as QI Z munity variation with the pattern of environmental variation NI ! GI, this method considers both the weight and the num- (Ter Braak and Prentice, 1988). According to the some au- ber of ingested prey, classifying them into dominant thors, it has several advantages when compared with other di- (QI R 200), secondary (200 O QI R 20) or unimportant rect gradient analysis techniques, in particular when species (QI ! 20). have nonlinear and unimodal relationships to environmental Diet overlap was measured using the Schoener index (SI): gradients. Each species abundance data was averaged by age group (0C and 1C), by sampling area (stations A, B, C, D ! Xn and E) and seasons (summer, autumn, winter and spring). Z SI 1 ÿ 0:5 piA ÿ piB Temperature, salinity, dissolved oxygen, sediment type, algae iZ1 cover, depth at high tide and benthic macroinvertebrates bio- mass were included in the analysis as environmental data.
Recommended publications
  • Fish Characteristics
    FISH CHARACTERISTICS There are approximately 25,000 different species of fish. A fish is an animal with a backbone (a vertebrate) that is adapted to live in water. Fishes use gills to breathe, and most fishes have scales covering their skin. Scales serve as a form of protection. Fishes are also cold-blooded, which means that their body temperature is regulated by the temperature of the surrounding water. Bony fishes inhabit almost every body of water, from tropical, polar, and temperate seas, to freshwater and brackish environments. Scientists discover about 200-300 new fish species every year. Believe it or not, there are more fishes on our planet than birds or mammals. Dorsal (back) fin Do you enjoy gymnastics? Have you ever watched a gymnast on the balance beam? They need to stay Caudal (tail) fin nice and steady, placing one foot Pectoral (side) fin gently over the next, to stay steady Have you ever helped your Have you ever pretended and straight. The dorsal fin helps a mom or dad check the oil in the you were a race car driver, fish to swim steady and provides family car? You need to check zooming down the track? balance in the water. the engine because the engine You speed through the helps the car to move fast - it straight-a-way and then turn gives the car speed and power! the steering wheel quickly In most fish, the caudal fin when you reach the curve to provides the speed and power go left or right. The pectoral for swimming, just like a car fin is just like a steering engine.
    [Show full text]
  • Disease List for Aquaculture Health Certificate
    Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific
    [Show full text]
  • Feeding Activities of Two Euryhaline Small-Sized Fish in a Western Baltic Brackish Fjord
    HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgolander Meeresunters. 45,287-300 (1991) Feeding activities of two euryhaline small-sized fish in a western Baltic brackish fjord Birgit Antholz, Wolfgang Meyer-Antholz & C. Dieter Zander Zoologisches Institut und Zoologisches Museum der Universit~t Hamburg; Martin-Luther-King-Platz 3, D-W-2000 Hamburg 13, Federal Repubfic of Germany ABSTRACT: The daily food intake and feeding activities of the common goby Pomatoschistus microps (Kroyer) and the nine-spined stickleback Pungitius pungitius (L.) were investigated in the brackish Schlei fjord. At the investigation site of Olpenitz, salinities varied between 11 and 15 %o, and water temperatures between 5 and 18 ~ during the period of in-situ experiments in 1981 and 1982. Common gobies sometimes attained a density of more than 100 individuals per square metre, nine-spined sticklebacks as much as 18 individuals per square meter. Their food changed depend- ing on the supply of plankton or benthos. Regarding numbers, their food consisted mainly of harpacticoids, in springtimes of calanoids; with regard to weight, amphipods, polychaetes or chironomid larvae often prevailed. The total food ingestion, measured by means of its relation to fish weights (fullness index), was highest in spring and summer: 2.3 % in P. microps and 2.6 % in P. pungitius. Low fullness indices of 0.8 % in P. microps and 0.3 % in P. pungitius were found during times of low water temperatures. 24-h field investigations revealed that the adult P. microps presented clear diurnal rhythms with highest fullness indices after dawn and a further maximum at dusk. Only young gobies ingested some benthos at night.
    [Show full text]
  • Recurrent Convergent Evolution at Amino Acid Residue 261 in Fish Rhodopsin
    Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin Jason Hilla, Erik D. Enbodya, Mats E. Petterssona, C. Grace Sprehna, Dorte Bekkevoldb, Arild Folkvordc,d, Linda Laikree, Gunnar Kleinauf, Patrick Scheererf, and Leif Anderssona,g,h,1 aDepartment of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden; bNational Institute of Aquatic Resources, Technical University of Denmark, 8600 Silkeborg, Denmark; cDepartment of Biological Sciences, University of Bergen, 5020 Bergen, Norway; dInstitute of Marine Research, 5018 Bergen, Norway; eDepartment of Zoology, Division of Population Genetics, Stockholm University, SE-106 91 Stockholm, Sweden; fGroup Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany; gDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; and hDepartment of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 Contributed by Leif Andersson, July 26, 2019 (sent for review May 14, 2019; reviewed by Michel Georges and Philip W. Hedrick) The evolutionary process that occurs when a species colonizes a Results new environment provides an opportunity to explore the mecha- Characterization of the Selective Sweep at the Rhodopsin Locus. The nisms underlying genetic adaptation, which is essential knowledge colonization of herring into the Baltic Sea must have happened for understanding evolution and the maintenance of biodiversity. within the last 10,000 y because this area was entirely covered Atlantic herring has an estimated total breeding stock of about 12 with ice during the last glaciation.
    [Show full text]
  • Spatial and Temporal Distribution of the Demersal Fish Fauna in a Baltic Archipelago As Estimated by SCUBA Census
    MARINE ECOLOGY - PROGRESS SERIES Vol. 23: 3143, 1985 Published April 25 Mar. Ecol. hog. Ser. 1 l Spatial and temporal distribution of the demersal fish fauna in a Baltic archipelago as estimated by SCUBA census B.-0. Jansson, G. Aneer & S. Nellbring Asko Laboratory, Institute of Marine Ecology, University of Stockholm, S-106 91 Stockholm, Sweden ABSTRACT: A quantitative investigation of the demersal fish fauna of a 160 km2 archipelago area in the northern Baltic proper was carried out by SCUBA census technique. Thirty-four stations covering seaweed areas, shallow soft bottoms with seagrass and pond weeds, and deeper, naked soft bottoms down to a depth of 21 m were visited at all seasons. The results are compared with those obtained by traditional gill-net fishing. The dominating species are the gobiids (particularly Pornatoschistus rninutus) which make up 75 % of the total fish fauna but only 8.4 % of the total biomass. Zoarces viviparus, Cottus gobio and Platichtys flesus are common elements, with P. flesus constituting more than half of the biomass. Low abundance of all species except Z. viviparus is found in March-April, gobies having a maximum in September-October and P. flesus in November. Spatially, P. rninutus shows the widest vertical range being about equally distributed between surface and 20 m depth. C. gobio aggregates in the upper 10 m. The Mytilus bottoms and the deeper soft bottoms are the most populated areas. The former is characterized by Gobius niger, Z. viviparus and Pholis gunnellus which use the shelter offered by the numerous boulders and stones. The latter is totally dominated by P.
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • An Overview of the Dwarfgobies, the Second Most Speciose Coral-Reef Fish Genus (Teleostei: Gobiidae:Eviota )
    An overview of the dwarfgobies, the second most speciose coral-reef fish genus (Teleostei: Gobiidae:Eviota ) DAVID W. GREENFIELD Research Associate, Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, California 94118-4503, USA Professor Emeritus, University of Hawai‘i Mailing address: 944 Egan Ave., Pacific Grove, CA 93950, USA E-mail: [email protected] Abstract An overview of the dwarfgobies in the genus Eviota is presented. Background information is provided on the taxonomic history, systematics, reproduction, ecology, geographic distribution, genetic studies, and speciation of dwarfgobies. Future research directions are discussed. A list of all valid species to date is included, as well as tables with species included in various cephalic sensory-canal pore groupings. Key words: review, taxonomy, systematics, ichthyology, ecology, behavior, reproduction, evolution, coloration, Indo-Pacific Ocean, gobies. Citation: Greenfield, D.W. (2017) An overview of the dwarfgobies, the second most speciose coral-reef fish genus (Teleostei: Gobiidae: Eviota). Journal of the Ocean Science Foundation, 29, 32–54. doi: http://dx.doi.org/10.5281/zenodo.1115683 Introduction The gobiid genus Eviota, known as dwarfgobies, is a very speciose genus of teleost fishes, with 113 valid described species occurring throughout the Indo-Pacific Ocean (Table 1), and many more awaiting description. It is the fifth most speciose saltwater teleost genus, and second only to the 129 species in the eel genusGymnothorax in the coral-reef ecosystem (Eschmeyer et al. 2017). Information on the systematics and biology of the species of the genus is scattered in the literature, often in obscure references, and, other than the taxonomic key to all the species in the genus (Greenfield & Winterbottom 2016), no recent overview of the genus exists.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • The Ecology of Pomatoschistus Pallas and Pomatoschistusde Buen
    Universiteit Gent Faculteit der Wetenschappen Vakgroep Morfologie, Systematiek en Ecologie Academiejaar 1992-1993 Instituut voor Dierkunde Sektie Mariene Biologie The ecology of Pomatoschistus Pallas and Pomatoschistus de Buen (Pisces, Gobiidae) in the shallow coastal waters and estuaries of the Southern Bight of the North Sea nr ï by Olivier Hamerlynck Promotor: Prof. Dr. C. Heip Verhandeling voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen Groep Dierkunde for Iß ID and »3» who created me for 'p p ’ who is the present for p i l» who holds the future Leaders destroy the follower and the followers destroy the leader. Why should you have fate in anyone? Jiddu Krishnamurti fgffl UNIVERSITEITSBIBLIOTHEEK GENT f lllllllllllllllllllllllllllll 000000300915 I Universiteit Gent Faculteit der Wetenschappen Vakgroep Morfologie, Systematiek en Ecologie Academiejaar 1992-1993 Instituut voor Dierkunde Sektie Mariene Biologie The ecology of Pomatoschistus minutus Pallas and Pomatoschistus lozanoi de Buen (Pisces, Gobiidae) in the shallow coastal waters and estuaries of the Southern Bight of the North Sea Y Y by Olivier Hamerlynck Promotor: Prof. Dr. C. Heip Verhandeling voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen Groep Dierkunde for IO 10 and »3» who created me for ] Op who is the present for ] Oil» who holds the future Leaders destroy the follower and the followers destroy the leader. Why should you have fate in anyone? Jiddu Krishnamurti TABLE OF CONTENTS SUMMARY ..........................................................................................................1
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Individual Variation in Rod Absorbance Spectra Correlated with Opsin Gene Polymorphism in Sand Goby (Pomatoschistus Minutus)
    3415 The Journal of Experimental Biology 212, 3415-3421 Published by The Company of Biologists 2009 doi:10.1242/jeb.031344 Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus) Mirka Jokela-Määttä1,*, Annika Vartio1, Lars Paulin2 and Kristian Donner1 1Department of Biological and Environmental Sciences and 2Institute of Biotechnology, University of Helsinki, Helsinki, Finland *Author for correspondence ([email protected]) Accepted 28 July 2009 SUMMARY Rod absorbance spectra, characterized by the wavelength of peak absorbance (max) were related to the rod opsin sequences of individual sand gobies (Pomatoschistus minutus) from four allopatric populations [Adriatic Sea (A), English Channel (E), Swedish West Coast (S) and Baltic Sea (B)]. Rod max differed between populations in a manner correlated with differences in the spectral light transmission of the respective water bodies [max: (A)Ϸ503 nm; (E and S)Ϸ505–506 nm; (B)Ϸ508 nm]. A distinguishing feature of B was the wide within-population variation of max (505.6–511.3 nm). The rod opsin gene was sequenced in marked individuals whose rod absorbance spectra had been accurately measured. Substitutions were identified using EMBL/GenBank X62405 English sand goby sequence as reference and interpreted using two related rod pigments, the spectrally similar one of the Adriatic P. marmoratus (maxϷ507 nm) and the relatively red-shifted Baltic P. microps (maxϷ515 nm) as outgroups. The opsin sequence of all E individuals was identical to that of the reference, whereas the S and B fish all had the substitution N151N/T or N151T. The B fish showed systematic within-population polymorphism, the sequence of individuals with max at 505.6–507.5 nm were identical to S, but those with max at 509–511.3 nm additionally had F261F/Y.
    [Show full text]