20110022589.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques)
Dissertation On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques) Nils Nierstenhoefer Wuppertal, 2011 University of Wuppertal Supervisor/First reviewer: Prof. Dr. K.-H. Kampert Second reviewer: Prof. Dr. M. Risse Motivation & Preface It is a long known fact that cosmic rays reach Earth with tremendous energies of even above 1020 eV. Despite of decades of intensive research, it was not possible to finally reveal the origin of these par- ticles. The main obstacle in this field is their rare occurrence. This is due to a very steep energy spectrum. To make this point more clear, one roughly expects to observe less than one particle per km2 in one century exceeding energies larger than 1020 eV. To overcome the limitation of low statis- tics, larger and larger cosmic ray detectors have been deployed. Today’s largest cosmic ray detector is the Pierre Auger observatory (PAO) which was constructed in the Pampa Amarilla in Argentina. It covers an area of 3000 km2 and provides the largest set of observations of ultra-high energy cosmic rays (UHECR) in history. A second difficulty in understanding the origin of UHECR should be pointed out: Galactic and extra- galactic magnetic fields might alter the direction of even the highest energy events in a way that they do not point back to their source. In 2007 and 2008, already before the completion of the full detector, the Auger collaboration pub- lished a set of three important papers [1, 2, 3]. The first paper dealt with the correlation of the arrival directions of the highest energetic events with the distribution of active galactic nuclei (AGN) closer than 75Mpc from a catalog compiled by Veron-Cetty and Veron (VC-V) [4]. -
Expanding Space, Quasars and St. Augustine's Fireworks
Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible. -
CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, -
Herschel Observations of Edge-On Spirals \(HEROES\)
A&A 582, A18 (2015) Astronomy DOI: 10.1051/0004-6361/201526667 & c ESO 2015 Astrophysics HERschel Observations of Edge-on Spirals (HEROES) II. Tilted-ring modelling of the atomic gas disks?;??;??? F. Allaert1, G. Gentile1;2, M. Baes1, G. De Geyter1, T.M. Hughes1;3, F. Lewis4;5, S. Bianchi6, I. De Looze1;7, J. Fritz8, B. W. Holwerda9, J. Verstappen10, and S. Viaene1 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium e-mail: [email protected] 2 Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 3 Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, 951 Valparaíso, Chile 4 Faulkes Telescope Project, Cardiff University, The Parade, Cardiff CF24 3AA, Cardiff, Wales, UK 5 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK 6 Osservatorio Astrofisico di Arcetri – INAF, Largo E. Fermi 5, 50125 Firenze, Italy 7 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK 8 Centro de Radioastronomía y Astrofísica, CRyA, UNAM, Campus Morelia, A.P. 3-72, CP 58089, 58341 Michoacán, Mexico 9 University of Leiden, Sterrenwacht Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 10 Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands Received 3 June 2015 / Accepted 3 July 2015 ABSTRACT Context. Edge-on galaxies can offer important insight into galaxy evolution because they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars, and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. -
X-Ray Spectral Parameters for a Sample of 95 Active Galactic Nuclei
Accepted for publication in Astrophysics and Space Science X-Ray Spectral Parameters for a Sample of 95 Active Galactic Nuclei A.A. Vasylenko1, V.I. Zhdanov2, E.V. Fedorova2 1Main Astronomical Observatory NAS of Ukraine, Kyiv, Ukraine e-mail: [email protected] 2Taras Shevchenko National University of Kyiv, Ukraine We present a broadband X-ray analysis of a new homogeneous sample of 95 active galactic nuclei (AGN) from the 22-month Swift/BAT all-sky survey. For this sample we treated jointly the X-ray spectra observed by XMM-Newton and INTEGRAL missions for the total spectral range of 0.5-250 keV. Photon index Г, relative reflection R, equivalent width of Fe Kα line EWFeK, hydrogen column density NH, exponential cut-off energy Ec and intrinsic luminosity Lcorr are determined for all objects of the sample. We investigated correlations Г–R, EWFeK– Lcorr, Г–Ec, EWFeK–NH. Dependence "Г – R" for Seyfert ½ galaxies has been investigated separately. We found that the relative reflection parameter at low power-law indexes for Seyfert 2 galaxies is systematically higher than for Seyfert 1 ones. This can be related to an increasing contribution of the reflected radiation from the gas-dust torus. Our data show that there exists some anticorrelation between EWFeK and Lcorr, but it is not strong. We have not found statistically significant deviations from the AGN Unified Model. Key words: galaxies: Seyfert – X-rays: galaxies: active – galaxies 1. INTRODUCTION It is widely accepted today that the variety of observational appearances of AGNs can be divided in two big groups: those caused by physical conditions in particular AGN, and those due to geometrical effects of the AGN orientation with respect to the line-of-sight. -
Chandra LETGS Observation of the Variable NLS1 Galaxy Ark 564⋆
A&A 551, A95 (2013) Astronomy DOI: 10.1051/0004-6361/201220424 & c ESO 2013 Astrophysics Chandra LETGS observation of the variable NLS1 galaxy Ark 564 J. M. Ramírez Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), PO Box 025304, Caracas 1020A, Venezuela e-mail: [email protected] Received 21 September 2012 / Accepted 18 January 2013 ABSTRACT We present an analysis of the 100 ks X-ray spectrum of the narrow-line Seyfert 1 Galaxy Ark 564, taken with the Low Energy Transmission Grating Spectrometer (LETGS) on board Chandra.Usingχ2 statistics, several continuum models of the time-averaged spectrum of this object are compared, obtaining a semi-empirical solution for the description of the intrinsic emission continuum and a physical solution for the intrinsic absorption of the system. We find that the 0.1−10 keV spectrum can be well described by a power law plus two thermal components that account for the soft step. We are also able to detect and measure several narrow, unresolved absorption lines arising from highly ionized species of C, N, O, and Fe. The material seems to have a velocity consistent with the 20 −2 systemic velocity of the galaxy. This piece of evidence, in addition to the very low observed column density of NH ∼ 10 cm ,isin good agreement with the scenario of a transverse biconical outflow with a gas density of n 3 × 1012 cm−3 at distances beyond the broad-line region r 10 lt-days, but a dust torus origin cannot be ruled out. Key words. galaxies: Seyfert – line: identification – quasars: absorption lines 1. -
Arxiv:1004.5321V1 [Astro-Ph.CO] 29 Apr 2010 I-Nrrdpoete Fthe of Properties Mid-Infrared .A Evr .Mel´Endez M
Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. Emission-Line Diagnostics K. A. Weaver, M. Mel´endez1,2, R. F. Mushotzky3, S. Kraemer4, K. Engle5, E. Malumuth6, J. Tueller, C. Markwardt3 NASA Goddard Space Flight Center, Greenbelt, MD, 20771 C.T. Berghea7 and R. P. Dudik U.S. Naval Observatory, Washington, DC 20392 L. M. Winter8 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0440 and L. Armus Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 arXiv:1004.5321v1 [astro-ph.CO] 29 Apr 2010 –2– Received ; accepted To be submitted to the Astrophysical Journal 1NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Greenbelt, MD, 20771 2present address: Department of Physics and Astronomy, Johns Hopkins University, Bal- timore, MD, 21218 3University of Maryland, College Park, MD 20742 4Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America,Washington, DC 20064 5Adnet 6SESDA 7Computational Physics, Inc., Sprinfield, VA 22151 8Hubble Fellow –3– ABSTRACT We compare mid-infrared emission-line properties, from high-resolution Spitzer spectra of a hard X-ray (14 – 195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The lu- minosity distribution for the mid-infrared emission-lines, [O IV] 25.89 µm, [Ne II] 12.81 µm, [Ne III] 15.56 µm and [Ne V] 14.32/24.32 µm, and hard X-ray contin- uum show no differences between Seyfert 1 and Seyfert 2 populations, however six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. -
Astronomy Magazine Special Issue
γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006. -
History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance
RASC History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance 2018 September 16 Robotic Telescope—Suggested Celestial Targets with Historical Canadian Resonance ABSTRACT: At the request of the Society’s Robotic Telescope Team, the RASC History Committee has compiled a list of over thirty (30) suggested targets for imaging with the RC Optical System (Ritchey- Chrétien f/9 0.4-metre class, with auxiliary wide-field capabilities), chosen from mainly “deep sky objects Page | 2 which are significant in that they are linked to specific events or people who were noteworthy in the 150 years of Canadian history”. In each numbered section the information is arranged by type of object, with specific targets suggested, the name or names of the astronomers (in bold) the RASC Robotic Telescope image is intended to honour, and references to select relevant supporting literature. The emphasis throughout is on Canadian astronomers (in a generous sense), and RASC connections. NOTE: The nature of Canadian observational astronomy over most of that time changed slowly, but change it did, and the accepted celestial targets, instrumental capabilities, and recording methods are frequently different now than they were in 1868, 1918, or 1968, and those differences can startle those with modern expectations looking for analogues to present/contemporary practice. The following list attempts to balance those expectations, as well as the commemoration of professionals and amateurs from our past. 1. OBJECT: Detail of lunar terminator (any feature). ACKNOWLEDGES: 18th-19th century practical astronomy (astronomy of place & time), the practitioners of which used lunar observation (shooting lunars) to determine longitude. -
An Outline of Stellar Astrophysics with Problems and Solutions
An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening .................................. -
Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond
Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pas.2018.xxx. Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond E. Egami1, S. Gallerani2, R. Schneider3, A. Pallottini2,4,5,6, L. Vallini7, E. Sobacchi2, A. Ferrara2, S. Bianchi8, M. Bocchio8, S. Marassi9, L. Armus10, L. Spinoglio11, A. W. Blain12, M. Bradford13, D. L. Clements14, H. Dannerbauer15,16, J. A. Fernández-Ontiveros11,15,16, E. González-Alfonso17, M. J. Griffin18, C. Gruppioni19, H. Kaneda20, K. Kohno21, S. C. Madden22, H. Matsuhara23, P. Najarro24, T. Nakagawa23, S. Oliver25, K. Omukai26, T. Onaka27, C. Pearson28, I. Perez- Fournon15,16, P. G. Pérez-González29, D. Schaerer30, D. Scott31, S. Serjeant32, J. D. Smith33, F. F. S. van der Tak34,35, T. Wada24, and H. Yajima36 1Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA 2Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy 3Dipartimento di Fisica “G. Marconi”, Sapienza Universitá di Roma, P.le A. Moro 2, 00185 Roma, Italy 4Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 5Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK 6Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, Roma, 00184, Italy 7Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands 8INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 9INAF, Osservatorio -
A New Sample of Buried Active Galactic Nuclei Selected from The
TO APPEAR IN The Astrophysical Journal. Preprint typeset using LATEX style emulateapj v. 08/22/09 A NEW SAMPLE OF BURIED ACTIVE GALACTIC NUCLEI SELECTED FROM THE SECOND XMM-NEWTON SERENDIPITOUS SOURCE CATALOGUE KAZUHISA NOGUCHI,YUICHI TERASHIMA, AND HISAMITSU AWAKI Department of Physics, Ehime University, Matsuyama, Ehime 790-8577, Japan To appear in The Astrophysical Journal. ABSTRACT We present the results of X-ray spectral analysis of 22 active galactic nuclei (AGNs) with a small scattering fraction selected from the Second XMM-Newton Serendipitous Source Catalogue using hardness ratios. They are candidates of buried AGNs, since a scattering fraction, which is a fraction of scattered emission by the circumnuclear photoionized gas with respect to direct emission, can be used to estimate the size of the opening part of an obscuring torus. Their X-ray spectra are modeled by a combination of a power law with a photon index of 1.5−2 absorbed by a column density of ∼ 1023−24 cm−2, an unabsorbed power law, narrow Gaussian lines, and some additional soft components. We find that scattering fractions of 20 among 22 objects are less than a typical value (∼ 3%) for Seyfert2s observed so far. In particular, those of eight objects are smaller than 0.5%, which are in the range for buried AGNs found in recent hard X-ray surveys. Moreover, [O III] λ5007 luminosities at given X-ray luminosities for some objects are smaller than those for Seyfert2s previouslyknown. This fact could be interpreted as a smaller size of optical narrow emission line regions produced in the opening direction of the obscuring torus.