The Origin of Science by Louis Liebenberg

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Science by Louis Liebenberg The Origin of Science The Evolutionary Roots of Scientific Reasoning and its Implications for Tracking Science Second Edition Louis Liebenberg Cape Town, South Africa www.cybertracker.org 2021 2 Endorsements “This is an extraordinary book. Louis Liebenberg, our intrepid and erudite guide, gives us a fascinating view of a people and a way of life that have much to say about who we are, but which soon will vanish forever. His data are precious, his stories are gripping, and his theory is a major insight into the nature and origins of scientific thinking, and thus of what makes us unique as a species.” Steven Pinker, Harvard College Professor of Psychology, Harvard University, and author of How the Mind Works and Rationality. “Louis Liebenberg’s argument about the evolution of scientific thinking is highly original and deeply important.” Daniel E. Lieberman, Professor of Human Evolutionary Biology at Harvard University, and author of The Story of the Human Body and Exercised. “Although many theories of human brain evolution have been offered over the years, Louis Liebenberg’s is refreshingly straightforward.” David Ludden, review in PsycCRITIQUES. “The Origin of Science is a stunningly wide-ranging, original, and important book.” Peter Carruthers, Professor of Philosophy, University of Maryland, and author of The Architecture of the Mind. “Charles Darwin and Louis Liebenberg have a lot in common. Their early research was supported financially by their parents, and both studied origins... Both risked their lives for their work.” Ian Percival, Professor of Physics and Astronomy at the University of Sussex and Queen Mary, University of London and the Dirac medal for theoretical physics. “Louis Liebenberg is a scholar and adventurer whose work combines academic rigor, inspired leaps of insight, and a remarkable willingness to risk himself in pursuit of an idea.” Christopher McDougall, author of Born to Run. Louis Liebenberg is an Associate of Human Evolutionary Biology at Harvard University and a Laureate of the Rolex Awards for Enterprise. 3 A New Vision of Science In this book I will address one of the great mysteries of human evolution: How did the human mind evolve the ability to develop science? The art of tracking may well be the origin of science. Science may have evolved more than a hundred thousand years ago with the evolution of modern hunter-gatherers. Scientific reasoning may therefore be an innate ability of the human mind. This may have far-reaching implications for self-education and tracking science. The implication of this theory is that anyone, regardless of their level of education, whether or not they can read or write, regardless of their cultural background, can make a contribution to science. Kalahari trackers have been employed in modern scientific research using GPS-enabled handheld computers and have co-authored scientific papers. Tracking scientists have made fundamental contributions to science. From a simple observation of a bird captured on a smart phone through to a potential Einstein, some may be better than others, but everyone can participate in science. Today humanity is becoming increasingly dependent on science and technology for survival, from our dependence on information technology through to solving problems related to energy production, food production, health, climate change and biodiversity conservation. Involving everyone in science may be crucial for the survival of humanity over the next hundred years. Scientific reasoning was part of hunter-gatherer culture, along with music, storytelling and other aspects of their culture. Science and art should be an integral part of human culture, as it has been for more than a hundred thousand years. 4 The Origin of Science Endorsements A New Vision of Science Contents 1. A Paradox of Human Evolution 2. The Kudu Chase 3. Hunter-Gatherer Subsistence 4. Persistence Hunting 5. The Art of Tracking 6. The Evolution of Tracking 7. The Evolution of Science 8. The Scientific Imagination 9. Science, Language and Art 10. Modern Tracking 11. Tracking Science 12. The Future CyberTracker Conservation Acknowledgements About the Author References First eBook Edition: 2013 Second eBook Edition: 2021 Version 2.2 ISBN 978-0-620-57683-3 (e-book) Creative Commons Attribution-NoDerivs CC BY-ND This book is licensed under the Creative Commons Attribution-NoDerivs License and distributed as a free digital book. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole (including the CyberTracker logo and website address on the title page), with credit to the author. 5 Contents Chapter 1: A Paradox of Human Evolution The history of science suggests that when a theory confronts a paradox, the resolution will be a new paradigm that transcends what went before. In this chapter I look at one of the greatest paradoxes in human evolution: How did the human mind evolve the cognitive ability for scientific reasoning? Chapter 2: The Kudu Chase Persistence hunting was probably one of the first forms of human hunting and may have played a critical role in the origin of science. Chapter 3: Hunter-Gatherer Subsistence To reconstruct the context in which the art of tracking may have evolved, it is useful to identify and define various aspects of hunter-gatherer subsistence. While the methods used by recent hunter-gatherers cannot simply be retrojected back into the past an analysis of known methods of hunting and gathering may help to recreate the ways in which hominin subsistence may have evolved. • Foraging 24 • Scavenging 26 • Hunting 29 • Persistence Hunting 29 • Hunting with Missile Weapons 31 6 • Natural Traps 32 • Artificial Traps and Snares 32 • Ambush 33 • Hunting with Domesticated Animals 34 • The Evolution of Hunting and Gathering 35 Chapter 4: Persistence Hunting Persistence hunting may have been the origin of hunting and represent a transition from predation to hunting. Early forms of persistence hunting that involved simple and systematic tracking would have been a form of predation, while more sophisticated forms persistence hunting that involves speculative tracking may have been the first form of hunting that involves creative human culture. • Participatory Observations 37 • Observations of the Persistence Hunt 39 • Local Knowledge and Practice 44 • Endurance Running by Humans 45 • Relative Success Rates of Hunting Methods 48 Chapter 5: The Art of Tracking In this chapter I look at the art of tracking as practiced by Kalahari trackers in a traditional hunting context. • Lion Tracking 53 • Track Identification 56 • Recognition of Signs 58 • Peripheral Perception 62 • Intuition 64 7 • Interpretation of Activities 66 • Ageing of Tracks & Signs 67 • Reconstruction of Activities 68 • Track Anticipation and Prediction 70 • Systematic and Speculative Tracking 73 • Knowledge of Animal Behaviour 80 • Knowledge for the Sake of Knowledge 85 • Mental Qualities 88 • Underlying Simplicity, Symmetry and Unity 90 • The Scientific Process in Tracking 92 • Mythology and Religion 101 • Skepticism and Individualistic Theories and Hypotheses 104 • !Nate’s Cosmology 105 Chapter 6: The Evolution of Tracking To reconstruct how tracking may have evolved, this chapter breaks down tracking into three levels. Climate change resulting in environmental change would have resulted in the evolution of tracking from simple to systematic through to speculative tracking. This would explain how, through natural selection, humans evolved the ability to develop creative science. • Tracking an Aardvark 108 • Simple, Systematic and Speculative Tracking 109 • The Origin of Tracking 111 • How Tracking Evolved 114 • The Evolution of the Human Brain 122 • Visual Perception and the Imagination 122 • Landmarks in the Evolution of Tracking 127 • The Logistic Growth of Knowledge 129 8 Chapter 7: The Evolution of Science In this chapter I will develop a model of the growth of science based on an evolutionary definition of science. This model will allow us to resolve apparent paradoxes and explain how science evolved through natural selection. • Scientific Revolutions 132 • The Logistic Growth of Scientific Knowledge 133 • An Evolutionary Definition of Science 136 • Natural Selection for the Origin of Science 138 • Rare and Infrequent Technological Inventions 142 • The Cultural Evolution of Science 142 • Cultural Relativism 145 • Conceptual Discontinuities 147 Chapter 8: The Scientific Imagination To develop an explanation of how science evolved, we need to have some understanding of what we mean by the term “science.” In this book I will make a clear distinction between “empirical knowledge” and “creative science.” I will look at how some scientists think when they engage in scientific reasoning and the views of various scientists and philosophers of science. I will point out the similarities between the art of tracking and modern science, with particular reference to modern physics. • Novel Predictions in Tracking 149 • Unifying “Law-Like” Generalities in Tracking 155 • Novel Predictions in Modern Science 157 • The Origins of Special Relativity Theory 157 • Deeper Underlying Unity 159 • Anthropomorphic Representation 161 9 • Spatial Visualization 164 • Benefits of Relativity Theory to Kalahari Trackers 165 • The Logic of Science 165 • Inductive-Deductive Reasoning 166 • Hypothetico-Deductive Reasoning 168 • Thematic Presuppositions 170 • Constructing a Scientific Theory 173 • Reasonable even if Impossible to Verify 177 • The Absence of the Scientific-Philosophic
Recommended publications
  • Celastraceae), a New Species from Southern Africa
    Phytotaxa 208 (3): 217–224 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.208.3.4 Putterlickia neglecta (Celastraceae), a new species from southern Africa MARIE JORDAAN1,3, RICHARD G.C. BOON2 & ABRAHAM E. VAN WYK1* 1H.G.W.J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, 0002 South Africa. 2Environmental Planning and Climate Protection Department, eThekwini Municipality, Durban, 4000 South Africa. 3Previous address: South African National Biodiversity Institute, Private Bag X101, Pretoria, 0001 South Africa. *Author for correspondence. E-mail: [email protected] Abstract Putterlickia neglecta, a new species here described and illustrated, is known from South Africa (Mpumalanga and north- eastern KwaZulu-Natal), Swaziland and southern Mozambique. It is considered a near-endemic to the Maputaland Centre of Endemism. Plants grow as a shrub or small tree in savanna and thicket, or in the understory of inland, coastal and dune forests. Vegetatively it superficially resembles P. verrucosa, the species with which it has hitherto most often been confused. Both species have stems with prominently raised lenticels, but P. neglecta differs from P. verrucosa in having sessile to subsessile leaves with mostly entire, revolute leaf margins, flowers borne on pedicels 8–15 mm long, with petals up to 6 mm long and spreading or slightly recurved. Putterlickia verrucosa has leaves with distinct petioles, spinulose-denticulate mar- gins, much smaller flowers borne on pedicels up to 4 mm long, with petals up to 2 mm long and erect or slightly spreading.
    [Show full text]
  • Hymenoptera, Formicidae)
    Belg. J. Zool. - Volume 123 (1993) - issue 2 - pages 159-163 - Brussels 1993 Manuscript received on 25 June 1993 NOTES ON THE ABERRANT VENOM GLAND MORPHOLOGY OF SOME AUSTRALIAN DOLICHODERINE AND MYRMICINE ANTS (HYMENOPTERA, FORMICIDAE) by JOHAN BILLEN 1 and ROBERT W. TAYLOR 2 1 Zoological Institute, University of Leuven, Naamsestraat 59, B-3000 Leuven, Belgium 2 Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra ACT 2601, Australia SUMMARY Two Australian species of Dolichoderus Lund, and one of Leptomyrmex Mayr (both sub­ family Dolichoderinae), have venom glands with two long, slender secretory fil aments. In this regard they resemble previously analysed ants of the subfamily Myrmicinae, rather tban other dolichoderines. Alternatively, four Meranoplus Smith species (subfamily Myrmicinae) bave short, knob-like filaments, like tbose of previously reported dolicboderines, and unlike otber myrmicines. Features of venom gland morpbology are thus Jess constant or diagnostically reliable for these subfamilies than was previously supposed. Keywords : venom gland, morphology, Dolichoderus, Leptomyrmex, Meranoplus. INTRODUCTION The ant subfamily Dolichoderinae, with its apparent sister-group the Aneuretinae (TRANŒLLO and JAYASURIYA, 1981), is characterized by the distinctive and peculiar configuration of its abdominal exocrine glandular system (BILLEN, 1986). These ants alone have a Pavan's gland, and their pygidial glands are so hypertrophied as to have been previously regarded as separate 'anal glands', which were thought unjquely to characterize them. T he venom gland of these ants has also been considered urnque in possessing two very short knob-bke secretory filaments, whjch is considered to characterize the Dolichoderinae (HôLLDOBLER and WILSON, 1990). Morphological descriptions of the dolichoderine venom gland are available for representatives of the genera Azteca, Bothriomyrmex, Dolichoderus, Iridomyr­ mex, Liometopum and Tapinoma (PAVAN, 1955; PA VAN and RoNCHETTI, 1955 ; BLUM and HERMANN, 1978b ; BILLEN, 1986).
    [Show full text]
  • Wildlife Trade Operation Proposal – Queen of Ants
    Wildlife Trade Operation Proposal – Queen of Ants 1. Title and Introduction 1.1/1.2 Scientific and Common Names Please refer to Attachment A, outlining the ant species subject to harvest and the expected annual harvest quota, which will not be exceeded. 1.3 Location of harvest Harvest will be conducted on privately owned land, non-protected public spaces such as footpaths, roads and parks in Victoria and from other approved Wildlife Trade Operations. Taxa not found in Victoria will be legally sourced from other approved WTOs or collected by Queen of Ants’ representatives from unprotected areas. This may include public spaces such as roadsides and unprotected council parks, and other property privately owned by the representatives. 1.4 Description of what is being harvested Please refer to Attachment A for an outline of the taxa to be harvested. The harvest is of live adult queen ants which are newly mated. 1.5 Is the species protected under State or Federal legislation Ants are non-listed invertebrates and are as such unprotected under Victorian and other State Legislation. Under Federal legislation the only protection to these species relates to the export of native wildlife, which this application seeks to satisfy. No species listed under the EPBC Act as threatened (excluding the conservation dependent category) or listed as endangered, vulnerable or least concern under Victorian legislation will be harvested. 2. Statement of general goal/aims The applicant has recently begun trading queen ants throughout Victoria as a personal hobby and has received strong overseas interest for the species of ants found.
    [Show full text]
  • MATERIAL and METHODS (Table 1)
    and P. Santschi Systematic status of Plectroctena mandibularis Smith conjugate (Hymenoptera: Formicidae: Ponerini) 1 1 2 Villet L. McKitterick & H.G. Robertson M.H. , F. Because there has Plectroctena maiuiilnilans Smith is the type species of Plectroctena Smith. to as- been some doubt about its distinctness from P. conjitgnta, several techniques were used several series contained sess the systematic status of the two species. Most crucially, colony or the workers of both phenotypes, and where these series included queens males, not related to those of the distinguishing feature of these specimens was consistently workers. Queens, males and workers did not manifest qualitative differences between the between the two. The taxa, and morphological variation was continuous putative morpho- for workers of the taxa arose from allometric logical basis (funicular index) distinguishing in males was related to but no variation. Putatively diagnostic colour variation latitude, could be correlated with distribu- simple pattern of morphological variation geographical of P. niandilnilaris. tion. Plcctivctt'iia conjugate! is therefore considered a junior synonym southern Key words: Ponerinae, systemati rphometrics, biogeography, INTRODUCTION whether is a distinct cannot be The genus Plcctroctcnn F. Smith, 1858, was de- cunjitgata species a decision scribed to accommodate P. nmndilntlnrif Smith, settled satisfactorily at present, and must await the of more of all 1858. This species has been difficult to distinguish amassing specimens the of three castes'. In three males of from P. conjitgntn Santschi, 1914, workers particular, only were available to Bolton for examination. which were distinguished from those of P. inaiuii- conjugata variation and small have 1'iilarif by being smaller and having funicular Geographic samples confounded assessment segments 3-5 shorter than wide, rather than consequently systematic of P.
    [Show full text]
  • Aspen Ideas Festival Confirmed Speakers
    Aspen Ideas Festival Confirmed Speakers Carol Adelman , President, Movers and Shakespeares; Senior Fellow and Director, Center for Global Prosperity, The Hudson Institute Kenneth Adelman , Vice President, Movers and Shakespeares; Executive Director, Arts & Ideas Series, The Aspen Institute Stephen J. Adler , Editor-in-Chief, BusinessWeek Pamela A. Aguilar , Producer, Documentary Filmmaker; After Brown , Shut Up and Sing Madeleine K. Albright , founder, The Albright Group, LLC; former US Secretary of State; Trustee, The Aspen Institute T. Alexander Aleinikoff , Professor of Law and Dean, Georgetown University Law Center Elizabeth Alexander , Poet; Professor and Chair, African American Studies Department, Yale University Yousef Al Otaiba , United Arab Emirates Ambassador to the United States Kurt Andersen , Writer, Broadcaster, Editor; Host and Co-Creator, Public Radio International’s “Studio 360” Paula S. Apsell , Senior Executive Producer, PBS’s “NOVA” Anders Åslund , Senior Fellow, Peter G. Peterson Institute for International Economics Byron Auguste , Senior Partner, Worldwide Managing Director, Social Sector Office, McKinsey & Company Dean Baker , Co-Director, Center for Economic and Policy Research; Columnist, The Guardian ; Blogger, “Beat the Press,” The American Prospect James A. Baker III , Senior Partner, Baker Botts, LLP; former US Secretary of State Bharat Balasubramanian , Vice President, Group Research and Advanced Engineering; Product Innovations & Process Technologies, Daimler AG Jack M. Balkin , Knight Professor of Constitutional
    [Show full text]
  • Another Darwinian Aesthetics
    This is a repository copy of Another Darwinian Aesthetics. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/103826/ Version: Accepted Version Article: Wilson, Catherine orcid.org/0000-0002-0760-4072 (2016) Another Darwinian Aesthetics. Journal of aesthetics and art criticism. pp. 237-252. ISSN 0021-8529 https://doi.org/10.1111/jaac.12283 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Another Darwinian Aesthetics (Last ms version). Published Version: WILSON, CATHERINE. "Another Darwinian Aesthetics." The Journal of Aesthetics and Art Criticism 74.3 (2016): 237-252. Despite the bright sun, dew was still dripping from the chrysanthemums in the garden. On the bamboo fences, and criss-cross hedges, I saw tatters of spiderwebs; and where the threads were broken the raindrops hung on them like strings of white pearls. I was greatly moved and delighted. …Later I described to people how beautiful it all was.
    [Show full text]
  • Non-Spurious Correlations Between Genetic and Linguistic Diversities in the Context of Human Evolution
    Non-Spurious Correlations between Genetic and Linguistic Diversities in the Context of Human Evolution Dan Dediu Bsc. Math. Comp. Sci., Msc. Neurobiol. Behav. A thesis submitted in fulfillment of requirements for the degree of Doctor of Philosophy to Linguistics and English Language School of Philosophy, Psychology and Language Sciences University of Edinburgh February 2007 © Copyright 2006 by Dan Dediu Declaration I hereby declare that this thesis is of my own composition, and that it contains no material previously submitted for the award of any other degree. The work reported in this thesis has been executed by myself, except where due acknowledgment is made in the text. Dan Dediu iii iv Abstract This thesis concerns human diversity, arguing that it represents not just some form of noise, which must be filtered out in order to reach a deeper explanatory level, but the engine of human and language evolution, metaphorically put, the best gift Nature has made to us. This diversity must be understood in the context of (and must shape) human evolution, of which the Recent Out-of-Africa with Replacement model (ROA) is currently regarded, especially outside palaeoanthropology, as a true theory. It is argued, using data from palaeoanthropology, human population genetics, ancient DNA studies and primatology, that this model must be, at least, amended, and most probably, rejected, and its alternatives must be based on the concept of reticulation. The relationships between the genetic and linguistic diversities is complex, including inter- individual genetic and behavioural differences (behaviour genetics) and inter-population differences due to common demographic, geographic and historic factors (spurious correlations), used to study (pre)historical processes.
    [Show full text]
  • Nest Site Selection During Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera Villosa (Hymenoptera: Formicidae)
    insects Article Nest Site Selection during Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera villosa (Hymenoptera: Formicidae) Franklin H. Rocha 1, Jean-Paul Lachaud 1,2, Yann Hénaut 1, Carmen Pozo 1 and Gabriela Pérez-Lachaud 1,* 1 El Colegio de la Frontera Sur, Conservación de la Biodiversidad, Avenida Centenario km 5.5, Chetumal 77014, Quintana Roo, Mexico; [email protected] (F.H.R.); [email protected] (J.-P.L.); [email protected] (Y.H.); [email protected] (C.P.) 2 Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 31062 Toulouse, France * Correspondence: [email protected]; Tel.: +52-98-3835-0440 Received: 15 January 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: In the Yucatan Peninsula, the ponerine ant Neoponera villosa nests almost exclusively in tank bromeliads, Aechmea bracteata. In this study, we aimed to determine the factors influencing nest site selection during nest relocation which is regularly promoted by hurricanes in this area. Using ants with and without previous experience of Ae. bracteata, we tested their preference for refuges consisting of Ae. bracteata leaves over two other bromeliads, Ae. bromeliifolia and Ananas comosus. We further evaluated bromeliad-associated traits that could influence nest site selection (form and size). Workers with and without previous contact with Ae. bracteata significantly preferred this species over others, suggesting the existence of an innate attraction to this bromeliad. However, preference was not influenced by previous contact with Ae. bracteata. Workers easily discriminated between shelters of Ae. bracteata and A.
    [Show full text]
  • A Coherentist Conception of Ad Hoc Hypotheses
    A coherentist conception of ad hoc hypotheses Samuel Schindler [email protected] forthcoming in Studies in History and Philosophy of Science Abstract What does it mean for a hypothesis to be ad hoc? One prominent account has it that ad hoc hypotheses have no independent empirical support. Others have viewed ad hoc judgements as subjective. Here I critically review both of these views and defend my own Coherentist Conception of Ad hocness by working out its conceptual and descriptive attractions. Keywords: ad hoc; confirmation; independent support; novel success; coherence 1 Introduction It is widely agreed—amongst scientists and philosophers alike—that a good hypothesis ought not to be ad hoc. Consequently, a theory that requires ad hoc hypotheses in order to overcome empirical tests ought to be less acceptable for a rational agent than a theory that does without (or with fewer) ad hoc amendments. But what precisely does it mean for a hypothesis to be ad hoc? This is what this paper is about. Concept clarification is one of the central tasks of philosophy. Usually, it involves an explicandum and an explicatum, viz. a pre-analytic concept that is to be explicated and a concept which explicates this concept, respectively (Carnap 1950). For example, the concept TEMPERATURE explicates our pre- analytic concepts of WARM and COLD, and allows us to be much more precise and clear in the way we communicate with each other. In the case of ad hocness, the pre-analytic concept is something along the lines of “was introduced for the sole purpose of ‘saving’ a theory which faces observational anomalies”.
    [Show full text]
  • Group Recruitment in a Thermophilic Desert Ant, Ocymyrmex Robustior
    Eawag_07834 J Comp Physiol A (2013) 199:711–722 DOI 10.1007/s00359-013-0830-x ORIGINAL PAPER Group recruitment in a thermophilic desert ant, Ocymyrmex robustior Stefan Sommer • Denise Weibel • Nicole Blaser • Anna Furrer • Nadine E. Wenzler • Wolfgang Ro¨ssler • Ru¨diger Wehner Received: 19 March 2013 / Revised: 30 April 2013 / Accepted: 17 May 2013 / Published online: 8 June 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract Thermophilic desert ants—Cataglyphis, Ocy- nest. As video recordings show the leader, while continually myrmex, and Melophorus species inhabiting the arid zones keeping her gaster in a downward position, intermittently of the Palaearctic region, southern Africa and central Aus- touches the surface of the ground with the tip of the gaster tralia, respectively—are solitary foragers, which have been most likely depositing a volatile pheromone signal. These considered to lack any kind of chemical recruitment. Here recruitment events occur during the entire diurnal activity we show that besides mainly employing the solitary mode period of the Ocymyrmex foragers, that is, even at surface of food retrieval Ocymyrmex robustior regularly exhibits temperatures of more than 60 °C. They may provide group recruitment to food patches that cannot be exploited promising experimental paradigms for studying the inter- individually. Running at high speed to recruitment sites that play of orientation by chemical signals and path integration may be more than 60 m apart from the nest a leading ant, as well as other visual guidance routines. the recruiter, is followed by a loose and often quite dis- persed group of usually 2–7 recruits, which often overtake Keywords Desert ants Á Recruitment Á Ocymyrmex Á the leader, or may lose contact, fall back and return to the Path integration Á Solitary foraging S.
    [Show full text]
  • Supplementary Table 1: Rock Art Dataset
    Supplementary Table 1: Rock art dataset Name Latitude Longitude Earliest age in sampleLatest age in Modern Date of reference Dating methods Direct / indirect Exact Age / Calibrated Kind Figurative Reference sample Country Minimum Age / Max Age Abri Castanet, Dordogne, France 44.999272 1.101261 37’205 36’385 France 2012 Radiocarbon Indirect Minimum Age No Petroglyphs Yes (28) Altamira, Spain 43.377452 -4.122347 36’160 2’850 Spain 2013 Uranium-series Direct Exact Age Unknown Petroglyphs Yes (29) Decorated ceiling in cave Altxerri B, Spain 43.2369 -2.148555 39’479 34’689 Spain 2013 Radiocarbon Indirect Minimum age Yes Painting Yes (30) Anbarndarr I. Australia/Anbarndarr II, -12.255207 133.645845 1’704 111 Australia 2010 Radiocarbon Direct Exact age Yes Beeswax No (31) Australia/Gunbirdi I, Gunbirdi II, Gunbirdi III, Northern Territory Australia Anta de Serramo, Vimianzo, A Coruña, Galicia, 43.110048 -9.03242 6’950 6’950 Spain 2005 Radiocarbon Direct Exact age Yes Painting N/A (32) Spain Apollo 11 Cave, ǁKaras Region, Namibia -26.842964 17.290284 28’400 26’300 Namibia 1983 Radiocarbon Indirect Minimum age Unknown Painted Yes (33) fragments ARN‐0063, Namarrgon Lightning Man, Northern -12.865524 132.814001 1’021 145 Australia 2010 Radiocarbon Direct Exact age Yes Beeswax Yes Territory, Australia (31) Bald Rock, Wellington Range,Northern Territory -11.8 133.15 386 174 Australia 2010 Radiocarbon Direct Exact age Yes Beeswax N/A (31) Australia Baroalba Springs, Kakadu, Northern Territory, -12.677013 132.480901 7’876 7’876 Australia 2010 Radiocarbon
    [Show full text]
  • Banded Mongoose
    Mungos mungo – Banded Mongoose Assessment Rationale The Banded Mongoose is listed as Least Concern as, although its distribution is restricted to the northeast of the assessment region, it is generally common in suitable habitat and is present in several protected areas. There are no major threats that could cause range-wide population decline. Accidental persecution through poisoning, controlled burning, and infectious disease may lead to local declines, whilst wildlife ranching might have a positive effect by conserving more suitable habitat and connecting subpopulations. Regional population effects: Dispersal across regional Chris & Mathilde Stuart borders is suspected as the range extends widely into Mozambique and is continuous into southeastern Regional Red List status (2016) Least Concern Botswana and southern Zimbabwe, and the species is not constrained by fences. National Red List status (2004) Least Concern Reasons for change No change Distribution Global Red List status (2016) Least Concern This species is distributed widely in sub-Saharan Africa TOPS listing (NEMBA) (2007) None from Senegal and Gambia to Ethiopia, Eritrea and Somalia, and south to about 31° in South Africa. It has CITES listing None been recorded to 1,600 m asl. in Ethiopia (Yalden et al. Endemic No 1996). Although fairly widespread in southern Africa, M. mungo appears to be rare in West Africa. Its relative In addition to living in groups numbering tens of scarcity in West Africa may be due to niche overlap with its individuals, Banded Mongooses are plural congener, the Gambian Mongoose (M. gambianus), breeders, females giving birth synchronously, and endemic to West Africa and reported to occupy similar provide cooperative care to the communal litter of habitat and have a similar diet (Cant & Gilchrist 2013; van pups (Cant & Gilchrist 2013).
    [Show full text]