Mechanisms of Volatile Production from Amino Acid Esters by Irradiation

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Volatile Production from Amino Acid Esters by Irradiation Food Research International 81 (2016) 100–107 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Mechanisms of volatile production from amino acid esters by irradiation Xi Feng a,EunJooLeeb, Kichang Nam c, Cheorun Jo d,KyungyukKoe,DongUkAhna,⁎ a Department of Animal Science, Iowa State University, Ames, IA 50010, United States b Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI 54751, United States c Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Republic of Korea d Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Republic of Korea e Division of Food Additives and Packaging, Department of Food Safety Evaluation, Ministry of Food Drug Safety, Cheongwon-gun, Chungbuk 363-700, Republic of Korea article info abstract Article history: Proteins and its constituents (amino acids) are known as the major contributors to the off-odor in irradiated Received 2 December 2015 meat. However, radiolytic degradation of amino acids occurred not only at side chains but also at amino- and Received in revised form 4 January 2016 carboxyl-groups of the α-carbon. A model system with amino acid esters was used to elucidate the mechanisms Accepted 6 January 2016 of volatile production at side chains of amino acids by irradiation. The low-molecular weight aldehydes, which Available online 9 January 2016 contributed to the irradiation off-odor, were mainly from acidic, aliphatic and aliphatic hydroxyl group amino acid esters through the radiolysis of amino acid side chains or Strecker degradation. However, the contribution Chemical compounds studied in this article: Methionine (PubChem CID: 6137) from non-sulfur amino acids was minor compared with sulfur amino acids. Among the sulfur-containing Dimethyl disulfide (PubChem CID: 12232) amino acids, methionine made the greatest contribution to the irradiation off-odor not only through the direct Thiobis methane (PubChem CID: 1068) cleavage of the side chain. However, the chemical reactions of sulfur compounds with other compounds pro- duced by irradiation also played significant roles to the off-odor of irradiated meat. Keywords: © 2016 Elsevier Ltd. All rights reserved. Irradiation Volatiles Amino acid esters Sulfur amino acids Irradiation odor 1. Introduction 1995). These researches also indicated that radiolysis of amino acids played an important role in the production of off-odor volatiles in irradi- Irradiation is the most effective method to inactivate foodborne ated meats, because more than 70% of meat is water, the second major pathogens in meat (Delincée, 1998; Diehl, 2002). In addition to improv- components in meat are proteins and its constituents (amino acids), ing the meat safety, irradiation leaves no chemical residues, minimizes which are constituted by a variety of amino acid groups, including acidic, nutrient loss, eliminates further cross contamination after processing, amide, basic, aromatic, aliphatic, aliphatic hydroxyl and sulfur containing and prolongs shelf-life of meat (Farkas, 2006; Roberts, 2014). However, groups (Lawrie & Ledward, 2006). the use of irradiation on meat products is limited because of off-odor Ahn (2002) used amino acid homopolymers and Ahn et al. (2016a,b) production by irradiation (Brewer, 2009; Lee & Ahn, 2004). used amino acid monomers to elucidate the production mechanisms of All irradiated meat produces characteristic irradiation odor such as off-odor volatiles in meat by irradiation. However, the production “hot fat,”“burned oil”, “burned feathers”, “bloody and sweet”,or mechanisms of off-odor volatiles in irradiated meats cannot be fully ex- “barbecued corn-like” odor, regardless of degree of lipid oxidation plained by analyzing the volatiles from irradiated amino acid homopol- (Hashim, Resurreccion, & McWatters, 1995; Heath, Owens, Tesch, & ymers or monomers because they found that the radiolytic degradation Hannah, 1990; O'Bryan, Crandall, Ricke, & Olson, 2008). Several off- of amino acids occurred not only at side chains but also at amino and odor volatile compounds, including 2-methyl butanal, 3-methyl butanal, carboxyl groups of the α-carbon. In this study, amino acid esters were 1-heptene, 1-octene, 1-nonene, hydrogen sulfide, sulfur dioxide, used to determine the contribution of the side chains to the production mercaptomethane, dimethyl sulfide, methyl thioacetate, dimethyl disul- of volatiles from amino acids by irradiation. The amino acid ester sam- fide and dimethyl trisulfide, were newly generated or increased in meat ples were randomly divided into 2 groups and irradiated at 0 kGy (con- by irradiation (Arvanitoyannis, 2010; Fan, Sommers, Thayer, & Lehotay, trol group) or 5 kGy (treatment group) using a linear accelerator. The 2002; Lin et al., 2007; Panseri et al., 2015; Patterson & Stevenson, objective of this study were 1) to determine the volatile compounds newly produced from each amino acid ester by irradiation, 2) to eluci- ⁎ Corresponding author. date the production mechanisms of off-odor volatiles from amino acid E-mail address: [email protected] (D.U. Ahn). esters by irradiation, and 3) to characterize the odor and evaluate the http://dx.doi.org/10.1016/j.foodres.2016.01.006 0963-9969/© 2016 Elsevier Ltd. All rights reserved. X. Feng et al. / Food Research International 81 (2016) 100–107 101 contribution of volatiles from amino acids to the odor of irradiated 2.3. Odor characteristics model systems. Twelve trained sensory panelists characterized the odor of samples. 2. Materials and methods Panelists were selected based on interest, availability, and performance in screening tests conducted with samples similar to those to be tested. 2.1. Sample preparation During training, a lexicon of aroma terms to be used on the ballot was developed, and references were selected as anchors to identify the over- Twenty one amino acid esters, including aspartic acid di-methyl ester, all odor characteristics of samples. Each sample was placed in a glass vial aspartic acid β-methyl ester, glutamic acid γ-methyl ester, alanine meth- with a randomly selected 3-digit number, and the sample temperature yl ester, isoleucine methyl ester, leucine methyl ester, proline methyl was brought to 25 °C before samples are tested. During the tests, one ester, valine ethyl ester, serine ethyl ester, threonine methyl ester, aspar- treatment was presented to each panelist each time, and the order of agine t-butyl ester, glutamine t-butyl ester, phenylalanine ethyl ester, presentation was randomized. Panelists characterized overall odor tryptophan ethyl ester, tyrosine ethyl ester, arginine ethyl ester, histidine characteristics. All the sensory evaluation tests were done at 25 °C in a methyl ester, lysine ethyl ester, cysteine ethyl ester, cystine di-ethyl ester, sensory panel room equipped with white fluorescent lighting. or methionine methyl ester, were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used to make the aqueous model system. Each 2.4. Statistical analysis amino acid ester (5 mg/L) was dissolved in a citrate–phosphate buffer (100 mM, pH 6.0), transferred to a 40 ml vial and irradiated at 0 kGy or Newly formed volatiles in irradiated amino acid esters after irradia- 5.0 kGy absorbed dose using an Electron Beam irradiator (Circe IIIR, tion (5 kGy) were reported as mean values with standard deviation. Thomson CSF Linac, St. Aubin, France). Alanine dosimeters were placed at the top and bottom of a vial and read using a 104 Electron Paramagnet- 3. Results and discussion ic Resonance Instrument (Bruker Instruments Inc., Billerica, MS) to check the absorbed dose. Four replications were prepared for each amino acid 3.1. Acidic, amide, basic and aromatic group amino acid esters ester. Immediately after irradiation, four 2 mL-portion amino acid ester solutions were taken from each replication, and they were individually Two different aldehydes, acetaldehyde and propanal, were produced transferred to four different sample vials, flushed with helium gas by irradiated acidic group amino acid esters (aspartic acid di-methyl (99.999% purity) for 5 s at 40 psi, and then capped. One portion of each ester, aspartic acid β-methyl ester, and glutamic acid γ-methyl ester) replication was used to analyze volatile profiles, and the other three (Table 1). Ahn et al. (2016a) indicated three possible pathways to produce were used to determine odor characteristics. Volatile profiles and odor aldehydes from aspartic acid and glutamic acid: 1) the side chain and – − characteristics of irradiated amino acid esters were studied. A purge- NH2 group cleavage from the α-carbon: generates an acetic acid or and-trap dynamic headspace/GC–MS was used to quantify and identify propionic acid, which is further converted to acetaldehyde through the volatile components, and trained sensory panelists evaluated the overall oxidation–reduction reactions (McMurry, 2004); 2) the Strecker degrada- − odor characteristics of the samples. tion removes –NH2 and –COOH from the α-carbonmoietyinaminoacid through the actions of ozone (produced by irradiation) and generates al- 2.2. Volatile compounds analysis dehyde (Yaylayan, 2003); and 3) the acetic acid formed from aspartic acid and glutamic acid can react with hydroxyl radical (•OH) and produce an A purge-and-trap apparatus (Precept II and Purge & Trap Concentra- ethen-1-ol (CH2CHOH), which
Recommended publications
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Biomedical Applications of Polymeric Cryogels
    applied sciences Review Biomedical Applications of Polymeric Cryogels Monireh Bakhshpour 1, Neslihan Idil 2, I¸sıkPerçin 2 and Adil Denizli 1,* 1 Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; [email protected] 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; [email protected] (N.I.); [email protected] (I.P.) * Correspondence: [email protected]; Tel.: +90-312-297-7983 Received: 31 December 2018; Accepted: 4 February 2019; Published: 7 February 2019 Featured Application: This study presents the comprehensive applications of polymeric cryogels in the field of biomedicine. To the best of our knowledge, this review is one of the most pioneering paper comparatively explains the biomedical applications of cryogels in detail. Abstract: The application of interconnected supermacroporous cryogels as support matrices for the purification, separation and immobilization of whole cells and different biological macromolecules has been well reported in literature. Cryogels have advantages over traditional gel carriers in the field of biochromatography and related biomedical applications. These matrices nearly mimic the three-dimensional structure of native tissue extracellular matrix. In addition, mechanical, osmotic and chemical stability of cryogels make them attractive polymeric materials for the construction of scaffolds in tissue engineering applications and in vitro cell culture, separation materials for many different processes such as immobilization of biomolecules, capturing of target molecules, and controlled drug delivery. The low mass transfer resistance of cryogel matrices makes them useful in chromatographic applications with the immobilization of different affinity ligands to these materials. Cryogels have been introduced as gel matrices prepared using partially frozen monomer or polymer solutions at temperature below zero.
    [Show full text]
  • Phytochem Referenzsubstanzen
    High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039.
    [Show full text]
  • Protein Modification and Catabolic Fates of Lipid
    PROTEIN MODIFICATION AND CATABOLIC FATES OF LIPID PEROXIDATION PRODUCTS by CHUAN SHI Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Dissertation Advisor: Gregory P. Tochtrop, Ph.D. Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________Chuan Shi candidate for the Doctor of Philosophy degree *. Rajesh Viswanathan (signed)_______________________________________________ (chair of the committee) Anthony Pearson ________________________________________________ Michael Zagorski ________________________________________________ Henri Brunengraber ________________________________________________ Gregory Tochtrop ________________________________________________ ________________________________________________ (date) _______________________Dec. 8, 2016 *We also certify that written approval has been obtained for any proprietary material contained therein. This thesis is dedicated to my parents in the deepest appreciation and gratitude for their unconditional love, endless support and continuous encouragement throughout every step in my life TABLE OF CONTENTS Table of Contents ................................................................................................................. i List of Figures ......................................................................................................................v List of Schemes ................................................................................................................
    [Show full text]
  • Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis
    molecules Review Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis Dounia Elfadil 1,2, Abderrahman Lamaoui 2 , Flavio Della Pelle 1 , Aziz Amine 2,* and Dario Compagnone 1,* 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; [email protected] (D.E.); [email protected] (F.D.P.) 2 Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia 28810, Morocco; [email protected] * Correspondence: [email protected] (A.A.); [email protected] (D.C.) Abstract: Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP- Citation: Elfadil, D.; Lamaoui, A.; based electrochemical sensing are discussed as well as the relevant applications of MIPs used in Della Pelle, F.; Amine, A.; sample preparation and then coupled to electrochemical analysis.
    [Show full text]
  • Otto-Catalog-2019-20.Pdf
    Lab Chemicals & More..... Otto Catalog 2019-20 1 CODE PRODUCT NAME CAS NO. PACKING RATE ` PACKING RATE ` A 1214 ABSCISIC ACID practical grade 10% 14375-45-2 100mg 2007 1gm 13059 A 1215 ABSCISIC ACID for biochemistry 99% 14375-45-2 25mg 1395 100mg 3609 500 mg 17469 A 1217 (7-AMINO CEPHALOSPORANIC ACID) 7-ACA 98% 957-68-6 1gm 2403 5gm 9396 A 1225 ACACIA 9000-01-5 500gm 504 5kg 4392 A 1226 ACACIA spray dried powder 9000-01-5 500gm 684 5kg 6309 A 1227 ACACIA GR 9000-01-5 500gm 828 5kg 7407 A 0855 ACARBOSE, >95% 56180-94-0 1 gm 18099 A 1229 ACENAPHTHENE pract 83-32-9 100gm 306 500gm 1395 5 kg 11907 A 1230 ACENAPHTHENE for synthesis 97% 83-32-9 100gm 450 500gm 1692 A 1231 ACENAPHTHENE GR for HLPC 83-32-9 100gm 1359 500gm 5533 A 1234 ACES BUFFER 99% 7365-82-4 5gm 864 25gm 2385 [N-(2-Acetamido)-2-aminoethane sulfonic acid] 100 gm 8739 A 1233 ACETALDEHYDE 20-30% solution for synthesis 75-07-0 500ml 477 5lt 4095 A 1235 ACETAMIDE for synthesis 99% 60-35-5 500 gm 801 A 1240 ACETAMIDINE CHLORIDE for synthesis 124-42-5 100gm 3159 250gm 7830 A 1242 N-(2-ACETAMIDO) IMINODIACETIC ACID (ADA BUFFER) 26239-55-4 25gm 855 100gm 2592 250 gm 5994 A 1245 ACETANILIDE for synthesis 98.5% 103-84-4 500gm 918 5kg 8289 A 1248 ACETATE BUFFER SOLUTION pH 4.6 - - - - - 500ml 180 5lt 1449 A 1250 ACETIC ACID glacial 99% 64-19-7 500ml 207 5lt 1602 A 1251 ACETIC ACID glacial GR 99%+ 64-19-7 500ml 252 5lt 1908 A 1252 ACETIC ACID GLACIAL GR 99.7% 64-19-7 500ml 315 5lt 1998 A 1253 ACETIC ACID GLACIAL EL 99.9% 64-19-7 500ml 378 5lt 2502 A 1254 ACETIC ACID 99.8% for HPLC 64-19-7
    [Show full text]
  • Hae II Hae III Hae III Methyltransferase Hafnium Standard Solution (Hf 1000)
    General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct. 2021 HABA(HABCA) → o-[(p-Hydroxyphenyl)azo]benzoic acid Hae II store below -20℃ 20,000units/mL 49889-83 NEB(R0107S) 2000units JPY10,000 49889-84 NEB(R0107L) 10000units JPY40,300 Hae III [PS] store below -20℃ 49889-85 NEB(R0108S) 3000units JPY6,900 49889-86 NEB(R0108L) 15000units JPY27,600 49889-87 NEB(R0108T) 3000units JPY7,300 49889-88 NEB(R0108M) 15000units JPY29,700 Hae III Methyltransferase store below -20℃ 10,000units/mL 49885-01 NEB(M0224S) 500units JPY13,200 Hafnium standard solution (Hf 1000) Danger UN No.[2031] Hf in 0.1mol/L HNO3 18155-1B Hf:1000mg/L for atomic 100mL JPY18,000 absorption spectrometry General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct. 2021 Hafnium, cube, 5N Warning Hf...178.48 [ISH] CAS RN®[7440-58-6] mp 2227℃† particle size abt 2mm 18673-53 99.999%(Im.S.) for advanced 5g JPY26,000 material research Hafnium oxide, 2N5 Warning HfO2...210.48 [ISH] CAS RN®[12055-23-1] mp 2774℃† 18000-23 >99.5%(Im.S.) high purity reagent 100g JPY60,000 18000-33 >99.5%(Im.S.) high purity reagent 25g JPY21,000 HA-100 hydrochloride C13H15N3O2S・2HCl...350.26 store below -20℃ CAS RN®[210297-47-5] 49029-36 APExB(C4953-5) 5mg JPY24,000 49029-37 APExB(C4953-10) 10mg JPY33,500 49029-38 APExB(C4953-25) 25mg JPY61,300 Halfenprox standard Danger C24H23BrF2O3...477.33 [DS][FS] store at 0℃-6℃ CAS RN®[111872-58-3]UN No.[2810] bp 291℃▲ 49831-27 DES(C14059000) for pesticide 10mg JPY74,000 residue analysis General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct.
    [Show full text]
  • Or 12 Hours in a Stainless Steel Bomb
    Volume 12 (1962) 1. Cyclobutane Derivatives from Thermal Cycloaddition Reactions - John D. Roberts and Clay M. Sharts 2. The Preparation of Olefins by the Pyrolysis of Xanthates. The Chugaev Reaction - Harold R. Nace 3. The Synthesis of Aliphatic and Alicyclic Nitro Compounds - Nathan Kornblum 4. Synthesis of Peptides with Mixed Anhydrides - Noel F. Albertson 5. Desulfurizatioand Eugene nE . witvanh TameleRaney nNicke l - George R. Pettit Preparation of substituted cyclobutanes and cyclobutenes by cycloaddition reactions of alkene to alkene and alkene to alkyne has become an important synthetic reaction and, in fact, where applicable, is now the method of choice for synthesis of four-membered carbon ring compounds. Such cycloadditions may be achieved thermally under autogenous pressure in the presence of free-radical inhibitors or photochemically by irradiation with visible or ultraviolet light. This chapter does not include photochemical cycloadditions or the thermal dimerizations of ketenes since these have been well reviewed elsewhere.1-3 Historically, the establishment of cyclobutane structures for cycloaddition products provides an enlightening example of the waxing and waning of fashions in the interpretation of organic reactions. Some of the interesting and important landmarks will be briefly noted here.* First, the early work of Liebermann4 (1889) on the truxillic acids provided a strong measure of confidence for later workers in assigning cyclobutane structures to a variety of cycloadducts, and, when Kraemer5 discovered dicyclopentadiene (1896), he suggested that it was a cyclobutane derivative. This was followed by proposals of cyclobutane structures for dimers from 1,5-cycloöctadiene (Willst tter,6 1905), substituted ketenes (Staudinger,7 1906–1912), unsaturated acids (Doebner,8 1907), and allenes (Lebedev,9 1911–1913).
    [Show full text]
  • Chiral Separations by Capillary Electrophoresis and Related Techniques with Different Chiral Selectors: a Review
    K. Şarkaya et al. / Hacettepe J. Biol. & Chem., 2021, 49 (3), 253-303 Hacettepe Journal of Biology and Chemistry Review Article journal homepage: www.hjbc.hacettepe.edu.tr Chiral Separations by Capillary Electrophoresis and Related Techniques with Different Chiral Selectors: A Review Farklı Kiral Selektörler ile Kapiler Elektroforez ve İlgili Tekniklerle Kiral Ayrımlar: Bir Derleme Koray Şarkaya1 , Ilgım Göktürk2 , Fatma Yılmaz3 , Adil Denizli2* 1Pamukkale University, Department of Chemistry, Faculty of Science and Art, Denizli, Turkey. 2Department of Chemistry, Hacettepe University, Ankara, Turkey. 3Vocational School of Gerede, Department of Chemistry Technology, Bolu Abant Izzet Baysal University, Bolu, Turkey. ABSTRACT ecognition mechanism and enantiomerically separations of the chiral compounds are subjects that always stimulate Rthe great interest of researchers in pharmacology and natural sciences, who are interested in finding solutions for both analytical purity and preparative purposes. Capillary Electrophoresis has become one of the most important analytical approaches for enantiomeric separations due to its superior properties, such as high resolution and high efficiency of chiral selectors. In this field, where researchers continue to be interested, the distinctions continue to develop day by day, with the introduction of new techniques developed on the basis of Capillary Electrophoresis philosophy in parallel with the development process of technology, as well as the chiral selectors of many different forms. In this review, besides some descriptive theoretical information about capillary electrophoresis and the techniques associated with it, studies on chiral separations using different chiral selectors or different chiral additives, such as molecularly imprinted polymers, cyclodextrins, Metal-organic frameworks, ionic liquids, nanoparticles and monoliths in the last nearly 10 years (2010-2020) were examined.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0236225A1 Protopopova Et Al
    US 20030236225A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0236225A1 Protopopova et al. (43) Pub. Date: Dec. 25, 2003 (54) METHODS OF USE AND COMPOSITIONS (22) Filed: May 17, 2002 FOR THE DAGNOSS AND TREATMENT OF INFECTIOUS DISEASE Publication Classification (76) Inventors: Marina Nikolaevna Protopopova, (51) Int. Cl.' ....................... A61 K 31/695; A61K 31/46; Silver Spring, MD (US); Richard A61K 31/445; A61K 31/137; Edward Lee, Cordova, TN (US); A61K 31/13 Richard Allan Slayden, Collins, CO (52) U.S. Cl. ............................ 514/63; 514/304, 514/649; (US); Clifton E. Barry III, Rockville, 514/659; 514/331; 54.6/124; MD (US) 546/246; 564/367; 564/453 Correspondence Address: (57) ABSTRACT JOHN S. PRATT, ESQ Methods and compositions for treating disease caused by KILPATRICK STOCKTON, LLP microorganisms, particularly tuberculosis. In particular, 1100 PEACHTREE STREET methods and compositions comprising Substituted ethylene SUTE 2800 diamines for the treatment of infectious diseases are pro ATLANTA, GA 30309 (US) Vided. In one embodiment, these methods and compositions are used for the treatment of mycobacterial infections, (21) Appl. No.: 10/147,587 including, but not limited to, tuberculosis. Patent Application Publication Dec. 25, 2003. Sheet 1 of 61 US 2003/0236225A1 RNH2/ENG-Pr). MeO ulCICHCHCl, RT MeO Py/THF Me PyBroP X,Y = Cl, Br Rink-acidO resin X= Cl, Br EtN(iso-Pr)2 R=H,4. Me, Et, Bu -NR O --O Me R4 X NHR2R3, Etn(-Pr). NHR2R3, Etn(-Pr). DMF, 70°C DMF, 70°C CCl6 10% TFACIC FIGURE 1 Patent Application Publication Dec.
    [Show full text]
  • Programme and Abstracts Book
    0 33. Annual Meeting European Histamine Research Society 28. April – 2. May 2004 Düsseldorf / Köln, Germany 1 Dear Histaminologists 28. April 2004 Welcome to the 33rd Annual Meeting of the European Histamine Research Society at the Kardinal Schulte Haus near Cologne. Many of you have seen Cologne at the occasion of the 1993 meeting. The host institution is now located 30 km to the north: Department of Neurophysiology, Heinrich-Heine-University, Düsseldorf. Heinrich Heine, the patron of our University and one of our major poets, was born in Düsseldorf in 1797, he died in Paris in 1856. He wrote romantic poems often with a unique and unusual ironic or disillusioning twist at the end. He was the founder of the modern feuilleton and wrote a bit caustic about his birthplace. Nevertheless, Düsseldorf is worth a visit, there is interesting recent architecture (e.g. O’Gehry) a fine art collection (20th century) and a jewel in the south: Benrath castle and park (1777). We meet at the south end of “Bergisches Land” that we will explore during our excursion. The chemical industry founded by Bayer and Leverkus is around us: Leverkusen and Wuppertal. Düsseldorf is a village (1/2 Mio inhabitants) located at the mouth of the river Düssel into the Rhine. A formerly romantic part of the Düssel-valley has been praised by the 17th century pastor Neander and is consequently called the Neanderthal, the valley where the first bones of the Neandertal-man were found in 1856. Schloss Burg is a mediaeval castle, its 12th century appearance has been restored and a museum recalls the long bygone times.
    [Show full text]