Peg – Objektauswahl NGC Teil 1

Total Page:16

File Type:pdf, Size:1020Kb

Peg – Objektauswahl NGC Teil 1 Peg – Objektauswahl NGC Teil 1 NGC 0001 NGC 0042 NGC 7074 NGC 7146 NGC 7206 NGC 7270 NGC 7303 NGC 7321 NGC 0002 NGC 0052 NGC 7078 NGC 7147 NGC 7207 NGC 7271 NGC 7305 NGC 7323 NGC 0009 NGC 7033 NGC 7085 NGC 7149 NGC 7212 NGC 7272 NGC 7311 NGC 7324 NGC 0014 NGC 7034 NGC 7094 NGC 7156 NGC 7217 NGC 7275 NGC 7312 NGC 7328 Teil 2 NGC 0015 NGC 7042 NGC 7101 NGC 7159 NGC 7224 NGC 7280 NGC 7315 NGC 7331 NGC 0016 NGC 7043 NGC 7102 NGC 7177 NGC 7236 NGC 7283 NGC 7316 NGC 7332 Teil 3 NGC 0022 NGC 7053 NGC 7113 NGC 7190 NGC 7237 NGC 7286 NGC 7317 NGC 7335 NGC 0023 NGC 7056 NGC 7132 NGC 7193 NGC 7241 NGC 7290 NGC 7318 NGC 7336 Teil 4 NGC 0026 NGC 7066 NGC 7137 NGC 7194 NGC 7244 NGC 7291 NGC 7319 NGC 7337 NGC 0041 NGC 7068 NGC 7138 NGC 7195 NGC 7253 NGC 7292 NGC 7320 NGC 7339 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Peg – Objektauswahl NGC Teil 2 NGC 7340 NGC 7360 NGC 7375 NGC 7411 NGC 7435 NGC 7463 NGC 7479 NGC 7509 Teil 1 NGC 7342 NGC 7362 NGC 7376 NGC 7413 NGC 7436 NGC 7464 NGC 7485 NGC 7511 NGC 7343 NGC 7363 NGC 7383 NGC 7414 NGC 7437 NGC 7465 NGC 7487 NGC 7512 NGC 7345 NGC 7366 NGC 7385 NGC 7415 NGC 7439 NGC 7466 NGC 7489 NGC 7514 NGC 7346 NGC 7367 NGC 7386 NGC 7420 NGC 7442 NGC 7467 NGC 7490 NGC 7515 NGC 7347 NGC 7369 NGC 7387 NGC 7427 NGC 7448 NGC 7468 NGC 7495 NGC 7516 Teil 3 NGC 7348 NGC 7370 NGC 7389 NGC 7430 NGC 7451 NGC 7469 NGC 7497 NGC 7519 NGC 7353 NGC 7372 NGC 7390 NGC 7431 NGC 7454 NGC 7473 NGC 7500 NGC 7523 Teil 4 NGC 7356 NGC 7373 NGC 7407 NGC 7432 NGC 7457 NGC 7474 NGC 7505 NGC 7525 NGC 7357 NGC 7374 NGC 7409 NGC 7433 NGC 7461 NGC 7475 NGC 7508 NGC 7527 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Peg – Objektauswahl NGC Teil 3 NGC 7528 NGC 7549 NGC 7570 NGC 7594 NGC 7615 NGC 7631 NGC 7653 NGC 7678 Teil 1 NGC 7529 NGC 7550 NGC 7572 NGC 7595 NGC 7619 NGC 7634 NGC 7659 NGC 7680 NGC 7535 NGC 7551 NGC 7578 NGC 7597 NGC 7620 NGC 7638 NGC 7660 NGC 7681 Teil 2 NGC 7536 NGC 7553 NGC 7579 NGC 7598 NGC 7621 NGC 7639 NGC 7664 NGC 7683 NGC 7539 NGC 7558 NGC 7580 NGC 7601 NGC 7623 NGC 7641 NGC 7671 NGC 7688 NGC 7540 NGC 7559 NGC 7584 NGC 7602 NGC 7624 NGC 7643 NGC 7672 NGC 7691 NGC 7542 NGC 7563 NGC 7586 NGC 7608 NGC 7625 NGC 7647 NGC 7673 NGC 7698 NGC 7543 NGC 7567 NGC 7587 NGC 7609 NGC 7626 NGC 7648 NGC 7674 NGC 7703 Teil 4 NGC 7547 NGC 7568 NGC 7588 NGC 7610 NGC 7628 NGC 7649 NGC 7675 NGC 7711 NGC 7548 NGC 7569 NGC 7593 NGC 7612 NGC 7630 NGC 7651 NGC 7677 NGC 7712 Bis NGC 7528 überprüft Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Peg – Objektauswahl NGC Teil 4 NGC 7718 NGC 7742 NGC 7768 NGC 7786 NGC 7817 Teil 1 NGC 7720 NGC 7743 NGC 7769 NGC 7792 NGC 7819 NGC 7722 NGC 7745 NGC 7770 NGC 7794 NGC 7726 NGC 7747 NGC 7771 NGC 7798 Teil 2 NGC 7728 NGC 7752 NGC 7772 NGC 7800 NGC 7729 NGC 7753 NGC 7773 NGC 7803 Teil 3 NGC 7735 NGC 7760 NGC 7774 NGC 7805 NGC 7737 NGC 7765 NGC 7775 NGC 7806 NGC 7740 NGC 7766 NGC 7777 NGC 7810 NGC 7741 NGC 7767 NGC 7784 NGC 7814 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Peg Übersichtskarte Auswahl NGC 1_2_16_22 Aufsuchkarte Auswahl NGC 9_23_26 Aufsuchkarte Auswahl NGC 14_7772_7792_7800_7814 Aufsuchkarte Auswahl NGC 15_41_42_52_7817 Aufsuchkarte Auswahl NGC 7033_34_42_43_56_66 Aufsuchkarte 1 Peg Auswahl NGC 7053 Aufsuchkarte Auswahl NGC 7068_7078_7094_7113 Aufsuchkarte Auswahl NGC 7074_7085_7101_7102 Aufsuchkarte Auswahl NGC 7132_38_59_90_93_94_95_7212 Aufsuchkarte Auswahl NGC 7137 Aufsuchkarte Auswahl NGC 7146_7147_7149_7156 Aufsuchkarte Auswahl NGC 7177_7206_07_41_44_72_80_83_90_91 Aufsuchkarte ι Auswahl NGC 7217_53_70_71_75_86_92 Aufsuchkarte Auswahl NGC 7224 Aufsuchkarte Auswahl NGC 7236_37_7305_28_46_47_48_53 Aufsuchkarte Auswahl NGC 7303_7356_7357 Aufsuchkarte Auswahl NGC 7311_12_60_67_73_76 Aufsuchkarte Auswahl NGC 7315_17_18_19_20_31_35_36_37_40_42_43_45_63_69_7407 Aufsuchkarte Auswahl NGC 7316_21_23_24_32_39_75_7409_11_15 Aufsuchkarte Auswahl NGC 7362_7366_7370_7372_7374 Aufsuchkarte Auswahl NGC 7383_85_86_87_89_90_7413_14_32 Aufsuchkarte Auswahl NGC 7420_7439_7457_7473 Aufsuchkarte Auswahl NGC 7427_7430_7451_7469 Aufsuchkarte Auswahl NGC 7431_33_35_36_66 Aufsuchkarte Auswahl NGC 7437_42_48_54_61_63_64_65_67_68 Aufsuchkarte Auswahl N 7474_75_97_7516_40_47_49_50_51_53_58_67_72_78_88_97_98_7602_25 Aufsuchkarte Auswahl N 7479_95_7505_08_09_11_15_23_25_35_36_59_63_70_80 Aufsuchkarte Auswahl NGC 7485_7490_7512_7514_7680 Aufsuchkarte Auswahl NGC 7487_7543_7624 Aufsuchkarte Auswahl NGC 7489_7527_39_48_68_7620_7628 Aufsuchkarte Auswahl N 7500_19_28_29_42_69_79_84_6_7_93_4_5_7601_8_9_10_2_5_9_21_3_6_30_1_4_8_9_48_74_5_83 Aufsuchkarte Auswahl Peg 55 NGC 7647_49_53_81_91_7703_11_22 Aufsuchkarte Peg 75 Peg 74 Auswahl NGC 7641_7643_7671_7672 Aufsuchkarte Peg 70 Auswahl NGC 7651_7659 Aufsuchkarte Peg 70 Auswahl NGC 7660_64_73_77_98_7712_18_20_26_28 Aufsuchkarte Auswahl NGC 7678_7688 Aufsuchkarte Auswahl NGC 7729_7752_7753_7760_7773 Aufsuchkarte Peg 78 Auswahl NGC 7735_37_40_41_45_47_65_66_67_68_75_77 Aufsuchkarte Auswahl NGC 7742_7743_7774_7794 Aufsuchkarte Auswahl NGC 7769_7770_7771_7784_7786_7798 Aufsuchkarte Auswahl NGC 7803_7810 Aufsuchkarte Auswahl NGC 7805_7806_7819 Aufsuchkarte Auswahl NGC 1_2_16_22 Übersichtskarte Aufsuch- Auswahl karte NGC 9 Übersichtskarte Aufsuch- Auswahl karte NGC 14 Übersichtskarte Aufsuch- Auswahl karte NGC 15 Übersichtskarte Aufsuch- Auswahl karte NGC 23_26 Übersichtskarte Aufsuch- Auswahl karte NGC 41_42 Übersichtskarte Aufsuch- Auswahl karte NGC 52 Übersichtskarte Aufsuch- Auswahl karte NGC 7033_7034 Übersichtskarte Aufsuch- Auswahl karte NGC 7042_7043 Übersichtskarte Aufsuch- Auswahl karte NGC 7053 Übersichtskarte Aufsuch- Auswahl karte NGC 7056 Übersichtskarte Aufsuch- Auswahl karte NGC 7066 Übersichtskarte Aufsuch- Auswahl karte NGC 7068 Übersichtskarte Aufsuch- Auswahl karte NGC 7074_7085 Übersichtskarte Aufsuch- Auswahl karte NGC 7078 Übersichtskarte Aufsuch- Auswahl karte NGC 7094 Übersichtskarte Aufsuch- Auswahl karte NGC 7101 Übersichtskarte Aufsuch- Auswahl karte NGC 7102 Übersichtskarte Aufsuch- Auswahl karte NGC 7113 Übersichtskarte Aufsuch- Auswahl karte NGC 7132 Übersichtskarte Aufsuch- Auswahl karte NGC 7137 Übersichtskarte Aufsuch- Auswahl karte NGC 7138 Übersichtskarte Aufsuch- Auswahl karte NGC 7146_7147_7149_7156 Übersichtskarte Aufsuch- Auswahl karte NGC 7159 Übersichtskarte Aufsuch- Auswahl karte NGC 7177 Übersichtskarte Aufsuch- Auswahl karte NGC 7190_7193 Übersichtskarte Aufsuch- Auswahl karte NGC 7194_7195 Übersichtskarte Aufsuch- Auswahl karte NGC 7206_7207 Übersichtskarte Aufsuch- Auswahl karte NGC 7212 Übersichtskarte Aufsuch- Auswahl karte NGC 7217 Übersichtskarte Aufsuch- Auswahl karte NGC 7224 Übersichtskarte Aufsuch- Auswahl karte NGC 7236_7237 Übersichtskarte Aufsuch- Auswahl karte NGC 7241 Übersichtskarte Aufsuch- Auswahl karte NGC 7244 Übersichtskarte Aufsuch- Auswahl karte NGC 7253 Übersichtskarte Aufsuch- Auswahl karte NGC 7270_7271_7275 Übersichtskarte Aufsuch- Auswahl karte NGC 7272_7280 Übersichtskarte Aufsuch- Auswahl karte NGC 7283_7290_7291 Übersichtskarte Aufsuch- Auswahl karte NGC 7286 Übersichtskarte Aufsuch- Auswahl karte NGC 7292 Übersichtskarte Aufsuch- Auswahl karte NGC 7303 Übersichtskarte Aufsuch- Auswahl karte NGC 7305 Übersichtskarte Aufsuch- Auswahl karte NGC 7311_7312 Übersichtskarte Aufsuch- Auswahl karte NGC 7315_7342_7345 Übersichtskarte Aufsuch- Auswahl karte NGC 7316 Übersichtskarte Aufsuch- Auswahl karte NGC 7317_18_19_20_31_35_36_37_40_43 Übersichtskarte Aufsuch- Auswahl karte NGC 7321 Übersichtskarte Aufsuch- Auswahl karte NGC 7323_7324 Übersichtskarte Aufsuch- Auswahl karte NGC 7328 Übersichtskarte Aufsuch- Auswahl karte NGC 7332_7339 Übersichtskarte Aufsuch- Auswahl karte NGC 7346_7347_7348_7353 Übersichtskarte Aufsuch- Auswahl karte NGC 7356_7357 Übersichtskarte Aufsuch- Auswahl karte NGC 7360 Übersichtskarte Aufsuch- Auswahl karte NGC 7362 Übersichtskarte Aufsuch- Auswahl karte NGC 7363_7369 Übersichtskarte Aufsuch- Auswahl karte NGC 7366_7370_7372_7374 Übersichtskarte Aufsuch- Auswahl karte NGC 7367_7373_7376 Übersichtskarte Aufsuch- Auswahl karte NGC 7375 Übersichtskarte Aufsuch- Auswahl karte NGC 7383_85_86_87_89_90 Übersichtskarte Aufsuch- Auswahl karte NGC 7407 Übersichtskarte Aufsuch- Auswahl karte NGC 7409_7411_7415 Übersichtskarte Aufsuch- Auswahl karte NGC 7413_7414_7432 Übersichtskarte Aufsuch- Auswahl karte NGC 7420_7439 Übersichtskarte Aufsuch- Auswahl karte NGC 7427_7430 Übersichtskarte Aufsuch- Auswahl karte NGC 7431_7433_7435_7436 Übersichtskarte Aufsuch- Auswahl karte NGC 7437 Übersichtskarte Aufsuch- Auswahl karte NGC 7442_48_61_63_64_65_67 Übersichtskarte Aufsuch- Auswahl karte NGC 7451_7469 Übersichtskarte Aufsuch- Auswahl karte NGC 7454_7468 Übersichtskarte Aufsuch- Auswahl karte NGC 7457_7473 Übersichtskarte Aufsuch- Auswahl karte NGC 7466 Übersichtskarte Aufsuch- Auswahl karte NGC 7474_7475 Übersichtskarte Aufsuch- Auswahl karte NGC 7479 Übersichtskarte Aufsuch- Auswahl karte NGC 7485 Übersichtskarte Aufsuch- Auswahl karte NGC 7487 Übersichtskarte Aufsuch- Auswahl karte NGC 7489 Übersichtskarte Aufsuch- Auswahl karte NGC 7490 Übersichtskarte Aufsuch- Auswahl karte NGC 7495 Übersichtskarte Aufsuch- Auswahl karte NGC
Recommended publications
  • Big Halpha Kinematical Sample of Barred Spiral Galaxies - I
    BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle To cite this version: O. Hernandez, C. Carignan, P. Amram, L. Chemin, O. Daigle. BhaBAR: Big Halpha kinematical sample of BARred spiral galaxies - I. Fabry-Perot Observations of 21 galaxies. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2005, 360 Issue 4, pp.1201. 10.1111/j.1365-2966.2005.09125.x. hal-00014446 HAL Id: hal-00014446 https://hal.archives-ouvertes.fr/hal-00014446 Submitted on 26 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mon. Not. R. Astron. Soc. 360, 1201–1230 (2005) doi:10.1111/j.1365-2966.2005.09125.x BHαBAR: big Hα kinematical sample of barred spiral galaxies – I. Fabry–Perot observations of 21 galaxies O. Hernandez,1,2 † C. Carignan,1 P. Amram,2 L. Chemin1 and O. Daigle1 1Observatoire du mont Megantic,´ LAE, Universitede´ Montreal,´ CP 6128 succ. centre ville, Montreal,´ Quebec,´ Canada H3C 3J7 2Observatoire Astronomique de Marseille Provence et LAM, 2 pl.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • Radio Identification and Continuum Spectra of Decameter-Wavelength
    Astronomy Reports, Vol. 47, No. 2, 2003, pp. 110–118. Translated from Astronomicheski˘ı Zhurnal, Vol. 80, No. 2, 2003, pp. 130–139. Original Russian Text Copyright c 2003 by Verkhodanov, Verkhodanova, Andernach. Radio Identification and Continuum Spectra of Decameter-Wavelength Sources O.V. Verkhodanov1, N. V. Verkhodanova1,andH.Andernach2 1Special Astrophysical Observatory, Russian Academy of Sciences, Nizhni ˘ı Arkhyz, Karachaevo-Cherkesskaya Republic, 357169 Russia 2University of Guanajuato, Department of Astronomy, Apdo Postal 144, Guanajuato, GTO, CP36000, Mexico´ Received March 22, 2002; in final form, June 26, 2002 Abstract—The paper describes a method for the radio identification of decameter-wavelength sources based on their continuum spectra and analysis of their coordinates in relatively large error boxes sur- rounding a specified position on the sky. The distribution of continuum spectra and identifications in other wavelength ranges are analyzed for the resulting radio catalog. Using identifications with the FIRST and NVSS surveys, the statistics of the spectral index–size and spectral index–fluxdensity distributions for steep-spectrum sources have been studied, and a catalog of ultrasteep-spectrum (α<−1.2) decameter- wavelength sources has been compiled. c 2003MAIK “Nauka/Interperiodica”. 1. INTRODUCTION 40 × 40cosecδ window obtained from a cross iden- tification with the CATS database [7]. We addressed The catalog of 1822 radio sources obtained with this problem via interactive processing of the radio the UTR telescope (Kharkov) by Braude et al.[1–5] spectra [8] obtained through a cross-identification at 10, 12.6, 14.7, 16.7, 20, and 25 MHz covers about of the UTR objects with sources from the CATS 30% of the sky and is the lowest-frequency catalog database using a 40 identification window.
    [Show full text]
  • J Pionisrskis Lata Eieitronorriii W Toruniu
    j Pionisrskis lata EiEitronorriii w Toruniu j Aktywność magnetyczna Słońca j Towarzyskie pJaneioidy Pawilon teleskopu Schmidta-Cassegraina w Piwnicach od strony południowo-zachodniej stu Mikołaja Kopernika prawie w komplecie — październik 2005 r. Szanowni i Drodzy Czytelnicy, Prenumeratorów naszego czasopisma spotyka w tym miesiącu nagroda — wszyscy otrzymują dwa zeszyty „ Uranii-Postępów Astronomii”. Jeden, to regularny zeszyt noszący datę marzec-kwiecień 2006 r., a drugi to bonus — specjalne wydanie „ Uranii”. Zawiera ono referaty wygłoszone na angielskojęzycznych sesjach w czasie Zjazdu Polskiego Towarzystwa fot. bauksza-WiiniewsltaA. Astronomicznego we wrześniu 2005 r. we Wrocławiu. Skupiają się one wokół dwóch zagadnień: gwiazd pulsujących (w tym astrosejsmologii) i fizyki Słońca. Autorzy są znakomitymi specjalistami tych dziedzin, a całość stanowi doskonały obraz problemów współczesnych astronomii w tych tematach. Komitet Organizacyjny Zjazdu znalazł pieniądze na wydanie materiałów zjazdowych i zrobienie prezentu naszym najwierniejszym Czytelnikom, za co jesteśmy mu bardzo wdzięczni. Nasz zwykły, polskojęzyczny nr 2 (722) otwiera, kreślone piórem niżej podpisanego, wspomnienie pionierskich lat astronomii w Toruniu, rodzącej się wraz z powstaniem Uniwersytetu Mikołaja Kopernika. Uniwersytet ten świętował w 2005 r. swoje 60-łecie. Uznaliśmy, że wypada też przypomnieć z tej okazji, jak to się narodził i rósł toruński ośrodek astronomiczny, który dzisiaj nosi miano Centrum Astronomii UMK. Następnie naszą uwagę kierujemy na najważniejszy obiekt nieba — Słońce. O badaniu naszej dziennej gwiazdy i procesach zachodzących w jej zewnętrznych warstwach opowiada hełiofizyk Paweł Rudawy z Wrocławia. Analizuje głównie zjawiska zachodzące między polem magnetycznym a plazmą słoneczną. Oddziaływania te leżą u podstaw zjawisk tzw. aktywności słonecznej, które są pilnie obserwowane nie tylko przez profesjonalnych astronomów, ale też i przez tysiące miłośników astronomii.
    [Show full text]
  • History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance
    RASC History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance 2018 September 16 Robotic Telescope—Suggested Celestial Targets with Historical Canadian Resonance ABSTRACT: At the request of the Society’s Robotic Telescope Team, the RASC History Committee has compiled a list of over thirty (30) suggested targets for imaging with the RC Optical System (Ritchey- Chrétien f/9 0.4-metre class, with auxiliary wide-field capabilities), chosen from mainly “deep sky objects Page | 2 which are significant in that they are linked to specific events or people who were noteworthy in the 150 years of Canadian history”. In each numbered section the information is arranged by type of object, with specific targets suggested, the name or names of the astronomers (in bold) the RASC Robotic Telescope image is intended to honour, and references to select relevant supporting literature. The emphasis throughout is on Canadian astronomers (in a generous sense), and RASC connections. NOTE: The nature of Canadian observational astronomy over most of that time changed slowly, but change it did, and the accepted celestial targets, instrumental capabilities, and recording methods are frequently different now than they were in 1868, 1918, or 1968, and those differences can startle those with modern expectations looking for analogues to present/contemporary practice. The following list attempts to balance those expectations, as well as the commemoration of professionals and amateurs from our past. 1. OBJECT: Detail of lunar terminator (any feature). ACKNOWLEDGES: 18th-19th century practical astronomy (astronomy of place & time), the practitioners of which used lunar observation (shooting lunars) to determine longitude.
    [Show full text]
  • Arxiv:1809.03080V1
    DRAFT VERSION SEPTEMBER 11, 2018 Typeset using LATEX twocolumn style in AASTeX62 Polar Dust, Nuclear Obscuration and IR SED Diversity in Type-1 AGNs ∗ JIANWEI LYU (吕建伟 )1 AND GEORGE H. RIEKE1 1 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA (Received 2018 May 15; Revised 2018 August 29; Accepted 2018 September 8) Submitted to ApJ ABSTRACT Despite the hypothesized similar face-on viewing angles, the infrared emission of type-1 AGNs has diverse spectral energy distribution (SED) shapes that deviate substantially from the well-characterized quasar tem- plates. Motivated by the commonly-seen UV-optical obscuration and the discovery of parsec-scale mid-IR polar dust emission in some nearby AGNs, we develop semi-empirical SED libraries for reddened type-1 AGNs built on the quasar intrinsic templates, assuming low-level extinction caused by an extended distribution of large dust grains. We demonstrate that this model can reproduce the nuclear UV-to-IR SED and the strong mid-IR polar dust emission of NGC 3783, the type-1 AGN with the most relevant and robust observational constraints. In addition, we compile 64 low-z Seyfert-1 nuclei with negligible mid-IR star formation contamination and satisfactorily fit the individual IR SEDs as well as the composite UV to mid-IR composite SEDs. Given the success of these fits, we characterize the possible infrared SED of AGN polar dust emission and utilize a simple but effective strategy to infer its prevalence among type-1 AGNs. The SEDs of high-z peculiar AGNs, including the extremely red quasars, mid-IR warm-excess AGNs, and hot dust-obscured galaxies, can be also reproduced by our model.
    [Show full text]
  • Observing Galaxies in Pegasus 01 October 2015 23:07
    Observing galaxies in Pegasus 01 October 2015 23:07 Context As you look towards Pegasus you are looking below the galactic plane under the Orion spiral arm of our galaxy. The Perseus-Pisces supercluster wall of galaxies runs through this constellation. It stretches from RA 3h +40 in Perseus to 23h +10 in Pegasus and is around 200 million light years away. It includes the Pegasus I group noted later this document. The constellation is well placed from mid summer to late autumn. Pegasus is a rich constellation for galaxy observing. I have observed 80 galaxies in this constellation. Relatively bright galaxies This section covers the galaxies that were visible with direct vision in my 16 inch or smaller scopes. This list will therefore grow over time as I have not yet viewed all the galaxies in good conditions at maximum altitude in my 16 inch scope! NGC 7331 MAG 9 This is the stand out galaxy of the constellation. It is similar to our milky way. Around it are a number of fainter NGC galaxies. I have seen the brightest one, NGC 7335 in my 10 inch scope with averted vision. I have seen NGC 7331 in my 25 x 100mm binoculars. NGC 7814 - Mag 10 ? Not on observed list ? This is a very lovely oval shaped galaxy. By constellation Page 1 NGC 7332 MAG 11 / NGC 7339 MAG 12 These galaxies are an isolated bound pair about 67 million light years away. NGC 7339 is the fainter of the two galaxies at the eyepiece. I have seen NGC 7332 in my 25 x 100mm binoculars.
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • 1987Apj. . .320. .2383 the Astrophysical Journal, 320:238-257
    .2383 The Astrophysical Journal, 320:238-257,1987 September 1 © 1987. The American Astronomical Society. AU rights reserved. Printed in U.S.A. .320. 1987ApJ. THE IRÁS BRIGHT GALAXY SAMPLE. II. THE SAMPLE AND LUMINOSITY FUNCTION B. T. Soifer, 1 D. B. Sanders,1 B. F. Madore,1,2,3 G. Neugebauer,1 G. E. Danielson,4 J. H. Elias,1 Carol J. Lonsdale,5 and W. L. Rice5 Received 1986 December 1 ; accepted 1987 February 13 ABSTRACT A complete sample of 324 extragalactic objects with 60 /mi flux densities greater than 5.4 Jy has been select- ed from the IRAS catalogs. Only one of these objects can be classified morphologically as a Seyfert nucleus; the others are all galaxies. The median distance of the galaxies in the sample is ~ 30 Mpc, and the median 10 luminosity vLv(60 /mi) is ~2 x 10 L0. This infrared selected sample is much more “infrared active” than optically selected galaxy samples. 8 12 The range in far-infrared luminosities of the galaxies in the sample is 10 LQ-2 x 10 L©. The far-infrared luminosities of the sample galaxies appear to be independent of the optical luminosities, suggesting a separate luminosity component. As previously found, a correlation exists between 60 /¿m/100 /¿m flux density ratio and far-infrared luminosity. The mass of interstellar dust required to produce the far-infrared radiation corre- 8 10 sponds to a mass of gas of 10 -10 M0 for normal gas to dust ratios. This is comparable to the mass of the interstellar medium in most galaxies.
    [Show full text]
  • Minor-Axis Velocity Gradients in Spirals and the Case of Inner Polar Disks?,??
    A&A 408, 873–885 (2003) Astronomy DOI: 10.1051/0004-6361:20030951 & c ESO 2003 Astrophysics Minor-axis velocity gradients in spirals and the case of inner polar disks?;?? E. M. Corsini, A. Pizzella, L. Coccato, and F. Bertola Dipartimento di Astronomia, Universit`a di Padova, vicolo dell’Osservatorio 2, 35122 Padova, Italy Received 4 March 2003 / Accepted 3 June 2003 Abstract. We measured the ionized-gas and stellar kinematics along the major and minor axis of a sample of 10 early-type spirals. Much to our surprise we found a remarkable gas velocity gradient along the minor axis of 8 of them. According to the kinematic features observed in their ionized-gas velocity fields, we divide our sample galaxies in three classes of objects. (i) NGC 4984, NGC 7213, and NGC 7377 show an overall velocity curve along the minor axis without zero-velocity points, out to the last measured radius, which is interpreted as due to the warped structure of the gaseous disk. (ii) NGC 3885, NGC 4224, and NGC 4586 are characterized by a velocity gradient along both major and minor axis, although non-zero velocities along the minor axis are confined to the central regions. Such gas kinematics have been explained as being due to non-circular motions induced by a triaxial potential. (iii) NGC 2855 and NGC 7049 show a change of slope of the velocity gradient measured along the major axis (which is shallower in the center and steeper away from the nucleus), as well as non-zero gas velocities in the central regions of the minor axis.
    [Show full text]
  • VV Compact Groups of Galaxies&Q
    PRINCETON UNIVERSITY Department of Astrophysical Sciences Final Report for grant UAG-8363 "V-V Compact Groups of Galaxies" for National Aeronautics and Space Administration Marshall Space Flight Center By: Neta A. Bahcall Principal Investigator June 1984 X-ray Emission from Stephen's Quintet and Other Compact Groups by Neta A. Bahcall Space Telescope Science Institute D. E. Harris High Energy Astrophysics, Center for Astrophysics Herbert J. Rood Box 1330, Princeton, NJ 08542 Abstract A search for X-ray emission from five compact groups of galaxies with the Einstein Observatory revealed detections from three groups. Soft, extended X- ray emission was observed in Stephen's Quintet which is most likely caused by hot intracluster gas. This provides evidence for dynamical interaction among the group galaxies. X-ray emission from the group Arp 330 may also originate in hot intracluster gas. Stephen's Quintet and Arp 330 have the largest velocity dispersions among the groups studied suggesting a correlation between high velocity and the release (or properties) of hot gas. X-ray emission from Arp 318 may originate in its member galaxies. I. Introduction The X-ray emission detected from rich clusters of galaxies reveals a hot metal-enriched intracluster medium (ICM) that probably originated from processed gas swept-out of galaxies. This provides direct evidence for the occurrence of interactions among cluster galaxies. Since dynamical interactions depend on the galaxy (and/or ICM) density, they are expected to be important in the groups of highest known galaxy density, such as Stephen's Quintet. While the high galaxy densities suggest a short crossing-time and a strong dynamical interaction, the existence of numerous compact groups, each having a significant spiral fraction has provoked controversy regarding the reality of the compact groups, their age,__ and their state of dynamical evolution.
    [Show full text]