Flickering Analysis of CH Cygni Using Kepler Data Thomas Holden Dingus East Tennessee State University
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Exploring Exoplanet Populations with NASA's Kepler Mission
SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Exploring exoplanet populations with NASA’s Kepler Mission Natalie M. Batalha1 National Aeronautics and Space Administration Ames Research Center, Moffett Field, 94035 CA Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board June 3, 2014 (received for review January 15, 2014) The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux.The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Admin- istration’s long-term goal of finding habitable environments beyond the solar system. planet detection | transit photometry Searching for evidence of life beyond Earth is the Sun would produce an 84-ppm signal Translating Kepler’s discovery catalog into one of the primary goals of science agencies lasting ∼13 h. -
Get Outside What to Look for in the Summer Sky Your Hosts of the Summer Sky Are Three Bright Stars — Vega, Altair and Deneb
Get Outside What to Look for in the Summer Sky Your hosts of the summer sky are three bright stars — Vega, Altair and Deneb. Together they make up the Summer Triangle. Look for the triangle in the east on a June evening, moving NORTH to overhead as the season progresses. Polaris The Big Dipper Deneb Cygnus Vega Lyra Hercules Arcturus EaST West Summer Triangle Altair Aquila Sagittarius Antares Turn the map so Scorpius the direction you are facing is at the Teapot the bottom. south facebook.com/KidsCanBooks @KidsCanPress GET OUTSIDE Text © 2013 Jane Drake & Ann Love Illustrations © 2013 Heather Collins www.kidscanpress.com Get Outside Vega The Keystone The brightest star in the Between Vega and Arcturus, Summer Triangle, Vega is look for four stars in a wedge or The summer bluish white. It is in the keystone shape. This is the body solstice constellation Lyra, the Harp. of Hercules, the Strongman. His feet are to the north and Every day from late Altair his arms to the south, making December to June, the The second-brightest star in his figure kneel Sun rises and sets a little the triangle, Altair is white. upside down farther north along the Altair is in the constellation in the sky. horizon. But about June Aquila, the Eagle. 21, the Sun seems to stop Keystone moving north. It rises in Deneb the northeast and sets in The dimmest star of the the northwest, seemingly Summer Triangle, Deneb would in the same spots for be the brightest if it were not so Hercules several days. -
Summer Constellations
Night Sky 101: Summer Constellations The Summer Triangle Photo Credit: Smoky Mountain Astronomical Society The Summer Triangle is made up of three bright stars—Altair, in the constellation Aquila (the eagle), Deneb in Cygnus (the swan), and Vega Lyra (the lyre, or harp). Also called “The Northern Cross” or “The Backbone of the Milky Way,” Cygnus is a horizontal cross of five bright stars. In very dark skies, Cygnus helps viewers find the Milky Way. Albireo, the last star in Cygnus’s tail, is actually made up of two stars (a binary star). The separate stars can be seen with a 30 power telescope. The Ring Nebula, part of the constellation Lyra, can also be seen with this magnification. In Japanese mythology, Vega, the celestial princess and goddess, fell in love Altair. Her father did not approve of Altair, since he was a mortal. They were forbidden from seeing each other. The two lovers were placed in the sky, where they were separated by the Celestial River, repre- sented by the Milky Way. According to the legend, once a year, a bridge of magpies form, rep- resented by Cygnus, to reunite the lovers. Photo credit: Unknown Scorpius Also called Scorpio, Scorpius is one of the 12 Zodiac constellations, which are used in reading horoscopes. Scorpius represents those born during October 23 to November 21. Scorpio is easy to spot in the summer sky. It is made up of a long string bright stars, which are visible in most lights, especially Antares, because of its distinctly red color. Antares is about 850 times bigger than our sun and is a red giant. -
Constellation at Your Fingertips: Cygnus
The National Optical Astronomy Observatory’s Dark Skies and Energy Education Program Constellation at Your Fingertips: Cygnus (Cygnus version adapted from Constellation at Your Fingertips: Orion at www.globeatnight.org) Grades: 3rd - 8th grade Overview: Constellation at Your Fingertips introduces the novice constellation hunter to a method for spotting the main stars in the constellation, Cygnus, the swan. Students will make an outline of the constellation used to locate the stars in Cygnus and visualize its shape. This lesson will engage children and first-time night sky viewers in observations of the night sky. The lesson links history, Greek mythology, literature, and astronomy. Once the constellation is identified, it may be easy to find the summer triangle. The simplicity of Cygnus makes locating and observing it exciting for young learners. More on Cygnus is at the Great World Wide Star Count at http://www.starcount.org. Materials for another citizen-science star hunt, Globe at Night, are available at http://www.globeatnight.org. Purpose: Students will use the this activity to visualize the constellation of Cygnus. This will help them more easily participate in the Great World Wide Star Count citizen-science campaign. The campaign asks participants to match one of 7 different charts of Cygnus with what the participant sees toward Cygnus. Chart 1 has only a few stars. Chart 7 has many. What they will be recording for the campaign is the chart with the faintest star they see. In many cases, observations over years will build knowledge of how light pollution changes over time. Why is this important to astronomers? What causes the variation year to year? The focus is on light pollution and the options we have as consumers when purchasing outdoor lighting and shields. -
CH Cygni II: Optical Flickering from an Unstable Disk
To appear in the Astrophysical Journal A Preprint typeset using L TEX style emulateapj v. 14/09/00 CH CYGNI II: OPTICAL FLICKERING FROM AN UNSTABLE DISK J. L. Sokoloski and S. J. Kenyon Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 [email protected] To appear in the Astrophysical Journal ABSTRACT CH Cygni began producing rapid, stochastic optical variations with the onset of symbiotic activity in 1963. We use changes in this flickering between 1997 and 2000 to diagnose the state of the accretion disk during this time. In the 1998 high state, the luminosity of the B-band flickering component was typically more than 20 times higher than in the 1997 and 2000 low states. Therefore, the physical process or region that produces the flickering was also primarily responsible for the large optical flux increase in the 1998 high state. Assuming that the rapid, stochastic optical variations in CH Cygni come from the accretion disk, as in cataclysmic variable stars, a change in the accretion rate through the disk led to the 1998 bright state. All flickering disappeared in 1999, when the accreting WD was eclipsed by the red giant orbiting with a period of approximately 14 yr, according to the ephemeris of Hinkle et al. and the interpretation of Eyres et al. We did not find any evidence for periodic or quasi-periodic oscillations in the optical emission from CH Cygni in either the high or low state, and we discuss the implications for magnetic propeller models of this system. As one alternative to propeller models, we propose that the activity in CH Cygni is driven by accretion through a disk with a thermal-viscous instability, similar to the instabilities believed to exist in dwarf novae and suggested for FU Ori pre-main-sequence stars and soft X-ray transients. -
Arxiv:2010.13762V1 [Astro-Ph.EP] 26 Oct 2020
Draft version October 27, 2020 Typeset using LATEX default style in AASTeX63 A Framework for Relative Biosignature Yields from Future Direct Imaging Missions Noah W. Tuchow 1 and Jason T. Wright 1 1Department of Astronomy & Astrophysics and Center for Exoplanets and Habitable Worlds and Penn State Extraterrestrial Intelligence Center 525 Davey Laboratory The Pennsylvania State University University Park, PA, 16802, USA ABSTRACT Future exoplanet direct imaging missions, such as HabEx and LUVOIR, will select target stars to maximize the number of Earth-like exoplanets that can have their atmospheric compositions charac- terized. Because one of these missions' aims is to detect biosignatures, they should also consider the expected biosignature yield of planets around these stars. In this work, we develop a method of computing relative biosignature yields among potential target stars, given a model of habitability and biosignature genesis, and using a star's habitability history. As an illustration and first application of this method, we use MESA stellar models to calculate the time evolution of the habitable zone, and examine three simple models for biosignature genesis to calculate the relative biosignature yield for different stars. We find that the relative merits of K stars versus F stars depend sensitively on model choice. In particular, use of the present-day habitable zone as a proxy for biosignature detectability favors young, luminous stars lacking the potential for long-term habitability. Biosignature yields are also sensitive to whether life can arise on Cold Start exoplanets that enter the habitable zone after formation, an open question deserving of more attention. Using the case study of biosignature yields calculated for θ Cygni and 55 Cancri, we find that robust mission design and target selection for HabEx and LUVOIR depends on: choosing a specific model of biosignature appearance with time; the terrestrial planet occurrence rate as a function of orbital separation; precise knowledge of stellar properties; and accurate stellar evolutionary histories. -
An October 2003 Amateur Observation of HD 209458B
Tsunami 3-2004 A Shadow over Oxie Anders Nyholm A shadow over Oxie – An October 2003 amateur observation of HD 209458b Anders Nyholm Rymdgymnasiet Kiruna, Sweden April 2004 Tsunami 3-2004 A Shadow over Oxie Anders Nyholm Abstract This paper describes a photometry observation by an amateur astronomer of a transit of the extrasolar planet HD 209458b across its star on the 26th of October 2003. A description of the telescope, CCD imager, software and method used is provided. The preparations leading to the transit observation are described, along with a chronology. The results of the observation (in the form of a time-magnitude diagram) is reproduced, investigated and discussed. It is concluded that the HD 209458b transit most probably was observed. A number of less successful attempts at observing HD 209458b transits in August and October 2003 are also described. A general introduction describes the development in astronomy leading to observations of extrasolar planets in general and amateur observations of extrasolar planets in particular. Tsunami 3-2004 A Shadow over Oxie Anders Nyholm Contents 1. Introduction 3 2. Background 3 2.1 Transit pre-history: Mercury and Venus 3 2.2 Extrasolar planets: a brief history 4 2.3 Early photometry proposals 6 2.4 HD 209458b: discovery and study 6 2.5 Stellar characteristics of HD 209458 6 2.6 Characteristics of HD 209458b 7 3. Observations 7 3.1 Observatory, equipment and software 7 3.2 Test observation of SAO 42275 on the 14th of April 2003 7 3.3 Selection of candidate transits 7 3.4 Test observation and transit observation attempts in August 2003 8 3.5 Transit observation attempt on the 12th of October 2003 8 3.6 Transit observation attempt on the 26th of October 2003 8 4. -
E R U P T I V E S T a R S S P E C T R O S C O
Erupti ve stars spectroscopy Catacl ys mics, Sy mbi otics, Novae, Supernovae ARAS Eruptive Stars Information letter n° 12 31‐12‐2014 Observations of December 2014 Contents NEWS Novae Symbiotic star Hen 2‐468 Nova Cyg 2014 nebular phase (= V2428 Cyg) Nova Cen 2013 reappears in the morning light detected in ouburst at mag 13 Nova Del 2013 nebular phase, slowly declining by U. Munari & al. (Atel # 6841) 5 novae in 2014 Symbiotics Observations of CH Cygni AX Per returns to quiescent state Survey of V694 Mon, currently in stable state Notes from Steve Shore Balmer line formation and variations and a comment on abundance determinations The hydrogen lines in symbiotic spectra A start on abundance determinations Recent publications about eruptive stars Observing ARAS Spectroscopy Long term survey of CH Cygni ( Dr A. Skopal ) ARAS Web page http://www.astrosurf.com/aras/ ARAS Forum http://www.spectro‐aras.com/forum/ ARAS list https://groups.yahoo.com/neo/groups/sp Acknowledgements : ectro‐l/info V band light curves from AAVSO photometric data base ARAS preliminary data base http://www.astrosurf.com/aras/Aras_Data Authors : Base/DataBase.htm F. Teyssier, P. Somogyi, P. Berardi, D. Boyd, J. Edlin, ARAS BeAM J. Guarro, T. Lester, J. Montier http://arasbeam.free.fr/?lang=en ARAS Eruptive Stars Information Letter #12 | 2014‐12‐31 | 1 / 28 N O Status of current novae V A Nova Del 2013 V339 Del Maximum 14-08-2013 E Days after maximum 504 Current mag V 12.9 Delta mag V 8.5 Nova Cyg 2014 V2659 Del Maximum 09-04-2014 Days after maximum 266 Current mag V -
The Kepler Characterization of the Variability Among A- and F-Type Stars I
A&A 534, A125 (2011) Astronomy DOI: 10.1051/0004-6361/201117368 & c ESO 2011 Astrophysics The Kepler characterization of the variability among A- and F-type stars I. General overview K. Uytterhoeven1,2,3,A.Moya4, A. Grigahcène5,J.A.Guzik6, J. Gutiérrez-Soto7,8,9, B. Smalley10, G. Handler11,12, L. A. Balona13,E.Niemczura14, L. Fox Machado15,S.Benatti16,17, E. Chapellier18, A. Tkachenko19, R. Szabó20, J. C. Suárez7,V.Ripepi21, J. Pascual7, P. Mathias22, S. Martín-Ruíz7,H.Lehmann23, J. Jackiewicz24,S.Hekker25,26, M. Gruberbauer27,11,R.A.García1, X. Dumusque5,28,D.Díaz-Fraile7,P.Bradley29, V. Antoci11,M.Roth2,B.Leroy8, S. J. Murphy30,P.DeCat31, J. Cuypers31, H. Kjeldsen32, J. Christensen-Dalsgaard32 ,M.Breger11,33, A. Pigulski14, L. L. Kiss20,34, M. Still35, S. E. Thompson36,andJ.VanCleve36 (Affiliations can be found after the references) Received 30 May 2011 / Accepted 29 June 2011 ABSTRACT Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each star and extract the pulsational frequencies using different frequency analysis methods. -
Scientists Discover Planetary System Orbiting Kepler-47 13 September 2012, by Dr
Scientists discover planetary system orbiting Kepler-47 13 September 2012, by Dr. Tony Phillips "The presence of a full-fledged planetary system orbiting Kepler-47 is an amazing discovery," says Greg Laughlin, professor of Astrophysics and Planetary Science at the University of California in Santa Cruz. "This is going to change the way we think about the formation of planets." The inner planet, Kepler-47b, closely circles the pair of stars, completing each orbit in less than 50 days. Astronomers think it is a sweltering world, where the destruction of methane in its super- heated atmosphere might lead to a thick global haze. Kepler-47b is about three times the size of Earth. The outer planet, Kepler-47c, orbits every 303 days. This puts it in the system's habitable zone, a This diagram compares our own solar system to band of orbits that are "just right" for liquid water to Kepler-47, a double-star system containing two planets, exist on the surface of a planet. But does this one orbiting in the so-called "habitable zone." This is the sweet spot in a planetary system where liquid water planet even have a surface? Possibly not. The might exist on the surface of a planet. Credit: NASA/JPL- astronomers think it is a gas giant slightly larger Caltech/T. Pyle than Neptune. The discovery of planets orbiting double stars means that planetary systems are even weirder News flash: The Milky Way galaxy just got a little and more abundant than previously thought. weirder. Back in 2011 astronomers were amazed when NASA's Kepler spacecraft discovered a "Many stars are part of multiple-star systems where planet orbiting a double star system. -
JAAVSO 2013 the Journal of the American Association of Variable Star Observers V1820 Ori: an RR Lyrae Star with Strong, Irregular Blazhko Effect
Volume 41 Number 1 JAAVSO 2013 The Journal of the American Association of Variable Star Observers V1820 Ori: an RR Lyrae Star With Strong, Irregular Blazhko Effect V1820 Ori hump evolution for nights JD 2455941 to 2455945 Also in this issue... • Very Short-Duration UV–B Optical Flares in RS CVn-type Star Systems • The Interesting Light Curve and Pulsation Frequencies of KIC 9204718 • Two New Cool Variable Stars in the Field of NGC 659 49 Bay State Road Cambridge, MA 02138 Complete table of contents inside... U. S. A. The Journal of the American Association of Variable Star Observers Editor Editorial Board John R. Percy Geoffrey C. Clayton Matthew R. Templeton University of Toronto Louisiana State University AAVSO Toronto, Ontario, Canada Baton Rouge, Louisiana Douglas L. Welch Associate Editor Edward F. Guinan McMaster University Elizabeth O. Waagen Villanova University Hamilton, Ontario, Canada Villanova, Pennsylvania Assistant Editor David B. Williams Matthew R. Templeton Pamela Kilmartin Whitestown, Indiana University of Canterbury Production Editor Christchurch, New Zealand Thomas R. Williams Michael Saladyga Houston, Texas Laszlo Kiss Konkoly Observatory Lee Anne Willson Budapest, Hungary Iowa State University Ames, Iowa Paula Szkody University of Washington Seattle, Washington The Council of the American Association of Variable Star Observers 2012–2013 Director Arne A. Henden President Mario Motta Past President Paula Szkody 1st Vice President Jennifer Sokoloski 2nd Vice President Jim Bedient Secretary Gary Walker Treasurer Tim Hager Councilors Edward F. Guinan Kevin Paxson Roger S. Kolman Robert J. Stine Chryssa Kouveliotou Donn R. Starkey John Martin David G. Turner ISSN 0271-9053 JAAVSO The Journal of The American Association of Variable Star Observers Volume 41 Number 1 2013 49 Bay State Road Cambridge, MA 02138 ISSN 0271-9053 U. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,