FY 2012 Technical Progress Report

Total Page:16

File Type:pdf, Size:1020Kb

FY 2012 Technical Progress Report 2012 Technical Progress Report Institute for Telecommunication Sciences Boulder, Colorado ITS Organization Chart Office of the Director Al Vincent, Director Lisé C. Matthews, Administrative Specialist Jill V. Copeland, Secretary Administrative Office Brian D. Lane, Executive Officer Carol B. Van Story, Budget Analyst Lilli Segre, Publications Officer Amanda Alsafi, Budget Analyst Kipper Stiever, IT Specialist Lawrence Turner, IT Specialist Spectrum and Propagation Telecommunications Measurements Division Engineering, Analysis, and Eric D. Nelson, Chief Modeling Division Patricia J. Raush, Chief Telecommunications and Telecommunications Theory Information Technology Division Planning Division Frank H. Sanders, Chief Jeffrey R. Bratcher, Chief Amy Weich, Secretary Kathy Mayeda, Secretary Institute for Telecommunication Sciences National Telecommunications and Information Administration U.S. Department of Commerce 325 Broadway Boulder, CO 80305-3337 303-497-5216 http://www.its.bldrdoc.gov Institute for Telecommunication Sciences FY 2012 Technical Progress Report U.S. Department of Commerce Lawrence E. Strickling, Assistant Secretary for Communications and Information May 2013 The Institute for Telecommunication Sciences is an Office of the National Telecommunications and Information Administration, an agency of the United States Department of Commerce. The Department of Commerce creates the conditions for economic growth and opportunity by promoting innovation, entrepreneurship, competitiveness, and stewardship informed by world-class scientific research and information The National Telecommunications and Information Administration serves as the President’s principal adviser on telecommunications and information policy matters, and develops forward-looking spectrum policies that ensure efficient and effective spectrum access and use. The Institute for Telecommunication Sciences performs telecommunications research, conducts cooperative research and development with U.S. industry and academia, and provides technical engineering support to NTIA and other Federal agencies. * * * Certain commercial equipment, components, and software are identified in this report to adequately describe the design and conduct of the research and experiments at ITS. In no case does such identification imply recommendation or endorsement by the National Telecommunications and Information Administration, nor does it imply that the equipment, components, or software identified are necessarily the best available for the particular application or use. All company names, product names, patents, trademarks, copyrights, or other intellectual property mentioned in this document remain the property of their respective owners. * * * Cover art by A.D. Romero. ii Contents The Institute for Telecommunication Sciences ....................... 1 Awards and Honors . .3 Technology Transfer........................................... 6 Cooperative Research and Development Agreements . .7 Interagency Agreements . .10 Technical Publications . .11 Conferences, Workshops and Symposia . 11 National and International Standards Development . .13 ITU-R Standards Activities . 14 ITU-T and Related U.S. Standards Activities . 16 Spectrum and Propagation Measurements ........................ 19 Radio Noise and Spectrum Occupancy Measurement Research . .20 RSMS Development . .22 RSMS Operations . .24 Spectrum Sharing Innovation Test Bed Pilot Program . 26 Table Mountain Research Program . 28 Telecommunications and Information Technology Planning ........... 31 Multimedia Research . 32 Project 25 Compliance Assessment Program . .34 Project 25 Standards Development . 36 Public Safety Audio Quality . .38 Public Safety Broadband Demonstration Network . .40 Public Safety Broadband Requirements and Standards . .42 Public Safety Broadband Research . 44 Telecommunications Engineering, Analysis, and Modeling ............ 46 Interference Analysis, Simulation, and Testing in Proposed Shared Spectrum Band 1675–1695 MHz . 48 Public Safety Video Quality (PSVQ) . 50 Propagation Modeling Website . 52 Web-based Propagation Analysis Services . 54 Ionospheric Propagation Modeling . .56 Integration of the Empirical and the Undisturbed-Field Models . .58 Earth-to-Space Propagation Models . .60 Broadband Wireless Standards . .62 Telecommunications Theory ................................... 65 Audio Quality Research . 66 Broadband Wireless Research . 68 Coast Guard Spectrum Reallocation Study . 70 Effects of the Channel on Radio System Performance . 72 Interference Effect Tests, Measurements, and Mitigation for Weather Radars . 74 Lockheed Martin TPQ-53 Radar Measurement CRADA . .76 U.S. Navy Shore Line Intrusion Monitoring System (SLiMS) Emissions Measurements . 78 Video Quality Research . 80 ITS Tools and Facilities ........................................ 82 ITS Activities in FY 2012 ...................................... 92 ITS Publications and Presentations in FY 2012 . .92 ITS Standards Leadership Roles and Technical Contributions in FY 2012 . 96 ITS Government Projects in FY 2012 . .98 Abbreviations/Acronyms ..................................... 105 iii Left: From rear, the RSMS-3G measure- ment truck, RSMS-4G measurement truck, and the radio propaga- tion research receiver van are parked behind the ITS laboratory while staff configure instrumentation in preparation for mul- tiple measurement efforts. Photo by Bob Johnk. Right: ITS technician Ron Carey configures a transportable public safety LTE base station for interference testing at a public safety land mobile radio transmitter site. Photo by John Vanderau. Below left: ITS engineer John Van- derau configures a head and torso simulator (HATS) to make recordings for audio intelligi- bility testing experiments. Below right: PSCR technician Sam Gomez and ITS engineer Chris Redding in the PSCR van conducting network drive testing in the field to evaluate an LTE system under test (infrastructure and user equipment) in an operational environment. Photos by Ken Tilley. iv Overviews ITS serves as a The Institute for principal Federal resource for the Telecommunication Sciences conduct of basic research on the Outputs nature of radio waves, generating • State-of-the-art research and analysis results of national impact in telecommunications and communi­ • Technical input to NTIA policy development and spectrum management cating new, • Analysis and resolution of specific telecommunications problems of Federal agencies cutting­edge scientific • Technical assistance to the private sector understanding of • Leadership and technical contributions to national and international telecommuni­ telecommunications fora cations technology he Institute for Telecommunication Sci- • Telecommunications Engineering, Analysis and and systems. ITS Tences (ITS) is the research and engineering Modeling research supports laboratory of The National Telecommunications • Telecommunications Theory the Department of and Information Administration (NTIA), an The Director’s Office supports these areas in Commerce objective of agency of the Department of Commerce (DOC). budget and administrative functions. The Institute is located on the Department of enhancing Commerce Boulder Laboratories campus in Col- Contributions scientific orado, sharing advanced laboratory and test fa- ITS is recognized as one of the world’s leading knowledge and providing cilities with the National Institute for Standards laboratories for telecommunication research. Ba- information to and Technology (NIST) and the National Oceanic sic research conducted at ITS enhances scientific and Atmospheric Administration (NOAA). stakeholders to knowledge and understanding in cutting-edge improve innovation Organization areas of telecommunications and information and technology, The Institute’s technical activities are orga- technology. Applied research, testing, and evalu- support economic nized into four divisions, which characterize ation help drive innovation and development of growth, and ITS’s centers of excellence: advanced technologies and services. Coopera- improve public • Spectrum and Propagation Measurements tive research with industry leverages ITS Federal safety. • Telecommunications and Information Technol- research resources and promotes innovation, ogy Planning entrepreneurship, and commercialization. 1 ITS research resolves telecommunications network operation and management, en- challenges for other Federal agencies, state and hancement of survivability, expansion of net- local governments, private corporations and work interconnections and interoperation, and associations, and international organizations. improvement of emergency communications. Research results and measurements from ITS • Enhancing Domestic and International are transferred to U.S. industry and Government Competition: ITS develops user-oriented, through peer-reviewed publication, technical technology-independent methods of measur- contributions and recommendations to stan- ing telecommunications performance to give dards bodies, and cooperative research and users a practical way of comparing competing development agreements (CRADA) with private equipment and services. ITS research pro- industry and academia. ITS staff represent U.S. motes enhanced competitiveness by removing interests in many national and international technical barriers to commercialization of telecommunication conferences and standards equipment and services. ITS research contrib- organizations, and their technical contributions utes to development of communications
Recommended publications
  • Comparative Analysis of Path Loss Prediction Models for Urban Macrocellular Environments
    COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obota, O. Simeonb, J. Afolayanc Department of Electrical/Electronics & Computer Engineering, University of Uyo, Akwa Ibom State, Nigeria. aEmail: [email protected] bEmail: [email protected] cEmail: [email protected] Abstract A comparative analysis of path loss prediction models for urban macrocellular environments is presented in this paper. Specifically, three path loss prediction models namely free space, Hata and Egli were used to predict path losses. The calculated path loss values were compared with practical measured data obtained from a Visafone base station located in Uyo, Nigeria. The comparative analysis reveals that the mean square error (MSE) for free space, Hata and Egli were 16.24dB, 2.37dB and 8.40dB respectively. The results showed that Hata's model is the most accurate and reliable path loss prediction model for macrocellular urban propagation environments, since its MSE value of 2.37dB is smaller than the acceptable minimum MSE value of 6dB for good signal propagation. Keywords: macrocellular areas, path loss prediction models, Hata model, mean square error 1. Introduction nals generally propagate by means of any or a combination of these three basic propaga- Nowadays, wireless communication technol- tion mechanisms; reflection, diffraction, and ogy is influencing every area of modern life, scattering [2, 3]. One of the most impor- and has encouraged useful researches in nearly tant features of the propagation environment all fields of human endeavour. Cellular ser- is path (propagation) loss. Path loss is de- vices are today being used by millions of peo- fined as the difference (in dB) between the ple worldwide.
    [Show full text]
  • Comparison of Propagations Models in Mobile Telecommunication Systems
    “1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)” in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA Comparison of Propagations Models in Mobile Telecommunication Systems Ivana Stefanovic1, Hana Stefanovic1 1College of Electrical Engineering and Computing Applied Science, Belgrade Email: [email protected] Email: [email protected] ABSTRACT Wireless channels are subject to random fluctuations in received signal power arising from multipath propagation and shadowing arising from the multiple scattering conditions. Considerable efforts have been devoted to the statistical modeling and characterization of these different effects, resulting in a range of models for wireless channels which depend on the particular propagation environment and underlying communication scenario. The comparative analysis of different theoretical and empirical propagation models, such as Okumura, Hata, COST-231 Hata, and Longley-Rice, is given in this paper. After a brief introduction and description of these models, we present some numerical results using MATLAB and RadioWORKS. INTRODUCTION Radiowave propagation through wireless channels is a complicated phenomenon characterized by different effects such as reflection, diffraction and scattering phenomenon. An exact mathematical description of this effects is either too complex for tractable communication system analysis, although considerable efforts have been devoted to the statistical modeling and characterization of wireless channels. In this paper we will characterize the variation in received signal power over distance due to path loss and shadowing. Path loss is caused by dissipation of the power radiated by the transmitter as well as effects of the propagation channel. Path loss models generally assume that path loss is the same at the given transmit-receive distance, which means that path loss model does not include shadowing effects.
    [Show full text]
  • Comparison Andfine Tuning Empirical Pathloss Models At
    ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Comparison and Fine Tuning Empirical Pathloss Models at 1800MHZ and 2100MHZ Bands for Addis Ababa, Ethiopia By Esayas Andarge Advisor Dr. -Ing. Dereje Hailemariam A Thesis Submitted to the School of Electrical and Computer Engineering of the Addis Ababa Institute of Technology, Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Telecommunications Engineering October, 2018 Addis Ababa, Ethiopia ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Comparison and Fine Tuning Empirical Pathloss Models at 1800MHZ and 2100MHZ Bands for Addis Ababa, Ethiopia By Esayas Andarge Approval by Board of Examiners _____________________________ ____________ Chairman, School Graduate committee Signature Committee Dr. -Ing. Dereje Hailemariam ____________ Advisor Signature ______________________________ ____________ Internal Examiner Signature _____________________________ ____________ External Examiner Signature Declaration I, the undersigned, declare that this thesis is my original work, has not been presented for a degree in this or any other university, and all sources of materials used for the thesis have been fully acknowledged. Esayas Andarge ______________ Name Signature Place: Addis Ababa Date of Submission: _______________ This thesis has been submitted for examination with my approval as a university advisor. Dr. -Ing. Dereje Hailemariam ______________ Advisor’s Name Signature 3 Abstract Pathloss models play a very important role in wireless communications in coverage planning, interference estimations, frequency assignments, Location Based Services (LBS), etc. They are used to estimate the average pathloss a signal experience at a particular distance from a transmitter. Inaccurate propagation models may result in poor coverage, poor quality of service or high investment cost.
    [Show full text]
  • Development of a Radiowave Propagation Model for Hilly Areas
    International Journal of Electronics Communication and Computer Engineering Volume 4, Issue 2, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209 Development of a Radiowave Propagation Model for Hilly Areas Famoriji J. Oluwole, Olasoji Y. Olajide Abstract – Achieving optimal performance is a paramount III. THE COST-231 HATA MODEL FOR URBAN concern in wireless networks. One of the strategies is to use wireless empirical models to predict wireless link quality ENVIRONMENT factors such as path loss and the received power in any given transmission domain with irregular terrain. Measurement The COST-231 Hata wireless propagation model was results of signal strength in UHF band obtained in Idanre devised as an extension to the Hata-Okumura model and Town of Ondo State Nigeria were validated against the Hata model as reported by Abhayawardhana et al.,[3]. theoretical estimations. Okumura-Hata model, COST231- The COST-231Hata model is designed to be used in the Hata model and Egli model applicable for path loss frequency band from 500 MHz to 2000 MHz. It also prediction in area with high hill were examined. These models predictions were compared with predictions from contains corrections for urban, suburban and rural (flat) measurements taken in Idanre to determine the path loss environments. [3] also noted that ”although this models’ prediction error for each model. Consequently, modified frequency range is outside that of the measurements, its COST231-Hata model was developed for path loss prediction simplicity and the availability of correction factors has in the hilly areas. The model developed has 6.02% error seen it widely used for path loss prediction at this which made it applicable for hilly areas (Idanre).
    [Show full text]
  • Calculation of the Coverage Area of Mobile Broadband Communications
    Calculation of the coverage area of mobile broadband communications. Focus on land Antonio Martínez Gálvez Master of Science in Communication Technology Submission date: March Terje Røste, IET Supervisor: Norwegian University of Science and Technology Department of Electronics and Telecommunications Problem Description The task is to study the principles and models for calculating transmission loss in radiopropagation in mobile systems for land. Recent models are Okumura et. al [1], COST 231 [2], Bullingtons model [3], Epstein and Peterson's model [4], Picquenards model [5] and a modification of Walter Hill [6]. Another option is to look at Radar Ray Trace models. One must choose to proceed with one or two of these principles in a deeper studium. Furthermore can study Teleplan ASTERIX program (which is made available to the department) for prediction of transmission loss and describe how this program may be further developed with improved models. If time permits can simple modification of ASTERIX performed and tested. It focused on the frequency ranges 800 MHz and 2.6 GHz. Assignment given: 31. August 2009 Supervisor: Terje Røste, IET Abstract This thesis aims to provide information about what different propagation prediction models must be the adequate ones for the radio planning of an LTE network. In the initial phase, a study of different propagation models was done mainly over COST231 and ITU-R P. Recommendations, emphasizing over the ones for diffraction over rounded obstacles and paths over sea as a recommendation from Teleplan AS. Matlab code is also presented since it was tried to test the convenience of the use of ITU-R P.1546 over sea paths and to compare Lee Model with ITU-R P.526 for rounded obstacles.
    [Show full text]
  • Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems
    Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems V.S. Abhayawardhana∗, I.J. Wassell†,D.Crosby‡, M.P. Sellars‡,M.G.Brown§ ∗ BT Mobility Research Unit, Rigel House, Adastral Park, Ipswich IP5 3RE, UK. [email protected] †LCE, Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK. [email protected] ‡Cambridge Broadband Ltd., Selwyn House, Cowley Rd., Cambridge CB4 OWZ, UK. {dcrosby,msellars}@cambridgebroadband.com §Cotares Ltd., 67, Narrow Lane, Histon, Cambridge CB4 9YP, UK. [email protected] Abstract— Empirical propagation models have found favour in Stanford University Interim (SUI) channel models developed both research and industrial communities owing to their speed of under the Institute of Electrical and Electronic Engineers execution and their limited reliance on detailed knowledge of the (IEEE) 802.16 working group [2]. Examples of non-time- terrain. Although the study of empirical propagation models for mobile channels has been exhaustive, their applicability for FWA dispersive empirical models are ITU-R [7], Hata [8] and the systems is yet to be properly validated. Among the contenders, COST-231 Hata model [3]. All these models predict mean path the ECC-33 model [1], the Stanford University Interim (SUI) loss as a function of various parameters, for example distance, models [2] and the COST-231 Hata model [3] show the most antenna heights etc. Although empirical propagation models promise. In this paper, a comprehensive set of propagation for mobile systems have been comprehensively validated, measurements taken at 3.5 GHz in Cambridge, UK is used to validate the applicability of the three models mentioned their appropriateness for FWA systems has not been fully previously for rural, suburban and urban environments.
    [Show full text]
  • Comparative Analysis of Basic Models and Artificial Neural Network
    Progress In Electromagnetics Research M, Vol. 61, 133–146, 2017 Comparative Analysis of Basic Models and Artificial Neural Network Based Model for Path Loss Prediction Julia O. Eichie1, *,OnyediD.Oyedum1, Moses O. Ajewole2, and Abiodun M. Aibinu3 Abstract—Propagation path loss models are useful for the prediction of received signal strength at a given distance from the transmitter; estimation of radio coverage areas of Base Transceiver Stations (BTS); frequency assignments; interference analysis; handover optimisation; and power level adjustments. Due to the differences in: environmental structures; local terrain profiles; and weather conditions, path loss prediction model for a given environment using any of the existing basic empirical models such as the Okumura-Hata’s model has been shown to differ from the optimal empirical model appropriate for such an environment. In this paper, propagation parameters, such as distance between transmitting and receiving antennas, transmitting power and terrain elevation, using sea level as reference point, were used as inputs to Artificial Neural Network (ANN) for the development of an ANN based path loss model. Data were acquired in a drive test through selected rural and suburban routes in Minna and environs as dataset required for training ANN model. Multilayer perceptron (MLP) network parameters were varied during the performance evaluation process, and the weight and bias values of the best performed MLP network were extracted for the development of the ANN based path loss models for two different routes, namely rural and suburban routes. The performance of the developed ANN based path loss model was compared with some of the existing techniques and modified techniques.
    [Show full text]
  • Propagation Path Loss Model in Cell Phone System
    Syrian Private University Faculty of Informatics & Computer Engineering Propagation Path Loss Model in Cell Phone system A Senior Project (Phase II) Presented to the Faculty of Computer and Informatics Engineering In Partial Fulfillment of the Requirements for the Degree Of Bachelor of Engineering in Communications and Networks Under the supervision of Dr. Eng.: Ali Awada Project prepared by Nawras Zaytona Bushra Farhat Samah Safaya Aghyad Alsosi Year: 2014/2015 All Copyrights reserved for SPU University© Acknowledgments We would like to thank our University (Syrian Private University) College of Computer and Informatics Engineering, and also our Academic staff. We present our Project as a Recognition of the effort which everyone did. Greeting to all four college flags and thanks to gave help Dr. Ali Skaf Dr. Samaoaal Hakeem Dr. Ahmad Al Najjar Dr. Hassan Ahmed Dr. Wael Imam Dr. Musa Al haj Ali Dr. Raghad Al najem Dr. Sameer Jaafar Dr. Ghassan Al nemer Dr. FadiIbraheem Dr. Wissam Al khateb Dr. Anwar Al laham 2 Dedication 3 أهدي هذا العمل إلى : مﻻك السماء على اﻷرض . زهرة التضحية وزنبقة احلنان مجاُل احلياة وأروع ما ُخلق .إىل ابتساميت وسعاديت أمي أطيب القلوب وأصدق الرجال . مشوخ العز وصمود اجلبال صاحب العطاء وعنوان الصرب و الوفاء . إىل أخي وصديقي أبي اﻻبتسامات اجلميلة وكربياء اﻷنوثة وروعة احلنان أخواتي ربي ُع خريفي وشتاءُ صيفي . أنوثتها اخلجولة وكربياء ذاهتا ُُميزة وُُمَيز‘‘ بأنين أملكها . نبض قليب وسر تفاؤيل . إىل عشقي اﻷبدي حبيبتي بييت الكبري وذكريات مقعد الدراسة . ضحكات أصدقائي وأيام الطفولة اجلميلة أساتذيت وجامعيت...التاريخ املشرف واحلضارة العريقة إىل أخويت وأهلي إىل القلعة الصامدة وطني المجروح إىل رجال العز وليوث اﻷرض و محاة العرض .
    [Show full text]
  • Analysis of Path Loss Models at 3.3Ghz to Determine Efficient Handover in Wimax
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 7, July - 2014 Analysis of Path Loss Models at 3.3GHz to Determine Efficient Handover in Wimax Sonia Sharma Sunita Parashar M. Tech Scholar, Department of Computer Science & Associate Professor, Department of Computer Science & Engineering Engineering H.C.T.M, Kaithal, Haryana, India H.C.T.M, Kaithal, Haryana, India ABSTRACT - Wimax stands for Worldwide Interoperability for signal reduces due to interaction between electromagnetic Microwave Access and operate in 2.3GHz, 2.5GHz, 3.3GHz, waves and environment. Path loss models uses set of 3.5GHz (licensed) and 5.8GHz (unlicensed) frequency bands. mathematical equations and algorithms for prediction of path Path loss models can be used to find Received Signal Strength loss values. Such models are categorized into three categories (RSS) which is an important factor in deciding handover. If RSS i.e. deterministic (uses physical law leading propagation of is less than a particular threshold value then handover decision is to be taken. For our analysis we have taken Free space waves), Empirical (based on measurements and observations) Propagation, ECC-33, COST 231 Hata, COST 231 W-I and SUI and stochastic (uses series of random variables) models. In models compared w.r.t. different environment (high density, our study we use only empirical models which are described medium density and low density) and different height of as follow. receiving antenna (2m, 6m, and 10m). Then RSS value are calculated in three environment and comparing RSS with A.) Free-space path loss model particular threshold we determine which of these models is This model is used for finding path loss when there is suitable for avoiding number of handover.
    [Show full text]
  • An Assessment of Path Loss Tools and Practical Testing of Television White Space Frequencies for Rural Broadband Deployments
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2015 An Assessment of Path Loss Tools and Practical Testing of Television White Space Frequencies for Rural Broadband Deployments Braden Scott Blanchette University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Blanchette, Braden Scott, "An Assessment of Path Loss Tools and Practical Testing of Television White Space Frequencies for Rural Broadband Deployments" (2015). Master's Theses and Capstones. 1048. https://scholars.unh.edu/thesis/1048 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. AN ASSESSMENT OF PATH LOSS TOOLS AND PRACTICAL TESTING OF TELEVISION WHITE SPACE FREQUENCIES FOR RURAL BROADBAND DEPLOYMENTS BY BRADEN SCOTT BLANCHETTE Bachelor of Science in Electrical Engineering, The University of New Hampshire, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering September, 2015 ii This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering by: Thesis Director, Dr. Nicholas Kirsch, Assistant Professor of Electrical and Computer Engineering Dr. Michael Carter, Associate Professor of Electrical and Computer Engineering Dr. Richard Messner, Associate Professor of Electrical and Computer Engineering On August 10, 2015 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Radio Propagation Modeling on 433 Mhz
    Radio propagation modeling on 433 MHz Ákos Milánkovich1, Károly Lendvai1, Sándor Imre1, Sándor Szabó1 1 Budapest University of Technology and Economics, Műegyetem rkp. 3-9. 1111 Budapest, Hungary {milankovich, lendvai, szabos, imre}@hit.bme.hu Abstract. In wireless network design and positioning it is essential to use radio propagation models for the applied frequency and environment. There are many propagation models available for both indoor and outdoor environments; however, they are not applicable for 433 MHz ISM frequency, which is perfectly suitable for smart metering and sensor networking applications. During our work, we gathered the most common propagation models available in scientific literature, broke them down to components and analyzed their behavior. Based on our research and measurements, a method was developed to create a propagation model for both indoor and outdoor environment optimized for 433 MHz frequency. The possible application areas of the proposed models: smart metering, sensor networks, positioning. Keywords: Radio propagation model, 433 MHz, smart metering, positioning 1 Introduction We are accustomed to use various wirelessly communicating devices, which possess different transmission properties according to their application areas. There are devices operating at high bandwidth in short range, but can not percolate walls. On the contrary, other devices can penetrate all kinds of materials for long distances, but operate on lower bandwidth. The transmission properties of these various technologies – beyond transmission power and antenna characteristics – are principally determined by the operating frequency range of the system. In addition, the operating frequency determines the amount of attenuation for the technology, caused by different media. The ability of calculating the signal strength in a given distance from the transmitter is severely important in case of network planning, because such a model helps us to determine where to place the devices, so that the system operates properly.
    [Show full text]
  • Machine Learning-Based Path Loss Models for Heterogeneous
    MACHINE LEARNING-BASED PATH LOSS MODELS FOR HETEROGENEOUS RADIO NETWORK PLANNING IN A SMART CAMPUS POPOOLA, SEGUN ISAIAH Matriculation Number: 16PCK01420 B.Tech. Electronic and Electrical Engineering (LAUTECH, Ogbomoso, Nigeria) July, 2018 MACHINE LEARNING-BASED PATH LOSS MODELS FOR HETEROGENEOUS RADIO NETWORK PLANNING IN A SMART CAMPUS POPOOLA, SEGUN ISAIAH Matriculation Number: 16PCK01420 B.Tech. Electronic and Electrical Engineering (LAUTECH, Ogbomoso, Nigeria) A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.ENG) DEGREE IN INFORMATION AND COMMUNICATION ENGINEERING July, 2018 ii ACCEPTANCE This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of Master of Engineering (M.Eng) degree in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria. Mr. J. A. Philip …………………………………….. (Secretary, School of Postgraduate Studies) Signature & Date Prof. A. H. Adebayo …………………………………….. (Dean, School of Postgraduate Studies) Signature & Date iii DECLARATION I, POPOOLA, SEGUN ISAIAH (16PCK01420), declare that this M.Eng dissertation titled “Machine Learning-Based Path Loss Models for Heterogeneous Radio Network Planning in a Smart Campus” was carried out by me under the supervision of Prof. AAA. Atayero of the Department of Electrical and Information Engineering, Covenant University Ota,
    [Show full text]