Non-Spurious Correlations Between Genetic and Linguistic Diversities in the Context of Human Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Non-Spurious Correlations Between Genetic and Linguistic Diversities in the Context of Human Evolution Non-Spurious Correlations between Genetic and Linguistic Diversities in the Context of Human Evolution Dan Dediu Bsc. Math. Comp. Sci., Msc. Neurobiol. Behav. A thesis submitted in fulfillment of requirements for the degree of Doctor of Philosophy to Linguistics and English Language School of Philosophy, Psychology and Language Sciences University of Edinburgh February 2007 © Copyright 2006 by Dan Dediu Declaration I hereby declare that this thesis is of my own composition, and that it contains no material previously submitted for the award of any other degree. The work reported in this thesis has been executed by myself, except where due acknowledgment is made in the text. Dan Dediu iii iv Abstract This thesis concerns human diversity, arguing that it represents not just some form of noise, which must be filtered out in order to reach a deeper explanatory level, but the engine of human and language evolution, metaphorically put, the best gift Nature has made to us. This diversity must be understood in the context of (and must shape) human evolution, of which the Recent Out-of-Africa with Replacement model (ROA) is currently regarded, especially outside palaeoanthropology, as a true theory. It is argued, using data from palaeoanthropology, human population genetics, ancient DNA studies and primatology, that this model must be, at least, amended, and most probably, rejected, and its alternatives must be based on the concept of reticulation. The relationships between the genetic and linguistic diversities is complex, including inter- individual genetic and behavioural differences (behaviour genetics) and inter-population differences due to common demographic, geographic and historic factors (spurious correlations), used to study (pre)historical processes. It is proposed that there also exist non- spurious correlations between genetic and linguistic diversities, due to genetic variants which can bias the process of language change, so that the probabilities of alternative linguistic states are altered. The particular hypothesis (formulated with Prof. D. R. Ladd) of a causal relationship between two human genes and one linguistic typological feature is supported by the statistical analysis of a vast database of 983 genetic variants and 26 linguistic features in 49 Old World populations, controlling for geography and known linguistic history. The general theory of non-spurious correlations between genetic and linguistic diversities is developed and its consequences and predictions analyzed. It will very probably profoundly impact our understanding of human diversity and will offer a firm footing for theories of language evolution and change. More specifically, through such a mechanism, gradual, accretionary models of language evolution are a natural consequence of post-ROA human evolutionary models. The unravellings of causal effects of inter-population genetic differences on linguistic states, mediated by complex processes of cultural evolution (biased iterated learning), will represent a major advance in our understanding of the relationship between cultural and genetic diversities, and will allow a better appreciation of this most fundamental and supremely valuable characteristic of humanity – its intrinsic diversity. v vi Acknowledgments Many thanks to my supervisors, Jim Hurford and Simon Kirby, for encouragement and many critical and insightful discussions, even when I was attacking controversial issues (which I almost always did). To D. Robert Ladd for sharing his vast knowledge of linguistics and willingness to work hard on the “crazy” idea of non-spurious correlations, and for his continuous support. To Mónica Tamariz, Stefan Höfler and Dave Hawkey for discussions on linguistic diversity, its meanings and origins, to Anna Parker for help with getting this thesis right and all the other LEC members for sharing ideas and thought-provoking discussions. To Carmen Strungaru and Wulf Schiefenhövel for making me discover language evolution. Special thanks to my wife, Alexandra Dima, for her loving and funny way of being, and for her invaluable help with statistics, and her decisive role in my actually learning it. I would not have been here without her... To my parents, who made me like so many aspects of Nature, from biology to mathematics, teaching me how to think freely (especially in a time and place when this was forbidden), and helping me pursue my dreams, despite many hardships. The Overseas Research Students Awards Scheme (ORS Award 2003014001) and the College of Humanities and Social Science, University of Edinburgh's Studentship made this financially possible. I thank B. Connell, C. Kutsch Lojenga, H. Eaton, J. A. Edmondson, J. Hurford, K. Bostoen, L. Ziwo, M. Blackings, N. Fabb, O. Stegen, R. Asher, R. Ridouane, M. Endl and J. Roberts for help with language data and R. McMahon for comments on an early draft of the tone-genes correlation idea. vii viii Table of Contents Declaration............................................................................................................................. iii Abstract................................................................................................................................... v Acknowledgments................................................................................................................. vii 1. Introduction and overview................................................................................................... 1 2. Human evolution................................................................................................................. 3 2.1. The Recent Out-of-Africa Model and the Evolutionary History of Homo sapiens...... 4 2.1.1. The historical development of ROA.................................................................... 4 2.1.1.1. Mitochondrial DNA.................................................................................... 7 2.1.1.2. The Molecular Clock................................................................................. 10 2.1.1.3. How neutral really is the human mtDNA?................................................. 12 2.1.1.4. Review of critiques of Cann, Stoneking & Wilson (1987)........................ 13 2.1.1.5. Reaching the current view on modern human mtDNA.............................. 14 2.1.1.6. ROA in its current form............................................................................. 15 2.1.2. Before the moderns: the palaeoanthropological context.................................... 16 2.1.2.1. What are species?...................................................................................... 22 2.1.2.2. Homo erectus and their feats..................................................................... 26 2.1.2.3. Homo neanderthalensis............................................................................. 30 2.1.3. The evolution of modern humans: the competing models................................. 33 2.2. Problems and issues for ROA .................................................................................. 43 2.2.1. The transition to Homo sapiens was not a “revolution”..................................... 43 2.2.2. A structured population for the origins of Homo sapiens.................................. 47 2.2.3. Genes with deep, non-African branches............................................................ 48 2.2.4. Primate models and the speciosity of Homo...................................................... 52 2.2.5. Regional morphological continuity................................................................... 56 2.2.5.1. The Abrigo do Lagar Velho child.............................................................. 60 2.2.6. Global trends..................................................................................................... 61 2.2.7. Ancient DNA..................................................................................................... 63 2.2.8. The genetic structure of living populations........................................................ 68 2.2.8.1. The apportionment of genetic diversity in living humans and its interpretations......................................................................................................... 70 2.2.8.2. The evolutionary interpretations of modern human genetic diversity........ 74 2.2.9. The unexpected diversity of the genus Homo: the Flores man.......................... 78 2.3. Putting all together: what is the most plausible class of human evolutionary models? ......................................................................................................................................... 80 2.3.1. John Relethford's “Mostly Out Of Africa”........................................................ 81 2.3.2. Alan Templeton's “Out of Africa again and again”........................................... 83 2.4. Conclusions ............................................................................................................. 86 3. Language-genes correlations............................................................................................. 89 3.1. The correlations between the capacity for language and the genetic makeup............ 90 3.1.1. Methods............................................................................................................. 90 3.1.2. Measuring the effect of genes and environment: the heritability....................... 94 3.1.3. Heritability estimates for speech and language...............................................
Recommended publications
  • Deepening Histories and the Deep Past
    12. Lives and Lines Integrating molecular genetics, the ‘origins of modern humans’ and Indigenous knowledge Martin Porr Introduction Within Palaeolithic archaeology and palaeoanthropology a general consensus seems to have formed over the last decades that modern humans – people like us – originated in Africa around 150,000 to 200,000 years ago and subsequently migrated into the remaining parts of the Old and New World to reach Australia by about 50,000 years ago and Patagonia by about 13,000 years ago.1 This view is encapsulated in describing Africa as ‘the cradle of humankind’. This usually refers to the origins of the genus Homo between two and three million years ago, but it is readily extended to the processes leading to the origins of our species Homo sapiens sapiens.2 A narrative is created that consequently imagines the repeated origins of species of human beings in Sub-Saharan Africa and their subsequent colonisation of different parts of the world. In the course of these conquests other human species are replaced, such as the Neanderthals in western and central Eurasia.3 These processes are described with the terms ‘Out-of-Africa I’ (connected to Homo ergaster/erectus around two million years ago) and ‘Out-of-Africa II’ (connected to Homo sapiens sapiens about 100,000 years ago). It is probably fair to say that this description relates to the most widely accepted view of ‘human origins’ both in academia as well as the public sphere.4 Analysis of ancient DNA, historical DNA samples and samples from living human populations molecular genetics increasingly contributes to our understanding of the deep past and generally, and seems to support this ‘standard model of human origins’, beginning with the establishment of the mitochondrial ‘Eve’ hypothesis from the 1980s onwards.5 In 2011 an Australian Indigenous genome was for the first time analysed – a 100-year-old hair sample from the Western Australian 1 Oppenheimer 2004, 2009.
    [Show full text]
  • PDF Generated By
    The Evolution of Language: Towards Gestural Hypotheses DIS/CONTINUITIES TORUŃ STUDIES IN LANGUAGE, LITERATURE AND CULTURE Edited by Mirosława Buchholtz Advisory Board Leszek Berezowski (Wrocław University) Annick Duperray (University of Provence) Dorota Guttfeld (Nicolaus Copernicus University) Grzegorz Koneczniak (Nicolaus Copernicus University) Piotr Skrzypczak (Nicolaus Copernicus University) Jordan Zlatev (Lund University) Vol. 20 DIS/CONTINUITIES Przemysław ywiczy ski / Sławomir Wacewicz TORUŃ STUDIES IN LANGUAGE, LITERATURE AND CULTURE Ż ń Edited by Mirosława Buchholtz Advisory Board Leszek Berezowski (Wrocław University) Annick Duperray (University of Provence) Dorota Guttfeld (Nicolaus Copernicus University) Grzegorz Koneczniak (Nicolaus Copernicus University) The Evolution of Language: Piotr Skrzypczak (Nicolaus Copernicus University) Jordan Zlatev (Lund University) Towards Gestural Hypotheses Vol. 20 Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.d-nb.de. The translation, publication and editing of this book was financed by a grant from the Polish Ministry of Science and Higher Education of the Republic of Poland within the programme Uniwersalia 2.1 (ID: 347247, Reg. no. 21H 16 0049 84) as a part of the National Programme for the Development of the Humanities. This publication reflects the views only of the authors, and the Ministry cannot be held responsible for any use which may be made of the information contained therein. Translators: Marek Placi ski, Monika Boruta Supervision and proofreading: John Kearns Cover illustration: © ńMateusz Pawlik Printed by CPI books GmbH, Leck ISSN 2193-4207 ISBN 978-3-631-79022-9 (Print) E-ISBN 978-3-631-79393-0 (E-PDF) E-ISBN 978-3-631-79394-7 (EPUB) E-ISBN 978-3-631-79395-4 (MOBI) DOI 10.3726/b15805 Open Access: This work is licensed under a Creative Commons Attribution Non Commercial No Derivatives 4.0 unported license.
    [Show full text]
  • Ancient Skulls May Belong to Elusive Humans Called Denisovans by Ann Gibbons Mar
    Ancient skulls may belong to elusive humans called Denisovans By Ann Gibbons Mar. 2, 2017. Since their discovery in 2010, the extinct ice age humans called Denisovans have been known only from bits of DNA, taken from a sliver of bone in the Denisova Cave in Siberia, Russia. Now, two partial skulls from eastern China are emerging as prime candidates for showing what these shadowy people may have looked like. In a paper published this week in Science, a Chinese-U.S. team presents 105,000- to 125,000-year-old fossils they call “archaic Homo.” They note that the bones could be a new type of human or an eastern variant of Neandertals. But although the team avoids the word, “everyone else would wonder whether these might be Denisovans,” which are close cousins to Neandertals, says paleoanthropologist Chris Stringer of the Natural History Museum in London. The new skulls “definitely” fit what you’d expect from a Denisovan, adds paleoanthropologist María Martinón-Torres of the University College London —“something with an Asian flavor but closely related to Neandertals.” But because the investigators have not extracted DNA from the skulls, “the possibility remains a speculation.” Back in December 2007, archaeologist Zhan-Yang Li of the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) in Beijing was wrapping up his field season in the town of Lingjing, near the city of Xuchang in the Henan province in China (about 4000 kilometers from the Denisova Cave), when he spotted some beautiful quartz stone tools eroding out of the sediments. He extended the field season for two more days to extract them.
    [Show full text]
  • What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
    COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers.
    [Show full text]
  • K = Kenyanthropus Platyops “Kenya Man” Discovered by Meave Leaky
    K = Kenyanthropus platyops “Kenya Man” Discovered by Meave Leaky and her team in 1998 west of Lake Turkana, Kenya, and described as a new genus dating back to the middle Pliocene, 3.5 MYA. A = Australopithecus africanus STS-5 “Mrs. Ples” The discovery of this skull in 1947 in South Africa of this virtually complete skull gave additional credence to the establishment of early Hominids. Dated at 2.5 MYA. H = Homo habilis KNM-ER 1813 Discovered in 1973 by Kamoya Kimeu in Koobi Fora, Kenya. Even though it is very small, it is considered to be an adult and is dated at 1.9 MYA. E = Homo erectus “Peking Man” Discovered in China in the 1920’s, this is based on the reconstruction by Sawyer and Tattersall of the American Museum of Natural History. Dated at 400-500,000 YA. (2 parts) L = Australopithecus afarensis “Lucy” Discovered by Donald Johanson in 1974 in Ethiopia. Lucy, at 3.2 million years old has been considered the first human. This is now being challenged by the discovery of Kenyanthropus described by Leaky. (2 parts) TC = Australopithecus africanus “Taung child” Discovered in 1924 in Taung, South Africa by M. de Bruyn. Raymond Dart established it as a new genus and species. Dated at 2.3 MYA. (3 parts) G = Homo ergaster “Nariokotome or Turkana boy” KNM-WT 15000 Discovered in 1984 in Nariokotome, Kenya by Richard Leaky this is the first skull dated before 100,000 years that is complete enough to get accurate measurements to determine brain size. Dated at 1.6 MYA.
    [Show full text]
  • Darwin and the Recent African Origin of Modern Humans
    EDITORIAL Darwin and the recent African origin of modern humans Richard G. Klein1 Program in Human Biology, Stanford University, Stanford, CA 94305 n this 200th anniversary of When Darwin and Huxley were ac- The Course of Human Evolution Charles Darwin’s birth and tive, many respected scientists sub- In the absence of fossils, Darwin could the 150th anniversary of the scribed to the now discredited idea that not have predicted the fundamental pat- publication of his monumen- human races represented variably tern of human evolution, but his evolu- Otal The Origin of Species (1859) (1), it evolved populations of Homo sapiens. tionary theory readily accommodates seems fitting to summarize Darwin’s The original Neanderthal skull had a the pattern we now recognize. Probably views on human evolution and to show conspicuous browridge, and compared the most fundamental finding is that the how far we have come since. Darwin with the skulls of modern humans, it australopithecines, who existed from at famously neglected the subject in The was decidedly long and low. At the same least 4.5 million to 2 million years ago, Origin, except near the end where he time, it had a large braincase, and Hux- were distinguished from apes primarily noted only that ‘‘light would be thrown ley regarded it as ‘‘the extreme term of by anatomical specializations for habit- on the origin of man and his history’’ by a series leading gradually from it to the ual bipedalism, and it was only after 2 the massive evidence he had compiled highest and best developed of [modern] million years ago that people began to for evolution by means of natural selec- human crania.’’ It was only in 1891 that acquire the other traits, including our tion.
    [Show full text]
  • Lieberman 2001E.Pdf
    news and views Another face in our family tree Daniel E. Lieberman The evolutionary history of humans is complex and unresolved. It now looks set to be thrown into further confusion by the discovery of another species and genus, dated to 3.5 million years ago. ntil a few years ago, the evolutionary history of our species was thought to be Ureasonably straightforward. Only three diverse groups of hominins — species more closely related to humans than to chim- panzees — were known, namely Australo- pithecus, Paranthropus and Homo, the genus to which humans belong. Of these, Paran- MUSEUMS OF KENYA NATIONAL thropus and Homo were presumed to have evolved between two and three million years ago1,2 from an early species in the genus Australopithecus, most likely A. afarensis, made famous by the fossil Lucy. But lately, confusion has been sown in the human evolutionary tree. The discovery of three new australopithecine species — A. anamensis3, A. garhi 4 and A. bahrelghazali5, in Kenya, Ethiopia and Chad, respectively — showed that genus to be more diverse and Figure 1 Two fossil skulls from early hominin species. Left, KNM-WT 40000. This newly discovered widespread than had been thought. Then fossil is described by Leakey et al.8. It is judged to represent a new species, Kenyanthropus platyops. there was the finding of another, as yet poorly Right, KNM-ER 1470. This skull was formerly attributed to Homo rudolfensis1, but might best be understood, genus of early hominin, Ardi- reassigned to the genus Kenyanthropus — the two skulls share many similarities, such as the flatness pithecus, which is dated to 4.4 million years of the face and the shape of the brow.
    [Show full text]
  • The Mysterious Phylogeny of Gigantopithecus
    Kimberly Nail Department ofAnthropology University ofTennessee - Knoxville The Mysterious Phylogeny of Gigantopithecus Perhaps the most questionable attribute given to Gigantopithecus is its taxonomic and phylogenetic placement in the superfamily Hominoidea. In 1935 von Koenigswald made the first discovery ofa lower molar at an apothecary in Hong Kong. In a mess of"dragon teeth" von Koenigswald saw a tooth that looked remarkably primate-like and purchased it; this tooth would later be one offour looked at by a skeptical friend, Franz Weidenreich. It was this tooth that von Koenigswald originally used to name the species Gigantopithecus blacki. Researchers have only four mandibles and thousands ofteeth which they use to reconstruct not only the existence ofthis primate, but its size and phylogeny as well. Many objections have been raised to the past phylogenetic relationship proposed by Weidenreich, Woo, and von Koenigswald that Gigantopithecus was a forerunner to the hominid line. Some suggest that researchers might be jumping the gun on the size attributed to Gigantopithecus (estimated between 10 and 12 feet tall); this size has perpetuated the idea that somehow Gigantopithecus is still roaming the Himalayas today as Bigfoot. Many researchers have shunned the Bigfoot theory and focused on the causes of the animals extinction. It is my intention to explain the theories ofthe past and why many researchers currently disagree with them. It will be necessary to explain how the researchers conducted their experiments and came to their conclusions as well. The Research The first anthropologist to encounter Gigantopithecus was von Koenigswald who happened upon them in a Hong Kong apothecary selling "dragon teeth." Due to their large size one may not even have thought that they belonged to any sort ofprimate, however von Koenigswald knew better because ofthe markings on the molar.
    [Show full text]
  • The Biting Performance of Homo Sapiens and Homo Heidelbergensis
    Journal of Human Evolution 118 (2018) 56e71 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The biting performance of Homo sapiens and Homo heidelbergensis * Ricardo Miguel Godinho a, b, c, , Laura C. Fitton a, b, Viviana Toro-Ibacache b, d, e, Chris B. Stringer f, Rodrigo S. Lacruz g, Timothy G. Bromage g, h, Paul O'Higgins a, b a Department of Archaeology, University of York, York, YO1 7EP, UK b Hull York Medical School (HYMS), University of York, Heslington, York, North Yorkshire YO10 5DD, UK c Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), University of Algarve, Faculdade das Ci^encias Humanas e Sociais, Universidade do Algarve, Campus Gambelas, 8005-139, Faro, Portugal d Facultad de Odontología, Universidad de Chile, Santiago, Chile e Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany f Department of Earth Sciences, Natural History Museum, London, UK g Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA h Departments of Biomaterials & Biomimetics, New York University College of Dentistry, New York, NY 10010, USA article info abstract Article history: Modern humans have smaller faces relative to Middle and Late Pleistocene members of the genus Homo. Received 15 March 2017 While facial reduction and differences in shape have been shown to increase biting efficiency in Homo Accepted 19 February 2018 sapiens relative to these hominins, facial size reduction has also been said to decrease our ability to resist masticatory loads. This study compares crania of Homo heidelbergensis and H.
    [Show full text]
  • Full Text Document (Pdf)
    Kent Academic Repository Full text document (pdf) Citation for published version Zanolli, Clément and Kullmer, Ottmar and Kelley, Jay and Bacon, Anne-Marie and Demeter, F and Dumoncel, Jean and Fiorenza, Luca and Grine, Fred E. and Hublin, Jean-Jacques and Tuan, Nguyen and Huong, Nguyen and Pan, Lei and Schillinger, Burkhard and Schrenk, Friedemann and Skinner, Matthew M. and Ji, Xueping and Macchiarelli, Roberto (2019) Evidence for increased DOI Link to record in KAR https://kar.kent.ac.uk/72814/ Document Version Author's Accepted Manuscript Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html 1 Evidence for increased hominid diversity in the Early-Middle 2 Pleistocene of Java, Indonesia 3 4 Clément Zanolli1*, Ottmar Kullmer2,3, Jay Kelley4,5,6, Anne-Marie Bacon7, Fabrice Demeter8,9, Jean 5 Dumoncel1, Luca Fiorenza10,11, Frederick E.
    [Show full text]
  • Radical Anthropology
    Issue 5 November 2011 Radical Anthropology Zanna Clay Bonobo ‘girl power’ Sheila Coulson and Sigrid Staurset Ritual at Rhino Cave Camilla Power Lunarchy in the Kingdom of England Graham Purchase on ‘The Art of not being Governed’ £4 www.radicalanthropologygroup.org ISSN 1756-0896 (Print) /ISSN 1756-090X (Online) Who we are and what we do Editor Radical: about the inherent, fundamental roots of an issue. Anthropology: the study of what it means to be human. Camilla Power Email: [email protected] Radical Anthropology is the journal of the Radical Anthropology Group. Anthropology asks one big question: what does it mean to be human? Editorial Board To answer this, we cannot rely on common sense or on philosophical arguments. We must study how humans actually live – and the Chris Knight, anthropologist, activist. many different ways in which they have lived. This means learning, Jerome Lewis, anthropologist for example, how people in non-capitalist societies live, how they at University College London. organise themselves and resolve conflict in the absence of a state, Ana Lopes, anthropologist. the different ways in which a ‘family’ can be run, and so on. Brian Morris, emeritus professor of anthropology at Goldsmiths Additionally, it means studying other species and other times. College,University of London. What might it mean to be almost – but not quite – human? Lionel Sims, anthropologist at How socially self-aware, for example, is a chimpanzee? the University of East London. Do nonhuman primates have a sense of morality? Do they have
    [Show full text]
  • A Revision of Austmlopithecine Body Sizes
    65 A REVISION OF AUSTMLOPITHECINE BODY SIZES Grover S. Krantz Anthropology Department Washington State University Pullman, Washington 99L63, U.S.A. Received February 18, L977 ABSTMCT: When AustralopiEhecus dentiEions are divided into africanus and robustus on morphological grounds alone it is found that both species are found in each of the major South African sites. There is a greaL sexual dimor- phisrn in both species with a relative scarcity of the big urale africanus and the small female robustus. Skulls and jaws of young male africanus and female robustus have previously been misidentified as early genus Homg. With site allocation no longer valid, a ner^rmethod of identifying postcranial remains shows that africanus averages much larger than robustus. With new ratios of tooth fo body size the greater degree of morphological molarization in robustus now makes sense. J Introduction Australopithecus remains are generally thought of as two species; A. elg- ttgracilet' t'robusttt canus is the form, and A. robustus is the form. Some think this distinction merely reflects differences beLween sexes, races, and indivi- dual variations within a single species. Ot.hers raise the distinction to generic level with Paranghlgpge being the "robust't form, and Australopithecus continu- ing as tfre \ra"ifettorm which is sometimes even ittcl.rded in our own genus as Homo africanus. These various opinions are well known in the literature. The taxonomic leve1 of distinction between the trvo forms i-s not at issue here, but rather the most basic assumptions on which the two forms are based. Before anything meaningful can be decided about two kj-nds of australopithecines it is necessary to know which specimens belong in each category and how they differ from each other.
    [Show full text]