PR-Arcaspace-7-13-15

Total Page:16

File Type:pdf, Size:1020Kb

PR-Arcaspace-7-13-15 FOR IMMEDIATE RELEASE Contact: Angela Heisel July 13, 2015 (505) 629-5148 [email protected] Governor Susana Martinez Announces 100 High-Paying Jobs in Las Cruces, Expansion of Aerospace Company Aerospace Company to Build Testing & Manufacturing Facility Las Cruces, NM -Today, Governor Susana Martinez announced that ARCA Space Corporation will build a testing and manufacturing facility at the Las Cruces Airport, creating 100 high-paying jobs over three years with an average annual salary of $52,000. The aerospace company, which originally started in Romania and located its headquarters to Las Cruces in 2014, will produce electric-powered unmanned aerial systems. The Governor also discussed the recent ranking by the U.S. Department of Commerce that shows Las Cruces as the No. 1 metro in the country for export growth. "We're proud of New Mexico's storied history in science and innovation, and we know that ARCA Space made the right choice to manufacture their products right here in Las Cruces," Governor Martinez said. "Not only does New Mexico now have a competitive business environment, but we also stand to be a leader in aerospace. The future is bright for our state." The New Mexico Economic Development Department will contribute $500,000 in Local Economic Development Act funds toward the construction of ARCA Space's new 14,000 sq. ft. hangar and manufacturing space. "Recent changes in New Mexico provides a highly attractive business environment in which to locate our headquarters and now our manufacturing facility," said Dumitru Popescu, CEO of ARCA Space. "We couldn't be more appreciative of the support we've received from New Mexicans for our project and look forward to growing our presence in Las Cruces." Since leveling the playing field for businesses by essentially eliminating the corporate income tax in 2013 on manufacturers when selling goods out of state, New Mexico is now the best place in the West for manufacturing, according to an Ernst & Young study. Additionally, following the Special Session, Governor Martinez signed into law a bill allowing corporate headquarters to choose a single-sales factor option when filing corporate income taxes. Today's announcement comes just days after the U.S Department of Commerce ranked three New Mexico cities among the top five U.S. metro areas for export growth. This included the city of Las Cruces, which ranked No. 1 in the country. Earlier in the year, the Department of Commerce announced that New Mexico leads the nation in export-related job growth at 107 percent for 2014, well ahead of the next-closest state. And just weeks ago, New Mexico made a big leap in CNBC's "America's Top States for Businesses" rankings, jumping from 37th to 24th in the country. The improvement is tied for the best in the nation. "The Martinez Administration, local officials, Mesilla Valley Economic Development and New Mexico State University all played an important role in bringing this amazing project to Las Cruces," Secretary Jon Barela said. "As New Mexico continues to gain momentum in its job creation efforts, we look forward to more cross collaboration to attract businesses to our state." The city of Las Cruces will also provide ARCA Space abated lease of office, showroom and hanger space for one year - an estimate value of $55,000. "This is a great example of collaboration between the State and City in using the Local Economic Development Act (LEDA) to attract good, family-sustaining jobs to Las Cruces in an industry that has enormous potential," said Ken Miyagishima, mayor of Las Cruces. "Additionally, several local partners like the New Mexico Space Grant Consortium, New Mexico State University, Arrowhead Incubator, the Physical Science Laboratory (PSL), MVEDA, and Spaceport America all worked on presenting Las Cruces as an ideal location for ARCA Space. Las Cruces has been a hub for the aerospace and defense industry for 75 years and ARCA's new location at the Las Cruces International Airport reaffirms this." ARCA SPACE Corporation is a U.S.-based aerospace research and development company started as an NGO in the European Union with history and experience tracing to Romania from 1999. During its 16 years of activity, ARCA Space has succeeded in launching 15 flight missions. ARCA was one of the major contenders in the $10 million, Ansari X-Prize Competition. Following Ansari X-Prize, they were involved in the X-Prize Cup held in Las Cruces and in the Google Lunar X-Prize, succeeding in launching the competition's only rocket to test the moon lander vehicle up to this date. In 2008, they secured three governmental aerospace contracts worth $2.2 million for aerospace technologies and for military applications. In 2012, they secured a $1.4 million contract with the European Space Agency to test the ExoMars spacecraft atmospheric re-entry parachutes. "Arrowhead Center, NMSU's economic development engine, has been working with ARCA on a New Mexico Small Business Assistance Grant and our Physical Science Laboratory worked with them on securing FAA certifications," said Dr. Kevin Boberg, NMSU VP for Economic Development, "Additionally, the College of Engineering represents a pipeline for a globally competitive workforce for this company. This is an exciting demonstration of NMSU's continued role in economic development through academic achievement." ### .
Recommended publications
  • Evidence Review – Environmental Innovation Prizes for Development
    Evidence Review – Environmental Innovation Prizes for Development DEW Point Enquiry No. A0405 A Report by Bryony Everett With support from Chris Barnett and Radha Verma Peer Review by William Masters July 2011 Acknowledgements We would like to thank all the interviewees detailed in Annex 1 for their time and support in providing us with their insights and information, without which we would not have been able to produce this report. Particular thanks go to Erika, Jaison and Will. Disclaimer This report is commissioned under DEW Point, the DFID Resource Centre for Environment, Water and Sanitation, which is managed by a consortium of companies led by Harewelle International Limited1. Although the report is commissioned by DFID, the views expressed in the report are entirely those of the authors and do not necessarily represent DFID’s own views or policies, or those of DEW Point. Comments and discussion on items related to content and opinion should be addressed to the author, via the “Contact and correspondence” address e-mail or website, as indicated in the control document above. 1 Consortium comprises Harewelle International Limited, DD International, Practical Action Consulting, Cranfield University and AEA Energy and Environment Table of Contents Evidence Review – Environmental Innovation Prizes for Development Summary .................................................................................................................................... 1 Introduction .............................................................................................................................
    [Show full text]
  • Small Launch Vehicles a 2015 State of the Industry Survey Carlos Niederstrasser
    Small Launch Vehicles A 2015 State of the Industry Survey Carlos Niederstrasser An update to this survey will be presented at the 2016 Internaonal Astronau9cal Congress 1 Agenda Overview of Small Launch Vehicles Launch Method/Locations Launch Performance Projected Launch Costs Individual Rocket Details Copyright © 2015 by Orbital ATK, Inc. 2 Listing Criteria Have a maximum capability to LEO of 1000 kg (definition of LEO left to the LV provider). The effort must be for the development of an entire launch vehicle system (with the exception of carrier aircraft for air launch vehicles). Mentioned through a web site update, social media, traditional media, conference paper, press release, etc. sometime after 2010. Have a stated goal of completing a fully operational space launch (orbital) vehicle. Funded concept or feasibility studies by government agencies, patents for new launch methods, etc., do not qualify. Expect to be widely available commercially or to the U.S. Government No specific indication that the effort has been cancelled, closed, or otherwise disbanded. Correc&ons, addi&ons, and comments are welcomed and encouraged! Copyright © 2015 by Orbital ATK, Inc. 3 We did not … … Talk to the individual companies … Rely on any proprietary/confidential information … Verify accuracy of data found in public resources Ø Primarily relied on companies’ web sites Funding sources, when listed, are not implied to be the vehicles sole or even majority funding source. We do not make any value judgements on technical or financial credibility
    [Show full text]
  • A Low-Cost Launch Assistance System for Orbital Launch Vehicles
    Hindawi Publishing Corporation International Journal of Aerospace Engineering Volume 2012, Article ID 830536, 10 pages doi:10.1155/2012/830536 Review Article A Low-Cost Launch Assistance System for Orbital Launch Vehicles Oleg Nizhnik ERATO Maenaka Human-Sensing Fusion Project, 8111, Shosha 2167, Hyogo-ken, Himeji-shi, Japan Correspondence should be addressed to Oleg Nizhnik, [email protected] Received 17 February 2012; Revised 6 April 2012; Accepted 16 April 2012 Academic Editor: Kenneth M. Sobel Copyright © 2012 Oleg Nizhnik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author reviews the state of art of nonrocket launch assistance systems (LASs) for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks. 1. Introduction point to the progress in the orbital delivery systems for these additional payload classes. Spaceflight is the mature engineering discipline—54 years old as of 2012. But seemingly paradoxically, it still relies solely 2. Overview of Previously Proposed LAS on the hardware and methodology developed in the very beginning of the spaceflight era. Modernly, still heavily-used A lot of proposals have been made to implement nonrocket Soyuz launch vehicle systems (LVSs) are the evolutionary LASandarelistedinTable 1.
    [Show full text]
  • Dominant Suborbital Space Tourism Architectures
    Dominant Suborbital Space Tourism Architectures The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Guerster, Markus and Edward F. Crawley. "Dominant Suborbital Space Tourism Architectures." Journal of Spacecraft and Rockets 56, 5 (September 2019): dx.doi.org/10.2514/1.a34385 As Published http://dx.doi.org/10.2514/1.a34385 Publisher American Institute of Aeronautics and Astronautics (AIAA) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/126666 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ JOURNAL OF SPACECRAFT AND ROCKETS Dominant Suborbital Space Tourism Architectures Markus Guerster∗ and Edward F. Crawley† Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 DOI: 10.2514/1.A34385 In the early stages of maturity of a system built for a specific function, it is common for the solutions to lie in a broad architectural space, in which numerous concepts are being developed, built, and tested. As the product matures, certain concepts become more dominant. This pattern can currently be observed in the suborbital tourism industry, in which the obvious question is what system architecture will provide the best combination of cost and safety and in the long run become the dominant architecture. This paper addresses this question by defining a broad architectural space of thousands of possibilities and exploring it comprehensively. We identified 33 feasible architectures, 26 of which had not been proposed earlier. A genetic algorithm optimizes each architecture with respect to the launch mass (a proxy for cost) and operational safety.
    [Show full text]
  • Architectural Options and Optimization of Suborbital Space Tourism Vehicles
    Chair of Astronautics Architectural Options and Optimization of Suborbital Space Tourism Vehicles Author: Markus Guerster Master Thesis, RT-MA 2017/2 Supervisors Prof. Edward F. Crawley Prof. Ulrich Walter Department of Aeronautics and Astronautics Institute of Astronautics Massachusetts Institute of Technology Technical University of Munich Dr. Christian Hock Christian Bühler CEO Institute of Astronautics in -tech industry GmbH Technical University of Munich Chair of Astronautics “I wanted to be involved in something that has an outside chance of doing some good. If there is not something meaningful in what you are doing above and beyond any commercial returns, then I think life is a bit hollow.” Elon Musk, 2013 II Chair of Astronautics Erklärung Ich erkläre, dass ich alle Einrichtungen, Anlagen, Geräte und Programme, die mir im Rahmen meiner Masterarbeit von der TU München bzw. vom Lehrstuhl für Raumfahrttechnik zur Verfügung gestellt werden, entsprechend dem vorgesehenen Zweck, den gültigen Richtlinien, Benutzerordnungen oder Gebrauchsanleitungen und soweit nötig erst nach erfolgter Einweisung und mit aller Sorgfalt benutze. Insbesondere werde ich Programme ohne besondere Anweisung durch den Betreuer weder kopieren noch für andere als für meine Tätigkeit am Lehrstuhl vorgesehene Zwecke verwenden. Mir als vertraulich genannte Informationen, Unterlagen und Erkenntnisse werde ich weder während noch nach meiner Tätigkeit am Lehrstuhl an Dritte weitergeben. Ich erkläre mich außerdem damit einverstanden, dass meine Masterarbeit vom Lehrstuhl auf Anfrage fachlich interessierten Personen, auch über eine Bibliothek, zugänglich gemacht wird. Ich erkläre außerdem, dass ich diese Arbeit ohne fremde Hilfe angefertigt und nur die in dem Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe. Garching, den 28. April 2017 Name: Markus Guerster Matrikelnummer: 03628540 III Chair of Astronautics Zusammenfassung Der Ansari X-Prize legte den Grundstein für den suborbitalen Weltraumtourismus.
    [Show full text]
  • Architectural Options and Optimization of Suborbital Space Tourism Vehicles Markus Guerster Edward F
    Architectural Options and Optimization of Suborbital Space Tourism Vehicles Markus Guerster Edward F. Crawley System Architecture Lab, MIT System Architecture Lab, MIT 77 Massachusetts Avenue. 77 Massachusetts Avenue. Cambridge, MA 02139 Cambridge, MA 02139 857-999-6103 617-230-6604 [email protected] [email protected] Abstract— Since the creation of the Ansari X-Prize, a significant The birth of the suborbital space tourism dates to May 1996, technical and commercial interest has developed in suborbital where the Ansari XPrize was launched by the Ansari family. space tourism. An obvious question arises: what system This competition challenged teams all around the world to architecture will provide the best combination of cost and safety build a reusable, private-funded and manned spaceship. The for the performance defined by the prize? The objective of this first team carrying three people to 100 km above the Earth’s paper is to address this question, by defining the design space and searching comprehensively through it with respect to surface twice within two weeks received the $10 million launch mass (a proxy for cost) and safety. We have identified 33 price. 26 teams from 7 nations proposed their concept. architectures and visualized them in a single table. Of these, 26 Finally, the Mojave Aerospace Ventures team, which was led have not earlier been proposed. A genetic algorithm optimized by Burt Rutan and his company Scaled Composites and each of these 33 architectures for launch mass and safety. The financed from Paul Allen, won the competition on October 4, launch mass was calculated by a design framework consisting of 2004.
    [Show full text]
  • List of Private Spaceflight Companies - Wikipedia
    6/18/2020 List of private spaceflight companies - Wikipedia List of private spaceflight companies This page is a list of non-governmental (privately owned) entities that currently offer—or are planning to offer—equipment and services geared towards spaceflight, both robotic and human. List of abbreviations used in this article Contents Commercial astronauts LEO: Low Earth orbit GTO: Geostationary transfer Manufacturers of space vehicles orbit Cargo transport vehicles VTOL: Vertical take-off and Crew transport vehicles landing Orbital SSTO: Single-stage-to-orbit Suborbital TSTO: Two-stage-to-orbit Launch vehicle manufacturers SSTSO: Single-stage-to-sub- Landers, rovers and orbiters orbit Research craft and tech demonstrators Propulsion manufacturers Satellite launchers Space-based economy Space manufacturing Space mining Space stations Space settlement Spacecraft component developers and manufacturers Spaceliner companies See also References External links Commercial astronauts Association of Spaceflight Professionals[1][2] — Astronaut training, applied research and development, payload testing and integration, mission planning and operations support (Christopher Altman, Soyeon Yi)[1][3] Manufacturers of space vehicles Cargo transport vehicles Dry Launch Return Company Launch Length Payload Diameter Generated Automated Spacecraft mass mass Payload (kg) payload S name system (m) volume (m3) (m) power (W) docking (kg) (kg) (kg) 10.0 (pressurized), 3,310 plus 14 2,500 Falcon 9 pressurized or (unpressurized), Dragon 6.1 4,200[4] 10,200 capsule
    [Show full text]
  • Dominant Suborbital Space Tourism Architectures
    JOURNAL OF SPACECRAFT AND ROCKETS Dominant Suborbital Space Tourism Architectures Markus Guerster∗ and Edward F. Crawley† Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 DOI: 10.2514/1.A34385 In the early stages of maturity of a system built for a specific function, it is common for the solutions to lie in a broad architectural space, in which numerous concepts are being developed, built, and tested. As the product matures, certain concepts become more dominant. This pattern can currently be observed in the suborbital tourism industry, in which the obvious question is what system architecture will provide the best combination of cost and safety and in the long run become the dominant architecture. This paper addresses this question by defining a broad architectural space of thousands of possibilities and exploring it comprehensively. We identified 33 feasible architectures, 26 of which had not been proposed earlier. A genetic algorithm optimizes each architecture with respect to the launch mass (a proxy for cost) and operational safety. The launch mass has been calculated in a design analysis framework consisting of four modules: weight/size, propulsion, aerodynamics, and trajectory. A validation of this framework shows relative differences below 7%. A quantitative safety analysis is developed and validated with a survey of 11 leading experts. We identify six dominant architectures. These form a set from which optimal variants are likely to come. I. Introduction architectures with respect to their benefit (performance and safety) ENERALLY, in the early stages of maturity, systems built for a and cost (launch mass being used as a proxy for cost). G specific function lie in a broad architectural space with System Architecture emerged as a discipline in the late 1980s.
    [Show full text]
  • The Future of Aviation
    THE FUTURE OF AVIATION BY CHARLES BOMBARDIER BY CHARLES BOMBARDIER NGAP 2018 AVIATION HAS ALWAYS BEEN A DRIVER FOR INNOVATION Today we build on the work of those who came and went before us. Tinkerers, designers, engineers are constantly creating new ideas and concepts that will shape the world of tomorrow. This book represents a few of those dreams. We hope that it will be a source of inspiration for innovators and also encouragement for the next generation of aviation professionals! To learn more about the Future of Flight, and to consider entering your ideas into the THE FUTURE OF AVIATION national aviation innovation competitions which ICAO is helping countries to conduct around the world during 2019, please visit: icao.int/futureaviation THE FUTURE OF AVIATION ICAO - NGAP 2019 START-UPS & COMPANIES Aerofex, Aeromobil, Arca, Aurora, Cartivator, DeLorean Aerospace, EHANG, FlytCycle, Hirobo, Hoversurf, Hybrid Air Vehicles, Kitty Hawk, Leonardo, Lilium, Omniboard, Opener, Pale V, Parsifal, UBER, UDES, Volocopter, XTI Aircraft, Zapata INDUSTRIAL DESIGNERS Jorge Ciprian, Adolfo Esquivel, Ray Mattison, Brian R. Miller, Martin Rico, Robin Ritter, Martin Rojtenberg, Abhishek Roy Ashish Thulkar ARTWORK AND LAYOUT Marie-Claude Meilleur DRAFTING AND EDITING Charles Bombardier, Danielle Ellis PHOTOGRAPHER Christine Muschi, Henrickson PUBLISHER ICAO 999 Robert-Bourassa Boulevard, Montréal, Québec H3C 5H7, Canada E-MAIL [email protected] R ICAO 2018 All rights reserved. Any partial or complete, direct or indirect, reproduction, representation, broadcasting, translation, distribution, use, sharing or transferof this content by any means whatsoever is forbidden unless prior formal authorisation from the publisher. LEGAL DEPOSIT: DECEMBER 2018 TABLE OF CONTENTS ABOUT THE AUTHOR p.
    [Show full text]
  • Reptes I Oportunitats De La Indústria Turística Espacial a Espanya
    Estudis d'Economia i Empresa Grau en Administració i Direcció d’Empreses Reptes i oportunitats de la indústria turística espacial a Espanya César Llorente-López [email protected] 25 de maig de 2021 Treball Final de Grau Àmbit d’especialització: Anàlisi Econòmica Tutor: Albert Aniceto Martínez Memòria final Curs 2021, 2n semestre Reptes I oportunitats del turisme especial a Espanya ÍNDEX Resum: ......................................................................................................................... 4 1. INTRODUCCIÓ, MOTIVACIÓ PERSONAL, JUSTIFICACIÓ I HIPÒTESIS D’INVESTIGACIÓ: ........................................................................................................ 5 1.1.Introducció: .......................................................................................................... 5 1.2. Motivació personal. ............................................................................................. 6 1.3. Justificació: ......................................................................................................... 6 1.4. Objectiu de la recerca: ........................................................................................ 7 1.5. Hipòtesis a contrastar. ........................................................................................ 7 2. MARC TEÒRIC ......................................................................................................... 8 2.1. Concepte de TE .................................................................................................
    [Show full text]
  • 1 El Turismo Espacial En El Derecho Del Espacio
    1 EL TURISMO ESPACIAL EN EL DERECHO DEL ESPACIO ULTRATERRESTRE María Clara Malpica Ramírez Trabajo de Tesis para optar al título de Abogado Director de Tesis: Dr. Alfredo Rey Córdoba Universidad de los Andes Facultad de Derecho Bogotá D.C 2015 2 Al Dr. Alfredo Rey Córdoba, quien siempre confió en mis capacidades y me apoyó constantemente en este proceso. A mis padres, quienes siempre me brindaron una formación llena de valores y comprensión. 3 Resumen El turismo espacial es un negocio en crecimiento, el cual carece de una regulación específica que se encargue de coordinar todas las actividades relacionadas con esta actividad comercial. Este trabajo busca hacer un examen de fondo sobre los posibles problemas jurídicos que surgen en esta actividad, para posteriormente proponer una serie de principios deberían tenerse en cuenta en el ejercicio del turismo espacial. Palabras Clave Turismo espacial, turista espacial, sistemas de transporte reutilizables, naves híbridas, delimitación, costumbre internacional, ius cogens, Soft Law, consenso, confianza, cooperación, principios, Naciones Unidas, COPUOS. 4 EL TURISMO ESPACIAL EN EL DERECHO DEL ESPACIO ULTRATERRESTRE 5 ÍNDICE INTRODUCCIÓN CAPÍTULO 1 HISTORIA DEL TURISMO ESPACIAL CAPÍTULO 2 TURISMO ESPACIAL EN LA ACTUALIDAD 2.1 Empresas de turismo espacial a) Space Adventures b) SpaceX c) Virgin Galactic d) Arca Space Corporation e) Blue Origin CAPÍTULO 3 VEHÍCULOS 3.1 Vehículos Históricos a) Avión X-15 b) Soyuz c) Transbordador Espacial 3.2 Vehículos Actuales a) SpaceShipTwo b) SpaceX Dragon c)
    [Show full text]
  • A Low-Cost Launch Assistance System for Orbital Launch Vehicles
    Hindawi Publishing Corporation International Journal of Aerospace Engineering Volume 2012, Article ID 830536, 10 pages doi:10.1155/2012/830536 Review Article A Low-Cost Launch Assistance System for Orbital Launch Vehicles Oleg Nizhnik ERATO Maenaka Human-Sensing Fusion Project, 8111, Shosha 2167, Hyogo-ken, Himeji-shi, Japan Correspondence should be addressed to Oleg Nizhnik, [email protected] Received 17 February 2012; Revised 6 April 2012; Accepted 16 April 2012 Academic Editor: Kenneth M. Sobel Copyright © 2012 Oleg Nizhnik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author reviews the state of art of nonrocket launch assistance systems (LASs) for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks. 1. Introduction point to the progress in the orbital delivery systems for these additional payload classes. Spaceflight is the mature engineering discipline—54 years old as of 2012. But seemingly paradoxically, it still relies solely 2. Overview of Previously Proposed LAS on the hardware and methodology developed in the very beginning of the spaceflight era. Modernly, still heavily-used A lot of proposals have been made to implement nonrocket Soyuz launch vehicle systems (LVSs) are the evolutionary LASandarelistedinTable 1.
    [Show full text]