The Observer of the Twin City Amateur Astronomers

Total Page:16

File Type:pdf, Size:1020Kb

The Observer of the Twin City Amateur Astronomers THE OBSERVER OF THE TWIN CITY AMATEUR ASTRONOMERS Volume 39, Number 11 November 2014 INSIDE THIS ISSUE: Editor’s Choice: Image of the Month……..……………….1 A Note from President Weiland..………………………….2 Telescope Given Away………………………………..…….…...2 Calendar of Celestial Events – November 2014..…...3 New & Renewing Members/Dues Blues……………….3 This Month’s Phases of the Moon……..……………...…..4 TCAAers View Total Lunar Eclipse…………………………..4 Blood Moon………………………………………………….…….….5 TCAAers View Partial Solar Eclipse………………………….6 Image of the Month (continued)…………………………..7 Education/Public Outreach for October 2014……….8 EDITOR’S CHOICE: IMAGE OF THE MONTH ~ commentary by Tim Stone ~ Astrobits ……………….....…….……..……………………… 9 … ….. Sky Interpretation………………………………………….…….11 Stephan's Quintet is a group of five galaxies discovered by Edouard Stephan, a French astronomer at the Marseille Observatory in 1877. New Stoop Adorns PSO Entrance Way……………..…..12 Though he doubtless thought the tight grouping of these nebulae was How Time Flies…….……….…….........................….…....12 somewhat unusual, it wasn't until many decades later that their true significance would begin to become apparent, when Halton Arp TCAA Treasurer’s Reports: October 2014…………....13 explored the notion that galaxies were anything but stable configurations slowly evolving along Hubble's “tuning fork.” In support of his unusual cosmology, he compiled a most useful catalog of images called Atlas of Peculiar Galaxies in which Stephan's Quintet was the 319th entry. Arp attempted to disprove Hubble's Law by demonstrating that supposedly physically interacting galaxies had significantly different redshifts. We now know that four of the five are indeed interacting, but the fifth, NGC 7320, is in fact a foreground galaxy. This galaxy is the bluest one, and is a mere 39 million light years distant. The remaining four of the original quintet are some 300 million light years away. The four galaxies, which could be called Stephan's Quartet, are the tight grouping of yellowish galaxies behind NGC 7320. The two The TCAA is an affiliate of the Astronomical League. clearly colliding galaxies are NGC 7318A and NGC 7381B. NGC 7319 is For more information about the TCAA, be certain to next to them, with grossly distorted spiral arms, a very long tidal tail, visit our club website. and an active galactic nucleus. The quartet is rounded out with the reasonably normal looking elliptical, NGC 7317. (Continued on page 7) Vol. 39, No. 11 The OBSERVER November 2014 The OBSERVER is the monthly A NOTE FROM PRESIDENT WEILAND electronic publication of the Twin City Amateur Astronomers, Inc., a By the time you read this message, we will have officially ended our Public registered 501(c)(3) not-for-profit educational organization of amateur Observation Sessions (POS) for 2014. Unfortunately for us, and for our guests, the astronomers interested in studying weather was not always cooperative during many of the POS of the season, with astronomy and sharing their hobby numerous evenings of cloud cover. However those guests and members who did with the public. venture out to Sugar Grove Nature Center (SGNC) on those evenings enjoyed excellent presentations on the topics that we had chosen for the year. So, I’d like to thank every TCAA OFFICERS member who set up telescopes or in any way assisted with the observation sessions. I would also like to thank those who prepared and presented at each of the monthly President sessions. The combined efforts of these members made this another successful year for Tom Weiland 309-830-0167 public outreach at SGNC. [email protected] After much deliberation, eight interesting and informative topics have now been chosen for next year. Our monthly public observations at SGNC will resume on March Vice-President 21st of 2015. Our 2015 POS brochure is now available on our website for downloading Dave Osenga 309-287-0789 at www.tcaa.us. [email protected] Finally, I would like to remind you that the TCAA annual meeting will be in Secretary/Webmaster February. The Board of Directors will be confirming a date at our next board Lee Green 309-454-7349 meeting…….more information will follow. This is our annual business meeting with [email protected] dinner and an invited guest speaker. All TCAA members are encouraged to attend. Please check out my email about the meeting when it arrives in your mailbox and add Treasurer/ALCor/Registered Agent that date to your calendar. Clear Skies!! Duane Yockey 309-452-3936 Tom Weiland [email protected] TCAA President 3rd Director/Property Manager Tim Stone 309-531-2401 TELESCOPE GIVEN AWAY [email protected] th The Chad and Kazumi Hartry family of Bloomington won this year’s telescope given 4 Director/Historian/Editor away as part of a free drawing during the October POS at SGNC. The proud winners Carl Wenning 309-830-4085 included the Hartry’s son Tomoya and daughter Haruka. October was only the second [email protected] time for them to attend one of the TCAA’s public observing sessions. They attended our 5th Director session because they are “just interested in astronomy” according to Chad. Robert Finnigan 309-846-9533 Congratulations to our winners. Club members will be working with the Hartry family in [email protected] the future to help them learn how to use this “goto” telescope successful. The OBSERVER Carl J. Wenning, Editor 21 Grandview Drive Normal, IL 61761-4071 Submission deadline is the end of each month. MEMBERSHIP DUES Individual Adult/Family $40 Full-time Student/Senior $25 (senior status equals ages 60+) To join, send your name, contact info and dues payment to Duane Yockey, TCAA Treasurer, 508 Normal Avenue, Normal, IL 61761 2 Vol. 39, No. 11 The OBSERVER November 2014 CALENDAR OF CELESTIAL EVENTS – NOVEMBER 2014 NEW & RENEWING MEMBERS MORNING STARS (11/15): MERCURY, JUPITER The following individuals have paid dues for new th EVENING STARS (11/15): VENUS, MARS, SATURN, URANUS, NEPTUNE or renewed memberships as of September 30 , 2014. (Others who paid after that date will appear in the st Question: As noted for November 1 below, why is it that November 2014 issue of The OBSERVER.) Mercury can have good and not so good greatest elongations Heiniger Family (renewing) even if the angle between the speedy little planet and the sun Tony Cellini (renewing) as seen from Earth is the same? See the answer below. Tom Weiland (renewing) 01 Mercury reaches its greatest elongation 18.7 degrees west of the Sun, shining at magnitude -0.5. The best morning DUES BLUES apparition of Mercury for 2014 as seen from the northern If you have received a “your dues are due” hemisphere. statement along with the email that brought you this 01 First Quarter Moon – The moon sets at midnight and rises issue of The OBSERVER, please remit your dues to Mr. at midday. The moon is also in conjunction with Neptune. The Duane Yockey, TCAA Treasurer, 508 Normal Avenue, moon is also closest to Uranus on the evening of the 4th. Normal, IL 61761. Current dues are $25 for senior (60 years of age and over) and $40 regular. 05/06 Taurid Meteor Shower – Unfortunately, with the full moon this meteor shower will be washed out this month. SUBSCRIBING TO OUR E-MAIL LISTS 06 Full Moon – The moon rises at sunset and sets at sunrise. By subscribing to a group’s mailing list you will Early Native Americans knew this as the Full Beaver Moon receive email messages from the group so you won’t because this was the time of year to set the beaver traps before have access to the group’s web features (like photos, the swamps and rivers froze. It also has been known as the files, links, polls, calendar, etc.) unless members Frosty Moon and the Hunter’s Moon. activate it later. The club now has two email listservs. The main email listserv is known as the TCAA listserv. 14 Third Quarter Moon – The moon rises at midnight and sets It will be used to share announcements and reminders at midday. The moon is in conjunction with Jupiter this about astronomical and club events. To join this main morning. listserv you must do the following: 17/18 Leonid Meteor Shower – The Leonids is an average 1. Subscribe: Send a blank email to TCAA- shower, producing an average of up to 15 meteors per hour at [email protected] Note: You’ll be sent a its peak. This shower is unique in that it has a cyclonic peak confirmation email from the group. Reply to the about every 33 years where hundreds of meteors per hour can confirmation email to activate your subscription. be seen. That last of these occurred in 2001. With the moon 2. Unsubscribe: [email protected] new near phase, 2014 should be a good year for viewing. 3. To post a message: [email protected] 22 New Moon – The moon rises and sets with the sun and is not visible. A second listserv – TCAA–imaging – is for club astronomical photographers as well as those who 29 First Quarter Moon – The moon sets at midnight and rises want to view their images and follow their discussions. at midday. The second first quarter moon this month. It is an easy way to keep up with all the stuff we’re doing at the observatories. Answer: There are two considerations when it comes to the visibility of Mercury. The first of these is that the planet’s greatest 1. Subscribe: [email protected] eastern and western elongations are not always the same in angular 2. Unsubscribe: [email protected] size. Greatest elongations can vary from about 18 degrees (at 3. To post a message: [email protected] perihelion) to 28 degrees (at aphelion) over the course of the years to both to Mercury and Earth’s elliptical orbits.
Recommended publications
  • History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance
    RASC History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance 2018 September 16 Robotic Telescope—Suggested Celestial Targets with Historical Canadian Resonance ABSTRACT: At the request of the Society’s Robotic Telescope Team, the RASC History Committee has compiled a list of over thirty (30) suggested targets for imaging with the RC Optical System (Ritchey- Chrétien f/9 0.4-metre class, with auxiliary wide-field capabilities), chosen from mainly “deep sky objects Page | 2 which are significant in that they are linked to specific events or people who were noteworthy in the 150 years of Canadian history”. In each numbered section the information is arranged by type of object, with specific targets suggested, the name or names of the astronomers (in bold) the RASC Robotic Telescope image is intended to honour, and references to select relevant supporting literature. The emphasis throughout is on Canadian astronomers (in a generous sense), and RASC connections. NOTE: The nature of Canadian observational astronomy over most of that time changed slowly, but change it did, and the accepted celestial targets, instrumental capabilities, and recording methods are frequently different now than they were in 1868, 1918, or 1968, and those differences can startle those with modern expectations looking for analogues to present/contemporary practice. The following list attempts to balance those expectations, as well as the commemoration of professionals and amateurs from our past. 1. OBJECT: Detail of lunar terminator (any feature). ACKNOWLEDGES: 18th-19th century practical astronomy (astronomy of place & time), the practitioners of which used lunar observation (shooting lunars) to determine longitude.
    [Show full text]
  • VV Compact Groups of Galaxies&Q
    PRINCETON UNIVERSITY Department of Astrophysical Sciences Final Report for grant UAG-8363 "V-V Compact Groups of Galaxies" for National Aeronautics and Space Administration Marshall Space Flight Center By: Neta A. Bahcall Principal Investigator June 1984 X-ray Emission from Stephen's Quintet and Other Compact Groups by Neta A. Bahcall Space Telescope Science Institute D. E. Harris High Energy Astrophysics, Center for Astrophysics Herbert J. Rood Box 1330, Princeton, NJ 08542 Abstract A search for X-ray emission from five compact groups of galaxies with the Einstein Observatory revealed detections from three groups. Soft, extended X- ray emission was observed in Stephen's Quintet which is most likely caused by hot intracluster gas. This provides evidence for dynamical interaction among the group galaxies. X-ray emission from the group Arp 330 may also originate in hot intracluster gas. Stephen's Quintet and Arp 330 have the largest velocity dispersions among the groups studied suggesting a correlation between high velocity and the release (or properties) of hot gas. X-ray emission from Arp 318 may originate in its member galaxies. I. Introduction The X-ray emission detected from rich clusters of galaxies reveals a hot metal-enriched intracluster medium (ICM) that probably originated from processed gas swept-out of galaxies. This provides direct evidence for the occurrence of interactions among cluster galaxies. Since dynamical interactions depend on the galaxy (and/or ICM) density, they are expected to be important in the groups of highest known galaxy density, such as Stephen's Quintet. While the high galaxy densities suggest a short crossing-time and a strong dynamical interaction, the existence of numerous compact groups, each having a significant spiral fraction has provoked controversy regarding the reality of the compact groups, their age,__ and their state of dynamical evolution.
    [Show full text]
  • X-Ray Spectral Variability of Seyfert 2 Galaxies
    Astronomy & Astrophysics manuscript no. Seyfert c ESO 2018 February 27, 2018 X-ray spectral variability of Seyfert 2 galaxies Hern´andez-Garc´ıa, L.1; Masegosa, J.1; Gonz´alez-Mart´ın, O.2; M´arquez, I.1 1 Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Glorieta de la Astronom´ıa, s/n, 18008 Granada, Spain e-mail: [email protected] 2 Centro de radioastronom´ıa y Astrof´ısica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia, Mexico Received XXXX; accepted YYYY ABSTRACT Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims. This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods. We use the 26 Seyfert 2s in the V´eron-Cetty and V´eron catalog with data available from Chandra and/or XMM–Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration.
    [Show full text]
  • Soft X-Ray Properties of a Spectroscopically Selected Sample of Interacting and Isolated Seyfert Galaxies?
    A&A 368, 797–816 (2001) Astronomy DOI: 10.1051/0004-6361:20010055 & c ESO 2001 Astrophysics Soft X-ray properties of a spectroscopically selected sample of interacting and isolated Seyfert galaxies? F. Pfefferkorn1, Th. Boller1, and P. Rafanelli2 1 Max-Planck-Institut f¨ur extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany 2 Department of Astronomy, University of Padova, Vicolo Osservatorio 5, 35122 Padova, Italy Received 12 October 2000 / Accepted 4 January 2001 Abstract. We present a catalogue of ROSAT detected sources in the sample of spectroscopically selected Seyfert 1 and Seyfert 2 galaxies of Rafanelli et al. (1995). The catalogue contains 102 Seyfert 1 and 36 Seyfert 2 galaxies. The identification is based on X-ray contour maps overlaid on optical images taken from the Digitized Sky Survey. We have derived the basic spectral and timing properties of the X-ray detected Seyfert galaxies. For Seyfert 1 galaxies a strong correlation between photon index and X-ray luminosity is detected. We confirm the presence of generally steeper X-ray continua in narrow-line Seyfert 1 galaxies (NLS1s) compared to broad-line Seyfert 1 galaxies. Seyfert 2 galaxies show photon indices similar to those of NLS1s. Whereas a tendency for an increasing X-ray luminosity with increasing interaction strength is found for Seyfert 1 galaxies, such a correlation is not found for Seyfert 2 galaxies. For Seyfert 1 galaxies we found also a strong correlation for increasing far-infrared luminosity with increasing interaction strength. Both NLS1s and Seyfert 2 galaxies show the highest values of far-infrared luminosity compared to Seyfert 1 galaxies, suggesting that NLS1s and Seyfert 2 galaxies host strong (circumnuclear) star formation.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Arp Catalogue.Xlsx
    ATLAS OF PECULIAR GALAXIES CATALOGUE 1 ATLAS OF PECULIAR GALAXIES CATALOGUE Object Name Mag RA Dec Constellation ARP 1 NGC 2857 12.2 09:24:37 49:21:00 Ursa Major ARP 2 13.2 16:16:18 47:02:00 Hercules ARP 3 13.4 22:36:34 ‐02:54:00 Aquarius ARP 4 13.7 01:48:25 ‐12:22:00 Cetus ARP 5 NGC 3664 12.8 11:24:24 03:19:00 Leo ARP 6 NGC 2537 12.3 08:13:14 45:59:00 Lynx ARP 7 14.5 08:50:17 ‐16:34:00 Hydra ARP 8 NGC 0497 13 01:22:23 ‐00:52:00 Cetus ARP 9 NGC 2523 11.9 08:14:59 73:34:00 Camelopardalis ARP 10 13.8 02:18:26 05:39:00 Cetus ARP 11 14.4 01:09:23 14:20:00 Pisces ARP 12 NGC 2608 12.2 08:35:17 28:28:00 Cancer ARP 13 NGC 7448 11.6 23:00:02 15:59:00 Pegasus ARP 14 NGC 7314 10.9 22:35:45 ‐26:03:00 Pisces Austrinus ARP 15 NGC 7393 12.6 22:51:39 ‐05:33:00 Aquarius ARP 16 M66 8.9 11:20:14 12:59:00 Leo ARP 17 14.7 07:44:32 73:49:00 Camelopardalis ARP 17 07:44:38 73:48:00 Camelopardalis ARP 18 NGC 4088 10.5 12:05:35 50:32:00 Ursa Major ARP 19 NGC 0145 13.2 00:31:45 ‐05:09:00 Cetus ARP 20 14.4 04:19:53 02:05:00 Taurus ARP 21 14.7 11:04:58 30:01:00 Leo Minor ARP 22 14.9 11:59:29 ‐19:19:00 Corvus ARP 22 NGC 4027 11.2 11:59:30 ‐19:15:00 Corvus ARP 23 NGC 4618 10.8 12:41:32 41:09:00 Canes Venatici ARP 24 NGC 3445 12.6 10:54:36 56:59:00 Ursa Major ARP 24 12.8 10:54:45 56:57:00 Ursa Major ARP 25 NGC 2276 11.4 07:27:13 85:45:00 Cepheus ARP 26 M101 7.9 14:03:12 54:21:00 Ursa Major ARP 27 NGC 3631 10.4 11:21:02 53:10:00 Ursa Major ARP 28 NGC 7678 11.8 23:28:27 22:25:00 Pegasus ARP 29 NGC 6946 8.8 20:34:52 60:09:00 Cygnus ARP 30 NGC 6365 12.2 17:22:42 62:10:00
    [Show full text]
  • Popular Names of Deep Sky (Galaxies,Nebulae and Clusters) Viciana’S List
    POPULAR NAMES OF DEEP SKY (GALAXIES,NEBULAE AND CLUSTERS) VICIANA’S LIST 2ª version August 2014 There isn’t any astronomical guide or star chart without a list of popular names of deep sky objects. Given the huge amount of celestial bodies labeled only with a number, the popular names given to them serve as a friendly anchor in a broad and complicated science such as Astronomy The origin of these names is varied. Some of them come from mythology (Pleiades); others from their discoverer; some describe their shape or singularities; (for instance, a rotten egg, because of its odor); and others belong to a constellation (Great Orion Nebula); etc. The real popular names of celestial bodies are those that for some special characteristic, have been inspired by the imagination of astronomers and amateurs. The most complete list is proposed by SEDS (Students for the Exploration and Development of Space). Other sources that have been used to produce this illustrated dictionary are AstroSurf, Wikipedia, Astronomy Picture of the Day, Skymap computer program, Cartes du ciel and a large bibliography of THE NAMES OF THE UNIVERSE. If you know other name of popular deep sky objects and you think it is important to include them in the popular names’ list, please send it to [email protected] with at least three references from different websites. If you have a good photo of some of the deep sky objects, please send it with standard technical specifications and an optional comment. It will be published in the names of the Universe blog. It could also be included in the ILLUSTRATED DICTIONARY OF POPULAR NAMES OF DEEP SKY.
    [Show full text]
  • Mid and Far Infrared Properties of a Complete Sample of Local Agns
    Draft Version May 24, 2012 A Preprint typeset using LTEX style emulateapj v. 11/26/04 MID AND FAR INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL AGNS Kohei Ichikawa1, Yoshihiro Ueda1, Yuichi Terashima2, Shinki Oyabu3, Poshak Gandhi4, Keiko Matsuta5, and Takao Nakagawa4 1 Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake cho, Kyoto, 606-8502, Japan 2 Department of Physics, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan 3 Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan 4 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan 5 Department of Space and Astronautical Science, The Graduate University for Advanced Studies, 3-1-1Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan Draft Version May 24, 2012 ABSTRACT We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local Active Galactic Nuclei (AGNs) detected in the Swift/BAT all sky hard X-ray (14–195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with IRAS and WISE. Out of 135 non-blazer AGNs in the Swift/BAT 9 month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 µm band. We find good correlation between their hard X-ray and MIR luminosities over 3 orders of magnitude (42 < log λLλ(9, 18 µm) < 45), which is tighter than that with the FIR luminosities at 90 µm.
    [Show full text]
  • X-Ray Spectral Variability of Seyfert 2 Galaxies⋆
    A&A 579, A90 (2015) Astronomy DOI: 10.1051/0004-6361/201526127 & c ESO 2015 Astrophysics X-ray spectral variability of Seyfert 2 galaxies L. Hernández-García1,J.Masegosa1, O. González-Martín2, and I. Márquez1 1 Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía, s/n, 18008 Granada, Spain e-mail: [email protected] 2 Centro de radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701 Morelia, Mexico Received 18 March 2015 / Accepted 2 May 2015 ABSTRACT Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims. This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods. We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration.
    [Show full text]
  • The 22 Month Swift-Bat All-Sky Hard X-Ray Survey
    The Astrophysical Journal Supplement Series, 186:378–405, 2010 February doi:10.1088/0067-0049/186/2/378 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY J. Tueller1, W. H. Baumgartner1,2,3, C. B. Markwardt1,3,4,G.K.Skinner1,3,4, R. F. Mushotzky1, M. Ajello5, S. Barthelmy1, A. Beardmore6, W. N. Brandt7, D. Burrows7, G. Chincarini8, S. Campana8, J. Cummings1, G. Cusumano9, P. Evans6, E. Fenimore10, N. Gehrels1, O. Godet6,D.Grupe7, S. Holland1,3,J.Kennea7,H.A.Krimm1,3,M.Koss1,3,4, A. Moretti8, K. Mukai1,2,3, J. P. Osborne6, T. Okajima1,11, C. Pagani7, K. Page6, D. Palmer10, A. Parsons1, D. P. Schneider7, T. Sakamoto1,12, R. Sambruna1, G. Sato13, M. Stamatikos1,12, M. Stroh7, T. Ukwata1,14, and L. Winter15 1 NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771, USA; [email protected] 2 Joint Center for Astrophysics, University of Maryland-Baltimore County, Baltimore, MD 21250, USA 3 CRESST/ Center for Research and Exploration in Space Science and Technology, 10211 Wincopin Circle, Suite 500, Columbia, MD 21044, USA 4 Department of Astronomy, University of Maryland College Park, College Park, MD 20742, USA 5 SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 6 X-ray and Observational Astronomy Group/Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 7 Department of Astronomy & Astrophysics, Pennsylvania
    [Show full text]
  • Models of Galaxy Collisions in Stephan's Quintet and Other Interacting Systems Jeong-Sun Hwang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Models of galaxy collisions in Stephan's Quintet and other interacting systems Jeong-sun Hwang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Hwang, Jeong-sun, "Models of galaxy collisions in Stephan's Quintet and other interacting systems" (2010). Graduate Theses and Dissertations. 11288. https://lib.dr.iastate.edu/etd/11288 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Models of galaxy collisions in Stephan's Quintet and other interacting systems by Jeong-Sun Hwang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Astrophysics Program of Study Committee: Curtis J. Struck, Major Professor Lee Anne Willson Charles Kerton James P. Vary William J. Gutowski Jr. Iowa State University Ames, Iowa 2010 Copyright c Jeong-Sun Hwang, 2010. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES . iv LIST OF FIGURES . v ACKNOWLEDGEMENTS . vii ABSTRACT . viii CHAPTER 1. INTRODUCTION . 1 CHAPTER 2. MODELS OF STEPHAN'S QUINTET: HYDRODYNAMI- CAL CONSTRAINTS ON THE GROUP'S EVOLUTION . 5 2.1 Introduction . .5 2.2 Overview of SQ properties and model constraints . .7 2.2.1 The members and the large-scale features .
    [Show full text]