No Evidence of a Hot Jupiter Around HD 188753 A,

Total Page:16

File Type:pdf, Size:1020Kb

No Evidence of a Hot Jupiter Around HD 188753 A�, A&A 466, 1179–1183 (2007) Astronomy DOI: 10.1051/0004-6361:20066835 & c ESO 2007 Astrophysics No evidence of a hot Jupiter around HD 188753 A, A. Eggenberger1,S.Udry1, T. Mazeh2,Y.Segal2, and M. Mayor1 1 Observatoire de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland e-mail: [email protected] 2 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel Received 28 November 2006 / Accepted 25 January 2007 ABSTRACT Context. The discovery of a short-period giant planet (a hot Jupiter) around the primary component of the triple star system HD 188753 has often been considered as an important observational evidence and as a serious challenge to planet-formation theories. Aims. Following this discovery, we monitored HD 188753 during one year to better characterize the planetary orbit and the feasibility of planet searches in close binaries and multiple star systems. Methods. We obtained Doppler measurements of HD 188753 with the ELODIE spectrograph at the Observatoire de Haute-Provence. We then extracted radial velocities for the two brightest components of the system using our multi-order, two-dimensional correlation algorithm, TODCOR. Results. Our observations and analysis do not confirm the existence of the short-period giant planet previously reported around HD 188753 A. Monte Carlo simulations show that we had both the precision and the temporal sampling required to detect a planetary signal like the one quoted. Conclusions. From our failure to detect the presumed planet around HD 188753 A and from the available data on HD 188753, we conclude that there is currently no convincing evidence of a close-in giant planet around HD 188753 A. Key words. techniques: radial velocities – stars: binaries: spectroscopic – stars: individual: HD 188753 – stars: planetary systems 1. Introduction maintained its current orbital configuration ever since the planet formed, explaining the existence of a hot Jupiter around the pri- In a recent paper, Konacki (2005a) has reported the discovery mary component of HD 188753 remains a challenge (Nelson of a 3.35-day radial-velocity modulation of HD 188753 A with −1 2000; Mayer et al. 2005; Boss 2006; Jang-Condell 2007) and a semiamplitude of 149 m s , and attributed this signal to the might indicate that the core accretion mechanism is not able to presence of a planet with a minimum mass of 1.14 MJup in or- account for the existence of all the planets discovered so far. bit around the star. Interestingly, HD 188753 A is the primary An alternative way to explain the existence of a close-in component of a triple star system, while the visual companion, Jovian planet around HD 188753 A and also to circumvent the HD 188753 B, is itself a spectroscopic binary with a period of theoretical problem is to assume that the current orbital con- 155 days (Griffin 1977; Konacki 2005a). The visual orbit of the figuration is the result of a dynamical process (Pfahl 2005; AB pair is characterized by a period of 25.7 years, a semimajor Portegies Zwart & McMillan 2005). According to this approach, axis of 12.3 AU (0.27 separation), and an eccentricity of 0.5 HD 188753 A was a single star or had a more distant stellar com- (Söderhjelm 1999). HD 188753 is therefore a hierarchical sys- panion at the planet formation phase, and this initial state was tem, with the primary component (A) hosting the giant planet later transformed through a dynamical encounter into the triple and the secondary (Ba) and tertiary (Bb) components forming a system we presently observe. Pfahl & Muterspaugh (2006) esti- close pair in orbit at a distance of 12.3 AU from the planet-host mate that dynamical interactions could deposit giant planets in star. about 0.1% of the binaries with a semimajor axis a < 50 AU. The The discovery of a giant planet around HD 188753 A has at- existence of a short-period Jovian planet around HD 188753 A tracted much attention, as the proximity of HD 188753 B poses might thus be the result of a dynamical process, rather than of a serious problem for planet formation theories. Indeed, the pe- an in situ formation (Pfahl 2005; Portegies Zwart & McMillan riastron distance of the visual binary is only 6.2 AU, so that any 2005; Jang-Condell 2007). protoplanetary disk around HD 188753 A would be truncated at Among the ∼200 extrasolar planets discovered so far by ∼2 AU (Konacki 2005a; Jang-Condell 2007), i.e. probably inside Doppler spectroscopy, 33 are known to orbit the components the snow line. The favored core accretion model, which stipu- of binaries or triple stars (Eggenberger et al. 2004; Mugrauer lates that the cores of giant planets form beyond the snow line, et al. 2005; Raghavan et al. 2006). However, unlike the giant might thus have a problem accounting for the existence of a gi- planet around HD 188753A, most of these planets reside in sys- ant planet around HD 188753 A. Assuming that the system has tems with separations larger than 100 AU. Since double stars ffi Based on observations collected at the Observatoire de Haute- closer than 2–6 present observational di culties for Doppler Provence with the ELODIE echelle spectrograph mounted on the studies, they have commonly been left out of radial-velocity 1.93-m telescope. planet searches. The occurrence of planets in binaries with semi- Table 1 is only available in electronic form at major axes below 100 AU is therefore still largely unprobed. http://www.aanda.org Despite this strong bias and prior to the discovery by Konacki, Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20066835 1180 A. Eggenberger et al.: No evidence of a hot Jupiter around HD 188753 A three planets were found in stellar systems with separations correlation features. This leads to a situation where the two cor- close to 20 AU: Gliese 86 (Queloz et al. 2000; Els et al. 2001; relation features are always strongly blended, the blend changing Mugrauer & Neuhäuser 2005; Lagrange et al. 2006), γ Cephei continuously due to the 155-day modulation. (Hatzes et al. 2003; Neuhäuser et al. 2007; Torres 2007), and Given the double-lined nature of HD 188753 and the strong HD 41004 (Zucker et al. 2003, 2004). Two features render the line blending, we derived radial velocities using a multi-order planet around HD 188753A particularly interesting. First, both version (Zucker et al. 2003) of the two-dimensional correla- the planetary and the binary orbital parameters are known (only tion algorithm TODCOR (Zucker & Mazeh 1994). This algo- γ Cephei shares this property). Second, the binary periastron dis- rithm uses two templates with a given flux ratio and unknown tance may be small enough to preclude giant planet formation Doppler shifts to compute the two-dimensional correlation func- according to the canonical models. tion, whose maximum simultaneously gives the radial veloc- Doppler searches for planets in close binaries have recently ity of both components. Our version of TODCOR uses as tem- proven feasible using dedicated reduction techniques based plates high signal-to-noise stellar spectra built up using spectra on two-dimensional correlation (Zucker et al. 2003; Konacki from our planet search programs with CORALIE and ELODIE 2005b). In order to probe the occurrence of planets in close (Queloz et al. 2000; Perrier et al. 2003), along with spectra from stellar systems, two surveys searching for planets in spec- the surveys for low-mass companions to M dwarfs by Delfosse troscopic binaries are currently underway (Eggenberger et al. and coworkers (Delfosse et al. 1998, 1999). Each template can 2003; Konacki 2005b), the planet around HD 188753A being furthermore be convolved with a rotational broadening profile, a product of Konacki’s survey. Yet, deriving the velocity of thus allowing for a better fit to the observed spectrum. In the HD 188753 A to the precision needed to reveal the presence multi-order version of TODCOR, the flux ratio is a function of of a planet is particularly challenging, as the radial velocity of wavelength and is calculated for each order according to the the secondary, HD 188753 Ba, varies with a semiamplitude of spectral types of the two templates using the library of spec- ∼13 km s−1 over a timescale of 155 days. tral energy distributions by Pickles (1998). To insure fine-tuning In order to study this intriguing system further, we moni- with the observed system, the table of flux ratios can also be tored HD 188753 during one year with the ELODIE spectro- multiplied by a global normalization factor. graph (Baranne et al. 1996). We then used our multi-order To derive the radial velocities of HD 188753 A and Ba, we TODCOR algorithm (Zucker et al. 2003) to derive the radial ve- ran TODCOR for a variety of different pairs of templates from locities of the two brightest components, namely HD 188753 A our library, searching for the pair that best matches our observed and HD 188753 Ba. Unfortunately, our data and analysis do not composite spectra. The two templates finally retained were the confirm the existence of the planet reported by Konacki (2005a) spectrum of HD 224752 (a G6 dwarf) for HD 188753 A and the around HD 188753 A. We present our observations and data re- spectrum of HD 225208 (a K0 dwarf) for HD 188753 Ba. This duction technique in Sect. 2. Our results and the lack of evidence template configuration was chosen because (i) it gave the low- of a hot Jupiter around HD 188753 A are described in Sect.
Recommended publications
  • Abstracts Book
    CONFERENCE BOOK TASC2 & SEISMOLOGY OF KASC9 THE SUN AND THE / Workshop SPACEINN & DISTANT STARS HELAS8 2016 /USING TODAY’S / Conference SUCCE SSES TO 11–15 July PREPARE THE Angra do Heroísmo Terceira, Açores FUTURE Portugal ORGANIZERS SPONSORS SEISMOLOGY OF THE SUN AND THE DISTANT STARS 2016 USING TODAY’S SUCCESSES TO PREPARE THE FUTURE Scientific Rationale For the last 30 years, since the meeting on Seismology of the Sun and the Distant Stars held in Cambridge, in 1985, the range of seismic data and associated science results obtained has far exceeded the expectations of the community. The continuous observation of the Sun has secured major advances in the understanding of the physics of the stellar interiors and has allowed us to build and prepare the tools to look at other stars. Several ground facilities and space missions have completed the picture by adding the necessary data to study stars across the HR diagram with a level of detail that was in no way foreseen in 1985. In spite of the great science successes, astero- and helioseismic data still contain many secrets waiting to be uncovered. The opportunity to use the existing data and tools to clarify major questions of stellar physics (mixing, rotation, convection, and magnetic activity are just a few examples) still needs to be further explored. The combination of data from different instruments and for different targets also holds the promise that further advances are indeed imminent. At the same time we also need to prepare the future, as major space missions and ground facilities are being built in order to collect more and better data to expand and consolidate the detailed seismic view of the stellar population in our galaxy.
    [Show full text]
  • Stability of Planets in Binary Star Systems
    StabilityStability ofof PlanetsPlanets inin BinaryBinary StarStar SystemsSystems Ákos Bazsó in collaboration with: E. Pilat-Lohinger, D. Bancelin, B. Funk ADG Group Outline Exoplanets in multiple star systems Secular perturbation theory Application: tight binary systems Summary + Outlook About NFN sub-project SP8 “Binary Star Systems and Habitability” Stand-alone project “Exoplanets: Architecture, Evolution and Habitability” Basic dynamical types S-type motion (“satellite”) around one star P-type motion (“planetary”) around both stars Image: R. Schwarz Exoplanets in multiple star systems Observations: (Schwarz 2014, Binary Catalogue) ● 55 binary star systems with 81 planets ● 43 S-type + 12 P-type systems ● 10 multiple star systems with 10 planets Example: γ Cep (Hatzes et al. 2003) ● RV measurements since 1981 ● Indication for a “planet” (Campbell et al. 1988) ● Binary period ~57 yrs, planet period ~2.5 yrs Multiplicity of stars ~45% of solar like stars (F6 – K3) with d < 25 pc in multiple star systems (Raghavan et al. 2010) Known exoplanet host stars: single double triple+ source 77% 20% 3% Raghavan et al. (2006) 83% 15% 2% Mugrauer & Neuhäuser (2009) 88% 10% 2% Roell et al. (2012) Exoplanet catalogues The Extrasolar Planets Encyclopaedia http://exoplanet.eu Exoplanet Orbit Database http://exoplanets.org Open Exoplanet Catalogue http://www.openexoplanetcatalogue.com The Planetary Habitability Laboratory http://phl.upr.edu/home NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Habitable Zone Gallery http://www.hzgallery.org Binary Catalogue Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Dynamical stability Stability limit for S-type planets Rabl & Dvorak (1988), Holman & Wiegert (1999), Pilat-Lohinger & Dvorak (2002) Parameters (a , e , μ) bin bin Outer limit at roughly max.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Can There Be Additional Rocky Planets in the Habitable Zone of Tight Binary
    Mon. Not. R. Astron. Soc. 000, 1–10 () Printed 24 September 2018 (MN LATEX style file v2.2) Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant? B. Funk1⋆, E. Pilat-Lohinger1 and S. Eggl2 1Institute for Astronomy, University of Vienna, Vienna, Austria 2IMCCE, Observatoire de Paris, Paris, France ABSTRACT Locating planets in Habitable Zones (HZs) around other stars is a growing field in contem- porary astronomy. Since a large percentage of all G-M stars in the solar neighborhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional hab- itable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host ad- ditional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885A. HD 196885 B can be considered a slightly more promising tar- get in the search forEarth-twins.Gliese 86 A turned out to be a very good candidate, assuming that the system’s history has not been excessively violent. For HD 41004 we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • Détection Et Modélisation De Binaires Sismiques Avec Kepler
    Frédéric MARCADON Détection et modélisation de binaires sismiques avec Kepler Directeur de thèse : Thierry APPOURCHAUX Institut d’Astrophysique Spatiale Orsay – 20 mars 2018 Introduction à l’astérosismologie Astérosismologie avec K2 Intérêt des étoiles binaires Introduction générale Missions CoRoT et Kepler : détection d’exoplanètes par la méthode des transits et caractérisation des étoiles hôtes par l’astérosismologie. Astérosismologie : outil de diagnostic de la structure interne des étoiles et de détermination de leurs propriétés physiques (masse et âge). Observation des variations de luminosité des étoiles au cours du temps par photométrie (courbes de lumière). Frédéric MARCADON Détection et modélisation de binaires sismiques avec Kepler 1 / 36 Introduction à l’astérosismologie Astérosismologie avec K2 Intérêt des étoiles binaires Sommaire 1 Introduction à l’astérosismologie 2 Astérosismologie avec K2 3 Intérêt des étoiles binaires 4 Binaires sismiques avec Kepler 5 Analyse orbitale de HD 188753 6 Modélisation de HD 188753 7 Conclusions et perspectives Frédéric MARCADON Détection et modélisation de binaires sismiques avec Kepler 2 / 36 Introduction à l’astérosismologie Astérosismologie avec K2 Intérêt des étoiles binaires Sommaire 1 Introduction à l’astérosismologie 2 Astérosismologie avec K2 3 Intérêt des étoiles binaires 4 Binaires sismiques avec Kepler 5 Analyse orbitale de HD 188753 6 Modélisation de HD 188753 7 Conclusions et perspectives Frédéric MARCADON Détection et modélisation de binaires sismiques avec Kepler 2 / 36 Introduction à l’astérosismologie Astérosismologie avec K2 Intérêt des étoiles binaires Théorie des oscillations stellaires Astérosismologie : étude des oscillations des étoiles permettant de sonder leur structure interne. Différents types d’ondes se propageant à l’intérieur de l’étoile : les ondes acoustiques générées dans la zone convective et dont la force de rappel est la pression (modes p).
    [Show full text]
  • Introduction
    Cambridge University Press 978-1-108-41977-2 — The Exoplanet Handbook Michael Perryman Excerpt More Information 1 Introduction 1.1 The challenge lensing provided evidence for a low-mass planet orbit- ing a star near the centre of the Galaxy nearly 30 000 HEREAREHUNDREDSOFBILLIONS of galaxies in the light-years away, with the first confirmed microlensing observable Universe, with each galaxy such as our T planet reported in 2004. In the photometric search for own containing some hundred billion stars. Surrounded transiting exoplanets, the first transit of a previously- by this seemingly limitless ocean of stars, mankind has detected exoplanet was reported in 1999, the first discov- long speculated about the existence of planetary sys- ery by transit photometry in 2003, the first of the wide- tems other than our own, and the possibility of life ex- field bright star survey discoveries in 2004, and the first isting elsewhere in the Universe. discovery from space observations in 2008. Only recently has evidence become available to be- While these manifestations of the existence of exo- gin to distinguish the extremes of thinking that has per- planets are also extremely subtle, advances in Doppler vaded for more than 2000 years, with opinions ranging measurements, photometry, microlensing, timing, from ‘There are infinite worlds both like and unlike this imaging, and astrometry, have since provided the tools world of ours’ (Epicurus, 341–270 BCE) to ‘There cannot for their detection in relatively large numbers. Now, al- be more worlds than one’ (Aristotle, 384–322 BCE). most 25 years after the first observational confirmation, Shining by reflected starlight, exoplanets compa- exoplanet detection and characterisation, and advances rable to solar system planets will be billions of times in the theoretical understanding of their formation and fainter than their host stars and, depending on their dis- evolution, are moving rapidly on many fronts.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Astrophysics in 2006 3
    ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media.
    [Show full text]
  • Estimation of the XUV Radiation Onto Close Planets and Their Evaporation⋆
    A&A 532, A6 (2011) Astronomy DOI: 10.1051/0004-6361/201116594 & c ESO 2011 Astrophysics Estimation of the XUV radiation onto close planets and their evaporation J. Sanz-Forcada1, G. Micela2,I.Ribas3,A.M.T.Pollock4, C. Eiroa5, A. Velasco1,6,E.Solano1,6, and D. García-Álvarez7,8 1 Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento, 1, 90134, Palermo, Italy 3 Institut de Ciènces de l’Espai (CSIC-IEEC), Campus UAB, Fac. de Ciències, Torre C5-parell-2a planta, 08193 Bellaterra, Spain 4 XMM-Newton SOC, European Space Agency, ESAC, Apartado 78, 28691 Villanueva de la Cañada, Madrid, Spain 5 Dpto. de Física Teórica, C-XI, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 6 Spanish Virtual Observatory, Centro de Astrobiología (CSIC-INTA), ESAC Campus, Madrid, Spain 7 Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain 8 Grantecan CALP, 38712 Breña Baja, La Palma, Spain Received 27 January 2011 / Accepted 1 May 2011 ABSTRACT Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmo- sphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range. Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra.
    [Show full text]
  • The CORALIE Survey for Southern Extra-Solar Planets IX. a 1.3-Day
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The CORALIE survey for southern extra-solar planets⋆ IX. A 1.3-day period brown dwarf disguised as a planet N.C. Santos1, M. Mayor1, D. Naef1, F. Pepe1, D. Queloz1, S. Udry1, M. Burnet1, J.V. Clausen2, B.E. Helt2, E.H. Olsen2, and J.D. Pritchard3 1 Observatoire de Gen`eve, 51 ch. des Maillettes, CH–1290 Sauverny, Switzerland 2 Niels Bohr Institute for Astronomy, Physics, and Geophysics; Astronomical Observatory, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark 3 European Southern Observatory, Santiago, Chile Received / Accepted Abstract. In this article we present the case of HD 41004 AB, a system composed of a K0V star and a 3.7- magnitude fainter M-dwarf companion. We have obtained 86 CORALIE spectra of this system with the goal of obtaining precise radial-velocity measurements. Since HD 41004 A and B are separated by only 0.5′′, in every spectrum taken for the radial-velocity measurement, we are observing the blended spectra of the two stars. An analysis of the measurements has revealed a velocity variation with an amplitude of about 50 m s−1 and a periodicity of 1.3 days. This radial-velocity signal is consistent with the expected variation induced by the presence of a companion to either HD 41004 A or HD 41004 B, or to some other effect due to e.g. activity related phenomena. In particular, such a small velocity amplitude could be the signature of the presence of a very low mass giant planetary companion to HD 41004 A, whose light dominates the spectra.
    [Show full text]
  • ¿Cuánto Sabés Sobre El Universo?
    ¿CUÁNTO SABÉS SOBRE EL UNIVERSO? Apuntes básicos sobre Astronomía - 2014 Autores: Dra. Eugenia Díaz-Giménez / Dr. Ariel Zandivarez Instituto de Astronomía Teórica y Experimental (CONICET) Observatorio Astronómico de Córdoba (UNC) Imagen: Aldo Mottino / Estación Astrofísica de Bosque Alegre 2 Índice INTRODUCCIÓN.............................................................................................................................5 0.1 LA LUZ..................................................................................................................................5 0.2 LAS IMÁGENES ASTRONÓMICAS......................................................................................8 CAPÍTULO 1: Sistema Solar y otros sistemas planetarios.......................................................11 1.1 HISTORIA DE LA CONCEPCIÓN DEL SISTEMA SOLAR..................................................11 1.2 FORMACIÓN DEL SISTEMA SOLAR.................................................................................13 1.3 MOVIMIENTO DE LOS OBJETOS DEL SISTEMA SOLAR.................................................13 1.4 CARACTERÍSTICAS DE LOS OBJETOS DEL SISTEMA SOLAR......................................14 1.4.1 SOL..............................................................................................................................16 1.4.2 MERCURIO..................................................................................................................17 1.4.3 VENUS.........................................................................................................................17
    [Show full text]