A Short Course on Radar Meteorology
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Comparing Historical and Modern Methods of Sea Surface Temperature
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geoscientific Geoscientific Model Development Model Development Discussions Open Access Open Access Hydrology and Hydrology and Earth System Earth System Sciences Sciences Discussions Open Access Ocean Sci., 9, 683–694, 2013 Open Access www.ocean-sci.net/9/683/2013/ Ocean Science doi:10.5194/os-9-683-2013 Ocean Science Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Solid Earth Solid Earth Discussions Comparing historical and modern methods of sea surface Open Access Open Access The Cryosphere The Cryosphere temperature measurement – Part 1: Review of methods, Discussions field comparisons and dataset adjustments J. B. R. Matthews School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada Correspondence to: J. B. R. Matthews ([email protected]) Received: 3 August 2012 – Published in Ocean Sci. Discuss.: 20 September 2012 Revised: 31 May 2013 – Accepted: 12 June 2013 – Published: 30 July 2013 Abstract. Sea surface temperature (SST) has been obtained 1 Introduction from a variety of different platforms, instruments and depths over the past 150 yr. -
Chapter-5 Doppler Effect
Chapter-5 Doppler Effect Stationary source Stationary observer Moving source Stationary observer Stationary source Moving observer Moving source Moving observer http://www.astro.ubc.ca/~scharein/a311/Sim/doppler/Doppler.html Doppler Effect The Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source of the waves and the observer. The apparent change in frequency f experienced as a result of the Doppler effect is known as the Doppler shift. The value of the Doppler shift increases as the relative velocity v between the source and the observer increases. The Doppler effect applies to all forms of waves. Doppler Effect (Moving Source) http://www.absorblearning.com/advancedphysics/demo/units/040103.html Suppose the source moves at a steady velocity vs towards a stationary observer. The source emits sound wave with frequency f. From the diagram, we can see that the distance between crests is shortened such that ' vs Since = c/f and = 1/f, We get c c v s f ' f f c vs f ' ( ) f c vs Doppler Effect (Moving Observer) Consider an observer moving with velocity vo toward a stationary source S. The source emits a sound wave with frequency f and wavelength = c/f. The velocity of the sound wave relative to the observer is c + vo. c Doppler Shift Consider a source moving towards an observer, the Doppler shift f is c f f ' f ( ) f f c vs f v s f c v s f v If v <<c, then we get s s f c The above equation also applies to a receding source, with vs taking as negative. -
A Real-Time System to Estimate Weather Conditions at High Resolution
12.1 A Real-Time System to Estimate Weather Conditions at High Resolution Peter P. Neilley1 Weather Services International, Inc. Andover, MA 01810 And Bruce L. Rose The Weather Channel Atlanta, GA the earth’s surface (the so-called current 1. Introduction1 conditions). b) We do not necessarily produce weather The purpose of this paper is to describe an observations on a regular grid, but at an operational system used to estimate current irregular set of arbitrary locations or points weather conditions at arbitrary places in real- that are relevant to the consumers of the time. The system, known as High Resolution information. Assimilation of Data (or HiRAD), is designed to generate synthetic weather observations in a c) In addition to producing quantitative manner equivalent in scope, timeliness and observational elements (e.g. temperature, quality to a arbitrarily dense physical observing pressure and wind speed) our system network. Our approach is, first, to collect produces common, descriptive terminology information from a variety of relevant sources of the sensible weather such as including gridded analyses, traditional surface “Thundershowers”, “Patchy Fog”, and weather reports, radar, satellite and lightning “Snow Flurries”. observations. Then we continuously synthesize these data into weather condition estimates at d) We do not strive to produce a state of the prescribed locations. An operational system atmosphere optimized for fidelity with based on this approach has been built and is Numerical Weather Prediction (NWP) commercially deployed in the United States. models. Instead, the system is optimized to produce the most accurate estimate of the In most regards, our approach is analogous to observed state at the surface that can be modern data assimilation techniques. -
Fire W Eather
Fire Weather Fire Weather Fire weather depends on a combination of wildland fuels and surface weather conditions. Dead and live fuels are assessed weekly from a satellite that determines the greenness of the landscape. Surface weather conditions are monitored every 5-minutes from the Oklahoma Mesonet. This fire weather help page highlights the surface weather ingredients to monitor before wildfires and also includes several products to monitor once wildfires are underway. Fire Weather Ingredients: WRAP While the presence of wildland fuels is one necessary component for wildfires, weather conditions ultimately dictate whether or not a day is primed for wildfires to occur. There are four key fire weather ingredients and they include: high Winds, low Relative humidity, high Air temperature, and no/minimal recent Precipitation (WRAP). High Winds are the second most critical weather ingredient for wildfires. In general, winds of 20 mph or greater 20+ mph winds increase spot fires and make for most of the containment considerably more difficult. state Low Relative humidity is the most 30-40+ critical weather ingredient for wildfires mph winds and is most common in the afternoon when the air temperature is at its warmest. When relative humidity is at or below 20% extreme fire behavior can result and spot fires become freQuent. Watch out for areas of 20% or below relative humidity and 20 mph or higher winds à 20/20 rule! Extremely low relative humidity Warm Air temperatures are another values key weather ingredient for wildfires as warming can lower the relative humidity, reduce moisture for smaller dead fuels, and bring fuels closer to their ignition point. -
Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving. -
The Montague Doppler Radar, an Overview June 2018
ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING · 317 WASHINGTON STREET · WATERTOWN, NY 13601 · (315) 785-2380 · WWW.TUGHILL.ORG The Tug Hill Commission Technical and Issue Paper Series are designed to help local officials and citizens in the Tug Hill region and other rural parts of New York State. The Tech- nical Paper Series provides guidance on procedures based on questions frequently received by the Commis- sion. The Issue Paper Series pro- vides background on key issues facing the region without taking advocacy positions. Other papers in each se- ries are available from the Tug Hill Commission. Please call us or vis- it our website for more information. The Montague Doppler Weather Radar, An Overview Table of Contents Introduction .................................................................................................................................................. 1 Who owns the Montague radar? ................................................................................................................. 1 Who uses the Montague radar? .................................................................................................................. 1 How does the radar system work? .............................................................................................................. 2 How does the radar predict lake-effect snowstorms? ................................................................................ 2 How does the -
Weather Observations
Operational Weather Analysis … www.wxonline.info Chapter 2 Weather Observations Weather observations are the basic ingredients of weather analysis. These observations define the current state of the atmosphere, serve as the basis for isoline patterns, and provide a means for determining the physical processes that occur in the atmosphere. A working knowledge of the observation process is an important part of weather analysis. Source-Based Observation Classification Weather parameters are determined directly by human observation, by instruments, or by a combination of both. Human-based Parameters : Traditionally the human eye has been the source of various weather parameters. For example, the amount of cloud that covers the sky, the type of precipitation, or horizontal visibility, has been based on human observation. Instrument-based Parameters : Numerous instruments have been developed over the years to sense a variety of weather parameters. Some of these instruments directly observe a particular weather parameter at the location of the instrument. The measurement of air temperature by a thermometer is an excellent example of a direct measurement. Other instruments observe data remotely. These instruments either passively sense radiation coming from a location or actively send radiation into an area and interpret the radiation returned to the instrument. Satellite data for visible and infrared imagery are examples of the former while weather radar is an example of the latter. Hybrid Parameters : Hybrid observations refer to weather parameters that are read by a human observer from an instrument. This approach to collecting weather data has been a big part of the weather observing process for many years. Proper sensing of atmospheric data requires proper siting of the sensors. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform
aerospace Article An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform Xining Yu 1,*, Yan Zhang 1, Ankit Patel 1, Allen Zahrai 2 and Mark Weber 2 1 School of Electrical and Computer Engineering, University of Oklahoma, 3190 Monitor Avenue, Norman, OK 73019, USA; [email protected] (Y.Z.); [email protected] (A.P.) 2 National Severe Storms Laboratory, National Oceanic and Atomospheric Administration, Norman, OK 73072, USA; [email protected] (A.Z.); [email protected] (M.W.) * Correspondence: [email protected]; Tel.: +1-405-325-2871 Academic Editor: Konstantinos Kontis Received: 22 July 2016; Accepted: 2 September 2016; Published: 9 September 2016 Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language. Keywords: phased array radar; embedded computing; serial RapidIO; MPAR 1. Introduction 1.1. Real-Time, Large-Scale, Phased Array Radar Systems In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro Telecom Computing Architecture (MTCA) chassis. -
Design Trade-Offs for Airborne Phased Array Radar for Atmospheric Research
Design Trade-offs for Airborne Phased Array Radar for Atmospheric Research Jorge L. Salazar, Eric Loew, Pei-Sang Tsai, V. Chandrasekar Jothiram Vivekanandan and Wen Chau Lee Colorado State University (CSU) National Center for Atmospheric Research (NCAR) NCAR Affiliate Scientist 3450 Mitchell Lane Boulder, CO 80301, USA 1373 Fort Collins, CO 80523, U Abstract - This paper discusses the design options and trade- Besides the fact that both are single-polarized and passive offs of the key performance parameters, technology, and arrays, fast electronically scanned beams have provided the costs of dual-polarized and two-dimensional active phased scientific community with higher temporal resolution array antenna for an atmospheric airborne radar system. The measurements that improve detection and warning for severe design proposed provides high-resolution measurements of high-impact weather. Tornado false alarm rates have been the air motion and rainfall characteristics of very large storms reduced substantially and the tornado warning lead times that are difficult to observe with a ground-based radar system. extended from 14 minutes to 20 minutes [4]. Parameters such as antenna size, wavelength, beamwidth, transmit power, spatial resolution, along-track resolution, and Considering the benefit of phased array technology, polarization have been evaluated. The paper presents a academic, state, federal, and private institutions have been performance evaluation of the radar system. Preliminary working together to develop phased-array radar for results from the antenna front-end section that corresponds to atmospheric applications. Currently, the Massachusetts a Line Replacement Unit (LRU) are presented. Institute of Technology’s Lincoln Laboratory (MIT-LL) is developing a multifunction, two-dimensional (2-D), dual-pol, Index Terms – Airborne Doppler radar, ELDORA, phased flat and multifunction S-band radar system [6]. -
Investigating the Climate System Precipitationprecipitation “The Irrational Inquirer”
Educational Product Educators Grades 5–8 Investigating the Climate System PrecipitationPrecipitation “The Irrational Inquirer” PROBLEM-BASED CLASSROOM MODULES Responding to National Education Standards in: English Language Arts ◆ Geography ◆ Mathematics Science ◆ Social Studies Investigating the Climate System PrecipitationPrecipitation “The Irrational Inquirer” Authored by: CONTENTS Mary Cerullo, Resources in Science Education, South Portland, Maine Grade Levels; Time Required; Objectives; Disciplines Encompassed; Key Terms; Key Concepts . 2 Prepared by: Stacey Rudolph, Senior Science Prerequisite Knowledge . 3 Education Specialist, Institute for Global Environmental Strategies Additional Prerequisite Knowledge and Facts . 5 (IGES), Arlington, Virginia Suggested Reading/Resources . 5 John Theon, Former Program Scientist for NASA TRMM Part 1: How are rainfall rates measured? . 6 Editorial Assistance, Dan Stillman, Truth Revealed after 200 Years of Secrecy! Science Communications Specialist, Pre-Activity; Activity One; Activity Two; Institute for Global Environmental Activity Three; Extensions. 8 Strategies (IGES), Arlington, Virginia Graphic Design by: Part 2: How is the intensity and distribution Susie Duckworth Graphic Design & of rainfall determined? . 9 Illustration, Falls Church, Virginia Airplane Pilot or Movie Critic? Funded by: Activity One; Activity Two. 9 NASA TRMM Grant #NAG5-9641 Part 3: How can you study rain? . 10 Give us your feedback: Foreseeing the Future of Satellites! To provide feedback on the modules Activity One; Activity Two . 10 online, go to: Activity Three; Extensions . 11 https://ehb2.gsfc.nasa.gov/edcats/ educational_product Unit Extensions . 11 and click on “Investigating the Climate System.” Appendix A: Bibliography/Resources . 12 Appendix B: Assessment Rubrics & Answer Keys. 13 NOTE: This module was developed as part of the series “Investigating the Climate Appendix C: National Education Standards. -
Thor's Legions American Meteorological Society Historical Monograph Series the History of Meteorology: to 1800, by H
Thor's Legions American Meteorological Society Historical Monograph Series The History of Meteorology: to 1800, by H. Howard Frisinger (1977/1983) The Thermal Theory of Cyclones: A History of Meteorological Thought in the Nineteenth Century, by Gisela Kutzbach (1979) The History of American Weather (four volumes), by David M. Ludlum Early American Hurricanes - 1492-1870 (1963) Early American Tornadoes - 1586-1870 (1970) Early American Winters I - 1604-1820 (1966) Early American Winters II - 1821-1870 (1967) The Atmosphere - A Challenge: The Science of Jule Gregory Charney, edited by Richard S. Lindzen, Edward N. Lorenz, and George W Platzman (1990) Thor's Legions: Weather Support to the u.s. Air Force and Army - 1937-1987, by John F. Fuller (1990) Thor's Legions Weather Support to the U.S. Air Force and Army 1937-1987 John F. Fuller American Meteorological Society 45 Beacon Street Boston, Massachusetts 02108-3693 The views expressed in this book are those of the author and do not reflect the official policy or position of the Department of Defense or the United States Government. © Copyright 1990 by the American Meteorological Society. Permission to use figures, tables, and briefexcerpts from this monograph in scientific and educational works is hereby granted provided the source is acknowledged. All rights reserved. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec tronic, mechanical, photocopying, recording, or otherwise, without the prior written permis sion ofthe publisher. ISBN 978-0-933876-88-0 ISBN 978-1-935704-14-0 (eBook) DOI 10.1007/978-1-935704-14-0 Softcover reprint of the hardcover 1st edition 1990 Library of Congress catalog card number 90-81187 Published by the American Meteorological Society, 45 Beacon Street, Boston, Massachusetts 02108-3693 Richard E.