L697: Information Visualization Mapping Knowledge Domains Katy Börner School of Library and Information Science
[email protected] Talk at IU’s Technology Transfer Office Indianapolis, IN, July 12th, 2005. Overview 1. Motivation for Mapping Knowledge Domains 2. Mapping the Structure and Evolution of ¾ Scientific Disciplines ¾ All of Sciences 3. Challenges and Opportunities Mapping Knowledge Domains, Katy Börner, Indiana University 2 K. Borner 1 L697: Information Visualization Mapping the Evolution of Co-Authorship Networks Ke, Visvanath & Börner, (2004) Won 1st price at the IEEE InfoVis Contest. 1988 K. Borner 2 L697: Information Visualization 1989 1990 K. Borner 3 L697: Information Visualization 1991 1992 K. Borner 4 L697: Information Visualization 1993 1994 K. Borner 5 L697: Information Visualization 1995 1996 K. Borner 6 L697: Information Visualization 1997 1998 K. Borner 7 L697: Information Visualization 1999 2000 K. Borner 8 L697: Information Visualization 2001 2002 K. Borner 9 L697: Information Visualization 2003 2004 K. Borner 10 L697: Information Visualization U Berkeley After Stuart Card, IEEE InfoVis Keynote, 2004. U. Minnesota PARC Virginia Tech Georgia Tech Bell Labs CMU U Maryland Wittenberg 1. Motivation for Mapping Knowledge Domains / Computational Scientometrics Knowledge domain visualizations help answer questions such as: ¾ What are the major research areas, experts, institutions, regions, nations, grants, publications, journals in xx research? ¾ Which areas are most insular? ¾ What are the main connections for each area? ¾ What is the relative speed of areas? ¾ Which areas are the most dynamic/static? ¾ What new research areas are evolving? ¾ Impact of xx research on other fields? ¾ How does funding influence the number and quality of publications? Answers are needed by funding agencies, companies, and researchers.