Enzymology and Bioenergetics of the Glycolytic Pathway of Pyrococcus Furiosus
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41559-020-1221-7 In the format provided by the authors and unedited. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Linzhou Li1,2,13, Sibo Wang1,3,13, Hongli Wang1,4, Sunil Kumar Sahu 1, Birger Marin 5, Haoyuan Li1, Yan Xu1,4, Hongping Liang1,4, Zhen Li 6, Shifeng Cheng1, Tanja Reder5, Zehra Çebi5, Sebastian Wittek5, Morten Petersen3, Barbara Melkonian5,7, Hongli Du8, Huanming Yang1, Jian Wang1, Gane Ka-Shu Wong 1,9, Xun Xu 1,10, Xin Liu 1, Yves Van de Peer 6,11,12 ✉ , Michael Melkonian5,7 ✉ and Huan Liu 1,3 ✉ 1State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. 2Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark. 3Department of Biology, University of Copenhagen, Copenhagen, Denmark. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China. 5Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany. 6Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium. 7Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany. 8School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China. 9Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. 10Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China. 11College of Horticulture, Nanjing Agricultural University, Nanjing, China. 12Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa. -
Genomics and Energy and Environmental Science Poster 2011
Omics: Exploring the Molecular Universe within Biological Systems Instead of studying one or a few genes or proteins at a time, “omics” collectively Proteomics is the analysis of the proteome—the complete set describes the comprehensive analysis of genes, RNA transcripts, proteins, of proteins expressed by a cell or population of cells. Proteins, metabolites, and other molecules present in a biological system. Ongoing the workhorse molecules of life, catalyze biochemical reactions; advances in computing power and automated technologies for DNA sequencing provide structural support; and recognize, bind, or transport and experiments continue to improve our ability to analyze increasing numbers other molecules throughout the cell. Hundreds of dierent types of molecules and how they function as a system. Systems biology integrates the of proteins can be expressed at a time, and most are part of large data from various omic analyses using computational tools to build predictive complexes made up of models of biological systems. many proteins and other molecules. Transcriptomics is the analysis of the transcriptome—the complete set of RNA Hundreds to molecules present in a cell or population of thousands of different cells. RNA, which is much less stable than protein types exist within DNA, is constantly being synthesized and a cell. This large subunit of a ribosome contains about then broken down to facilitate rapid 3,000 RNA nucleotides changes in paerns of protein expression (gray) and 30 protein that occur as an organism dynamically chains (gold). responds to its environment. In addition to the three major classes of RNA (mRNA, tRNA, and ribosomal RNA), single- stranded RNA is very exible and can fold into complex shapes that carry out specic functions. -
RT-PCR Protocol Utilizing RT-PCR
Protocol TD-P Revision 1.0 Creation Date: 2/18/2019 Revision Date: 4/24/2019 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Utilizing RT-PCR Kit Introduction Our RT-PCR Kit combines two powerful mixtures: i) 5x Master Mix and ii) Hot start Taq 2x master mix with a standard buffer for 2-step RT-PCR. The two mixtures require minimal handling during the reaction setup and offer consistent and robust RT-PCR reactions. First strand cDNA synthesis is achieved by using the 5x Master Mix, which contains Reverse Transcriptase, recombinant RNase inhibitor, dNTPs, an optimized buffer, MgCl2 and protein stabilizers. Reverse Transcriptase is a recombinant MMLV reverse transcriptase with reduced RNase H activity and increased thermostability. This kit also provides two optimized primers and nuclease-free water. An anchored Oligo-dT primer [d(T)23VN] forces the primer to anneal to the beginning of the polyA tail and the random hexamer primer mix provides random and consistent priming sites covering the entire RNA templates including both mRNAs and non- polyadenylated RNAs. In addition, this kit is highly efficient at producing full-length cDNA from long RNA templates at temperatures between 42-55°C. The amplification step features a high quality Hot Start Taq DNA Polymerase, which offers higher fidelity and better amplification in a master mix format. RT-PCR product can be generated up to 6 kb. Our RT-PCR Kit can be used for cDNA synthesis followed by gene expression data validation. The advantages of our RT-PCR Kit include robust and active cDNA synthesis at temperatures up to 55°C and high efficiency at producing full-length cDNA from as little as 50 pg of total RNA. -
Pfu DNA Polymerase Deoxynucleoside-Triphosphate: DNA Deoxynucleotidyl-Transferase (DNA-Directed); EC 2.7.7.7
Version 060918 G:\products\productflyer\pcr\polymerasen\proof\descr_m3004_pfu_en.docx ENAXXON fon: +49(0)731 – 3608 123 X G fax: +49(0)731 – 3608 962 b i o s c i e n c e E-Mail: [email protected] Pfu DNA Polymerase Deoxynucleoside-triphosphate: DNA deoxynucleotidyl-transferase (DNA-directed); EC 2.7.7.7 Product Cat# Package size Pfu DNA Polymerase (proof-reading polymerase) M3004.0250 250 units Pfu DNA Polymerase (proof-reading polymerase) M3004.0500 2 x 250 units Pfu DNA Polymerase (proof-reading polymerase) M3004.1250 5 x 250 units Description The Genaxxon bioscience Pfu DNA Polymerase is a thermostable enzyme possessing 5‘-3‘ DNA polymerase and 3‘-5‘ proof reading exonuclease activities. It is isolated from the hyperthermophilic marine archae Pyroccocus furiosus (Pfu). The enzyme provides extremely high fidelity. Whereas the enzyme is not able to amplify long fragments as efficiently as the Genaxxon Taq polymerase because of its very high exonuclease activity. To overcome this restriction we recommend to use the Genaxxon ReproFast DNA Polymerase, which will provide a more robust synthesis of longer amplification products (Barnes et al. (1994) Proc. Natl. Acad. Sci., USA 91, 2216-2220). Use of the Genaxxon Pfu DNA Polymerase in amplification results in blunt-ended products, which is not recommended for cloning into T/A vectors. Concentration: 2.5 units/µL Unit definition: One unit is defined as the amount of enzyme that incorporates 10nmoles of dNTPs into acid-insoluble form in 30 min at 72°C under the assay conditions (25mM TAPS (tris-(hydroxymethyl)methyl-amino-propane-sulphonic acid, sodium salt) pH9.3 (at 25°C), 50mM KCl, 2mM MgCl2, 1mM ß-mercaptoethanol) and activated calf thymus DNA as substrate. -
A Proposal to Rename the Hyperthermophile Pyrococcus Woesei As Pyrococcus Furiosus Subsp
Archaea 1, 277–283 © 2004 Heron Publishing—Victoria, Canada A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei WIROJNE KANOKSILAPATHAM,1 JUAN M. GONZÁLEZ,1,2 DENNIS L. MAEDER,1 1,3 1,4 JOCELYNE DIRUGGIERO and FRANK T. ROBB 1 Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA 2 Present address: IRNAS-CSIC, P.O. Box 1052, 41080 Sevilla, Spain 3 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20274, USA 4 Corresponding author ([email protected]) Received April 8, 2004; accepted July 28, 2004; published online August 31, 2004 Summary Pyrococcus species are hyperthermophilic mem- relatively rapidly at temperatures above 90 °C and produce ° bers of the order Thermococcales, with optimal growth tem- H2S from elemental sulfur (S ) (Zillig et al. 1987). Two Pyro- peratures approaching 100 °C. All species grow heterotrophic- coccus species, P. furiosus (Fiala and Stetter 1986) and ° ally and produce H2 or, in the presence of elemental sulfur (S ), P. woesei (Zillig et al. 1987), were isolated from marine sedi- H2S. Pyrococcus woesei and P.furiosus were isolated from ma- ments at a Vulcano Island beach site in Italy. They have similar rine sediments at the same Vulcano Island beach site and share morphological and physiological characteristics: both species many morphological and physiological characteristics. We re- are cocci and move by means of a tuft of polar flagella. They port here that the rDNA operons of these strains have identical are heterotrophic and grow optimally at 95–100 °C, utilizing sequences, including their intergenic spacer regions and part of peptides as major carbon and nitrogen sources. -
Biotechnology Explorer™
Biotechnology Explorer™ GAPDH PCR Module Instruction Manual Catalog #166-5010EDU explorer.bio-rad.com This kit is shipped at 4°C. Open immediately upon arrival and store reagents at –20°C within 2 weeks. Duplication of any part of this document permitted for classroom use only. Please visit explorer.bio-rad.com to access our selection of language translations for Biotechnology Explorer kit curricula. For technical support, call your local Bio-Rad office or, in the U.S., call 1-800-424-6723 Dear Educator: Amplification as the path to visualization of DNA Molecular biologists are faced with the classic needle in a haystack problem. Often we must find a few copies of a piece of DNA that code for a given gene in the haystack of DNA comprising the entire genome. Even if there are a thousand copies of the same piece of DNA it is often still difficult to locate them. However by selectively amplifying only that specific piece of DNA we can separate it from the rest of the DNA and visualize it. Once we can visualize the DNA, we can use the tools of molecular biology to open the whole vista of genetic engineering. We can work with the DNA to make discoveries in science, agriculture, and medicine. The method used to amplify the DNA is the polymerase chain reaction (PCR). PCR is capable of repeatedly doubling the amount of specific DNA. After many PCR cycles a million-fold or billion-fold times as much DNA is generated. Because of the increasing use of PCR in science it is important to provide students with an understanding of the basic principles and applications of PCR. -
The Heterodimeric Primase from the Euryarchaea Pyrococcus Abyssi: A
Journal of Molecular Biology Archimer, archive institutionnelle de l’Ifremer Article in Press http://www.ifremer.fr/docelec/ Acceptation date : 5 October 2007 http://dx.doi.org/10.1016/j.jmb.2007.10.015 © 2007 Elsevier ailable on the publisher Web site The heterodimeric primase from the Euryarchaea Pyrococcus abyssi: a multifunctional enzyme for initiation and repair ? Magali Le Breton1, Ghislaine Henneke1, Cédric Norais2, Didier Flament1, Hannu Myllykallio2, Joël Querellou1 and Jean-Paul Raffin1,∗. 1. Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, BP 70, F-29280 blisher-authenticated version is av Plouzané, France. 2. Institut de Génétique et Microbiologie, UMR8621, Université Paris-sud, 91405 Orsay, France ∗Corresponding author: Jean Paul Raffin, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, BP 70, 29280 Plouzané, France. Phone: 33(0)2 98 22 45 39 ; [email protected] Abstract: We report the characterization of the DNA primase complex of the hyperthermophilic archaeon Pyrococcus abyssi (Pab). The Pab DNA primase complex is composed of two proteins, Pabp41 and Pabp46, showing sequence similarities respectively to the p49 and p58 subunits of the eukaryotic polymerase α-primase complex. Both subunits were expressed, purified and characterized. The Pabp41 subunit alone had no RNA synthesis activity but could synthesize long (up to 3 kb) DNA strands. Addition of the Pabp46 subunit increased the rate of DNA synthesis but decreased the length of the DNA fragments synthesized and conferred RNA synthesis capability. Moreover, in our experimental conditions, Pab DNA primase had comparable affinities for ribo- and ccepted for publication following peer review. The definitive pu deoxyribonucleotides, and its activity was dependent on the presence of Mg2+ and Mn2+. -
High-Fidelity Amplification Using a Thermostable DNA Polymerase Isolated from P’~Ococcusfuriosus
Gette, 108 (1991) 1-6 8 1991 Elsevier Science Publishers B.V. All rights reserved. 0378-l 119/91/SO3.50 GENE 06172 High-fidelity amplification using a thermostable DNA polymerase isolated from P’~OCOCCUSfuriosus (Polymerase chain reaction; mutation frequency; lack; proofreading; 3’40-5 exonuclease; recombinant DNA; archaebacteria) Kelly S. Lundberg”, Dan D. Shoemaker*, Michael W.W. Adamsb, Jay M. Short”, Joseph A. Serge* and Eric J. Mathur” “ Division of Research and Development, Stratagene, Inc., La Jolla, CA 92037 (U.S.A.), and h Centerfor Metalloen~~vme Studies, University of Georgia, Athens, GA 30602 (U.S.A.) Tel. (404/542-2060 Received by M. Salas: 16 May 1991 Revised/Accepted: 11 August/l3 August 1991 Received at publishers: 17 September 1991 -.-- SUMMARY A thermostable DNA polymerase which possesses an associated 3’-to-5’ exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10s.~ of the number of mutations obtained from similar amplifications performed with Tuq DNA polymerase. The PCR fidelity assay is based on the ampli~cation and cloning of lad, lac0 and IacZor gene sequences (IcrcIOZa) using either ffil or 7ii~irqDNA poIymerase. Certain mutations within the lucf gene inactivate the Lac repressor protein and permit the expression of /?Gal. When plated on a chromogenic substrate, these Lacl - mutants exhibit a blue-plaque phenotype. -
And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science. -
The Crystal Structure of Pyrococcus Furiosus Ornithine Carbamoyltransferase Reveals a Key Role for Oligomerization in Enzyme Stability at Extremely High Temperatures
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 2801–2806, March 1998 Biochemistry The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures VINCENT VILLERET*, BERNARD CLANTIN†,CATHERINE TRICOT‡,CHRISTIANNE LEGRAIN‡,MARTINE ROOVERS§¶, i VICTOR STALON†,NICOLAS GLANSDORFF‡§¶, AND JOZEF VAN BEEUMEN* *Laboratorium voor Eiwitbiochemie en Eiwitengineering, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium; and †Laboratoire de Microbiologie, Universite´Libre de Bruxelles, ‡Institut de Recherches du Centre d’Enseignement et de Recherches des Industries Alimentaires, Commission de la Communaute´ Franc¸aise de Belgique, Re´gionBruxelles Capitale, §Laboratorium voor Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, and ¶Vlaams Interuniversitair Instituut voor Biotechnologie, avenue E. Gryson 1, B-1070 Brussels, Belgium Edited by Max F. Perutz, Medical Research Council, Cambridge, United Kingdom, and approved January 5, 1998 (received for review September 8, 1997) ABSTRACT The Pyrococcus furiosus (PF) ornithine car- lating agent (8). The involvement of such a thermolabile bamoyltransferase (OTCase; EC 2.1.3.3) is an extremely heat- intermediate in the metabolism of extreme thermophilic mi- stable enzyme that maintains about 50% of its activity after croorganisms raises the question of which mechanisms protect heat treatment for 60 min at 100°C. To understand the it from decomposition at elevated growth temperatures. Re- molecular basis of thermostability of this enzyme, we have cent results suggest that in Thermus aquaticus and Pyrococcus determined its three-dimensional structure at a resolution of furiosus (PF), CP is protected from the bulk of the aqueous 2.7 Å and compared it with the previously reported structures phase by channeling between carbamoylphosphate synthetase of OTCases isolated from mesophilic bacteria. -
Being Aquifex Aeolicus: Untangling a Hyperthermophile's Checkered Past
GBE Being Aquifex aeolicus: Untangling a Hyperthermophile’s Checkered Past Robert J.M. Eveleigh1,2, Conor J. Meehan1,2,JohnM.Archibald1, and Robert G. Beiko2,* 1Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada 2Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada *Corresponding author: E-mail: [email protected]. Accepted: November 22, 2013 Abstract Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyper- thermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Downloaded from Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a http://gbe.oxfordjournals.org/ minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria.