Perspective the PNAS Way Back Then

Total Page:16

File Type:pdf, Size:1020Kb

Perspective the PNAS Way Back Then Proc. Natl. Acad. Sci. USA Vol. 94, pp. 5983–5985, June 1997 Perspective The PNAS way back then Saunders Mac Lane, Chairman Proceedings Editorial Board, 1960–1968 Department of Mathematics, University of Chicago, Chicago, IL 60637 Contributed by Saunders Mac Lane, March 27, 1997 This essay is to describe my experience with the Proceedings of ings. Bronk knew that the Proceedings then carried lots of math. the National Academy of Sciences up until 1970. Mathemati- The Council met. Detlev was not a man to put off till to cians and other scientists who were National Academy of tomorrow what might be done today. So he looked about the Science (NAS) members encouraged younger colleagues by table in that splendid Board Room, spotted the only mathe- communicating their research announcements to the Proceed- matician there, and proposed to the Council that I be made ings. For example, I can perhaps cite my own experiences. S. Chairman of the Editorial Board. Then and now the Council Eilenberg and I benefited as follows (communicated, I think, did not often disagree with the President. Probably nobody by M. H. Stone): ‘‘Natural isomorphisms in group theory’’ then knew that I had been on the editorial board of the (1942) Proc. Natl. Acad. Sci. USA 28, 537–543; and “Relations Transactions, then the flagship journal of the American Math- between homology and homotopy groups” (1943) Proc. Natl. ematical Society. Acad. Sci. USA 29, 155–158. Soon after this, the Treasurer of the Academy, concerned The second of these papers was the first introduction of a about costs, requested the introduction of page charges for geometrical object topologists now call an “Eilenberg–Mac papers published in the Proceedings. At that time mathemati- Lane Space.” This idea was immediately accepted by leading cians did not have large grants, so most of them stopped topologists, with later detailed presentation by the authors in submitting to the Proceedings. specialized journals. The Proceedings presentation of this idea At that time I probably thought that the Proceedings was helped Eilenberg and me by its promptness. a rousing success (biochemistry plus timely research an- The first of these papers is a more striking case; it nouncements). So the indication was for full speed ahead and introduced the very abstract idea of a “category”—a subject damn the torpedoes. I had also studied at Yale and firmly then called “general abstract nonsense”! When Eilenberg believed that Josiah Willard Gibbs was the greatest Amer- and I submitted a full presentation in 1945 (to the Transac- ican scientist of the 19th century. I knew that the famous tions of the American Mathematical Society), we feared that Gibbs–Wilson book on vector analysis had succeeded in the editor would turn it down as too “far out,” not really setting vector notation in stone in every book in physics. I mathematics. So Eilenberg, who knew the editor well, per- had first learned the real facts about calculus from a book by suaded him to choose as referee a young mathematician— Edwin Bidwell Wilson, Advanced Calculus, a text not en- one whom we could influence because he was then a junior cumbered by the modern-day nonsense of calculus ‘‘reform.’’ member of the Applied Mathematics Group at Columbia And I had heard the same E. B. Wilson hold forth in University (war research), where Eilenberg and I were then meetings of the Academy, educating new members as to also members, and I was Director. what the Constitution and Bylaws actually said (E.B. really Happily the full paper was accepted, but the subject itself knew). was well off beat and not generally recognized, and it was Just imagine my pleasure finding that this E. B. Wilson was ignored till 1958, when a student of Eilenberg’s made an still the Managing Editor. His (later) History of the Proceedings important breakthrough. So in this case publication in the of the National Academy of Sciences is careful to state that (as Proceedings was perhaps vital at the start; Category Theory is just a manager) he never set policies for the Proceedings. But now accepted. In other words, without the Proceedings, this I can assure you that he was happy to help educate the young; idea might well have been buried, unpublished. in four years he wrote me about 50 letters in this cause. As a These circumstances may have played in part in my own result it would not have occurred to me to consult the NAS election to the NAS in 1949, at the age of 40. Constitution or the NAS Council as to Proceedings policy—I Later rumors had it that a young biochemist, whose paper had the real source right there on tap! had been rejected by the Journal of Biological Chemistry, I followed standard procedure: papers by members or managed to persuade an Academy member to communicate communicated by members were of course accepted. There his result to the Proceedings. This paper presently led to a was no refereeing. I did know that the then editorial assistant Nobel prize; the rumor continues to assert that Wendell (Ms. Josephine Williams) usually acknowledged papers by Stanley, then Proceedings chairman, told this to many col- members with enthusiastic praise for the brilliant results leagues, who responded; with fast publication in mind, they presented. I suspected that this praise was sometimes overdone came up with more communication to the Proceedings. and might not have been based on deep knowledge, but I did About 1958 a senior member of an NAS nominating com- not interfere; after all, Ms. Williams managed matters well, so mittee noticed that it was a long time since the Section of saved me lots of trouble. Mathematics had been represented on the Council. I was On some occasions there were rejections, but such occasions nominated. In those early days there was no competition by were really rare, both scientifically and diplomatically—I multiple candidates, so I was elected. would not have rejected a paper unless I was quite sure that I In 1959, apparently just before a meeting of the Council, would get away with it! I recall only two cases. President Detlev Bronk got the news that Prof. Stanley was ill A member of the NAS whom I thought to be quite old submitted a manuscript which tended to support this diagnosis. and wished to resign the position of Chairman of the Proceed- I rejected that paper. I do not believe I used a referee. Linus Pauling communicated a paper by a medical friend © 1997 by The National Academy of Sciences 0027-8424y97y945983-3$2.00y0 who was a doctor in a Glasgow (U.K.) hospital for cancer 5983 Downloaded by guest on September 28, 2021 5984 Perspective: Mac Lane Proc. Natl. Acad. Sci. USA 94 (1997) patients. The paper presented evidence for the good effects of number 1 German mathematician; today Weyl’s views on the vitamin C. It was my clear impression that by this time most matter are generally accepted.) But the publication by Birkhoff experts were very dubious about Pauling’s views on vitamins put the problem out in the open. And for that matter, Birkhoff and cancer. I rejected the paper; the expected blast from had already announced in the Proceedings one of his most Pauling did not appear. famous results: the Ergodic Theorem. For Birkhoff this In 1967, the President of the Academy, Fred Seitz, invited amounts to one strike-out and one home run with the bases a prominent politician, Emilio Daddario, to give an address loaded. Better both than neither. at the autumn 1967 meeting of the Academy. He came The Proceedings is there to help bring new ideas promptly complete with the manuscript of his speech. President Seitz into play. New ideas may not always be right, but their communicated this manuscript to the Proceedings. (At that prominent presence can lead to correction. We must be careful time the journal Issues in Science and Technology did not not to censor even those ideas which seem to be off beat. exist.) I considered this paper totally inappropriate for the P.S. Here are more additional samples of important papers Proceedings, but I was aware of the possible extent of my communicated to the Proceedings. mandate. Moreover, I had just recently arranged to have R John Edsall appointed as Associate Chairman of the Edito- The Continuum Hypothesis. The infinite set of all real rial Board, and I may have felt that an eight-year term of numbers is larger than the infinite set N of all whole numbers office was enough. In any event, I resigned the Proceedings (reason: no numbered list r1, r2, r3,... can exhaust the real chairmanship. numbers). George Cantor, the founder of set theory, conjec- I continued to admire the Proceedings from a distance, as do tured in 1885 that there is no set both bigger than N and smaller my fellow mathematicians. We have a tradition in these than R (the Continuum Hypothesis). This remained a famous matters. In France, E. Cauchy from about 1840 published so and unsolved problem for many years. Finally, in 1940 the many of his important results in the Comptes Rendues that the noted logician Kurt Godel constructed a model of set theory authorities at the Academie des Sciences introduced page in which the Continuum Hypothesis is true: The Consistency of limits. But also Fourier and Cauchy were responsible for the the Continuum Hypothesis, Annals of Mathematical Studies failure to publish there the revolutionary work of Evariste (Princeton Univ. Press, Princeton, NJ). Galois (who used group theory to settle famous questions It was widely rumored that Godel was also able to construct about the solution of polynomial equations of higher degree).
Recommended publications
  • Topics in Geometric Group Theory. Part I
    Topics in Geometric Group Theory. Part I Daniele Ettore Otera∗ and Valentin Po´enaru† April 17, 2018 Abstract This survey paper concerns mainly with some asymptotic topological properties of finitely presented discrete groups: quasi-simple filtration (qsf), geometric simple connec- tivity (gsc), topological inverse-representations, and the notion of easy groups. As we will explain, these properties are central in the theory of discrete groups seen from a topo- logical viewpoint at infinity. Also, we shall outline the main steps of the achievements obtained in the last years around the very general question whether or not all finitely presented groups satisfy these conditions. Keywords: Geometric simple connectivity (gsc), quasi-simple filtration (qsf), inverse- representations, finitely presented groups, universal covers, singularities, Whitehead manifold, handlebody decomposition, almost-convex groups, combings, easy groups. MSC Subject: 57M05; 57M10; 57N35; 57R65; 57S25; 20F65; 20F69. Contents 1 Introduction 2 1.1 Acknowledgments................................... 2 arXiv:1804.05216v1 [math.GT] 14 Apr 2018 2 Topology at infinity, universal covers and discrete groups 2 2.1 The Φ/Ψ-theoryandzippings ............................ 3 2.2 Geometric simple connectivity . 4 2.3 TheWhiteheadmanifold............................... 6 2.4 Dehn-exhaustibility and the QSF property . .... 8 2.5 OnDehn’slemma................................... 10 2.6 Presentations and REPRESENTATIONS of groups . ..... 13 2.7 Good-presentations of finitely presented groups . ........ 16 2.8 Somehistoricalremarks .............................. 17 2.9 Universalcovers................................... 18 2.10 EasyREPRESENTATIONS . 21 ∗Vilnius University, Institute of Data Science and Digital Technologies, Akademijos st. 4, LT-08663, Vilnius, Lithuania. e-mail: [email protected] - [email protected] †Professor Emeritus at Universit´eParis-Sud 11, D´epartement de Math´ematiques, Bˆatiment 425, 91405 Orsay, France.
    [Show full text]
  • Experience Implementing a Performant Category-Theory Library in Coq
    Experience Implementing a Performant Category-Theory Library in Coq Jason Gross, Adam Chlipala, and David I. Spivak Massachusetts Institute of Technology, Cambridge, MA, USA [email protected], [email protected], [email protected] Abstract. We describe our experience implementing a broad category- theory library in Coq. Category theory and computational performance are not usually mentioned in the same breath, but we have needed sub- stantial engineering effort to teach Coq to cope with large categorical constructions without slowing proof script processing unacceptably. In this paper, we share the lessons we have learned about how to repre- sent very abstract mathematical objects and arguments in Coq and how future proof assistants might be designed to better support such rea- soning. One particular encoding trick to which we draw attention al- lows category-theoretic arguments involving duality to be internalized in Coq's logic with definitional equality. Ours may be the largest Coq development to date that uses the relatively new Coq version developed by homotopy type theorists, and we reflect on which new features were especially helpful. Keywords: Coq · category theory · homotopy type theory · duality · performance 1 Introduction Category theory [36] is a popular all-encompassing mathematical formalism that casts familiar mathematical ideas from many domains in terms of a few unifying concepts. A category can be described as a directed graph plus algebraic laws stating equivalences between paths through the graph. Because of this spar- tan philosophical grounding, category theory is sometimes referred to in good humor as \formal abstract nonsense." Certainly the popular perception of cat- egory theory is quite far from pragmatic issues of implementation.
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Motivating Abstract Nonsense
    Lecture 1: Motivating abstract nonsense Nilay Kumar May 28, 2014 This summer, the UMS lectures will focus on the basics of category theory. Rather dry and substanceless on its own (at least at first), category theory is difficult to grok without proper motivation. With the proper motivation, however, category theory becomes a powerful language that can concisely express and abstract away the relationships between various mathematical ideas and idioms. This is not to say that it is purely a tool { there are many who study category theory as a field of mathematics with intrinsic interest, but this is beyond the scope of our lectures. Functoriality Let us start with some well-known mathematical examples that are unrelated in content but similar in \form". We will then make this rather vague similarity more precise using the language of categories. Example 1 (Galois theory). Recall from algebra the notion of a finite, Galois field extension K=F and its associated Galois group G = Gal(K=F ). The fundamental theorem of Galois theory tells us that there is a bijection between subfields E ⊂ K containing F and the subgroups H of G. The correspondence sends E to all the elements of G fixing E, and conversely sends H to the fixed field of H. Hence we draw the following diagram: K 0 E H F G I denote the Galois correspondence by squiggly arrows instead of the usual arrows. Unlike most bijections we usually see between say elements of two sets (or groups, vector spaces, etc.), the fundamental theorem gives us a one-to-one correspondence between two very different types of objects: fields and groups.
    [Show full text]
  • Oka Manifolds: from Oka to Stein and Back
    ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques FRANC FORSTNERICˇ Oka manifolds: From Oka to Stein and back Tome XXII, no 4 (2013), p. 747-809. <http://afst.cedram.org/item?id=AFST_2013_6_22_4_747_0> © Université Paul Sabatier, Toulouse, 2013, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la Facult´e des Sciences de Toulouse Vol. XXII, n◦ 4, 2013 pp. 747–809 Oka manifolds: From Oka to Stein and back Franc Forstnericˇ(1) ABSTRACT. — Oka theory has its roots in the classical Oka-Grauert prin- ciple whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomor- phic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989. In this expository paper we discuss Oka manifolds and Oka maps. We de- scribe equivalent characterizations of Oka manifolds, the functorial prop- erties of this class, and geometric sufficient conditions for being Oka, the most important of which is Gromov’s ellipticity.
    [Show full text]
  • Arxiv:Math/9703207V1 [Math.GT] 20 Mar 1997
    ON INVARIANTS AND HOMOLOGY OF SPACES OF KNOTS IN ARBITRARY MANIFOLDS V. A. VASSILIEV Abstract. The construction of finite-order knot invariants in R3, based on reso- lutions of discriminant sets, can be carried out immediately to the case of knots in an arbitrary three-dimensional manifold M (may be non-orientable) and, moreover, to the calculation of cohomology groups of spaces of knots in arbitrary manifolds of dimension ≥ 3. Obstructions to the integrability of admissible weight systems to well-defined knot invariants in M are identified as 1-dimensional cohomology classes of certain generalized loop spaces of M. Unlike the case M = R3, these obstructions can be non-trivial and provide invariants of the manifold M itself. The corresponding algebraic machinery allows us to obtain on the level of the “abstract nonsense” some of results and problems of the theory, and to extract from others the essential topological (in particular, low-dimensional) part. Introduction Finite-order invariants of knots in R3 appeared in [V2] from a topological study of the discriminant subset of the space of curves in R3 (i.e., the set of all singular curves). In [L], [K], finite-order invariants of knots in 3-manifolds satisfying some conditions were considered: in [L] it was done for manifolds with π1 = π2 = 0, and in [K] for closed irreducible orientable manifolds. In particular, in [L] it is shown that the theory of finite-order invariants of knots in two-connected manifolds is isomorphic to that for R3; the main theorem of [K] asserts that for every closed oriented irreducible 3- manifold M and any connected component of the space C∞(S1, M) the group of finite- arXiv:math/9703207v1 [math.GT] 20 Mar 1997 order invariants of knots from this component contains a subgroup isomorphic to the group of finite-order invariants in R3.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Humanizing Mathematics and Its Philosophy a Review by Joseph Auslander
    BOOK REVIEW Humanizing Mathematics and its Philosophy A Review by Joseph Auslander Communicated by Cesar E. Silva Humanizing Mathematics and its Philosophy: he wrote and coauthored with Philip Davis and Vera John- Essays Celebrating the 90th Birthday of Reuben Hersh Steiner several books and developed what he terms a Bharath Sriraman, editor Humanist philosophy of mathematics. He has also been a Birkhäuser, 2017 frequent book reviewer for Notices.1 Hardcover, 363 pages ISBN: 978-3-319-61230-0 Although he was not trained as a philosopher, Reuben Hersh has emerged as a major figure in the philosophy of mathematics. His Humanist view is probably the most cogent expression contrasting the dominant philosophies of Platonism and Formalism. Hersh has had a remarkable career. He was born in the Bronx, to immigrant working class parents. He graduated from Harvard at age nineteen with a major in English and worked for some time as a journalist, followed by a period of working as a machinist. He then attended the Courant Institute from which he obtained a PhD in 1962, under the supervision of Peter Lax. Hersh settled into a conventional academic career as a professor at The University of New Mexico, pursuing research mostly in partial differential equations. But beginning in the 1970s he wrote a number of expository articles, in Scientific American, Mathematical Reuben Hersh with co-author Vera John-Steiner Intelligencer, and Advances in Mathematics. Subsequently, signing copies of their book Loving and Hating Mathematics: Challenging the Myths of Mathematical Life Joseph Auslander is Professor Emeritus of Mathematics at the at the Princeton University Press Exhibit, JMM 2011.
    [Show full text]
  • Hodge Theory and Deformations of Maps Compositio Mathematica, Tome 97, No 3 (1995), P
    COMPOSITIO MATHEMATICA ZIV RAN Hodge theory and deformations of maps Compositio Mathematica, tome 97, no 3 (1995), p. 309-328 <http://www.numdam.org/item?id=CM_1995__97_3_309_0> © Foundation Compositio Mathematica, 1995, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 97: 309-328, 1995. 0 1995 Kluwer Academic Publishers. Printed in the Netherlands. 309 Hodge theory and deformations of maps ZIV RAN* Department of Mathematics, University of California, Riverside, CA 92521 Received 23 January 1992; accepted in revised form 30 June 1993; final revision June 1995. The purpose of this paper is to establish and apply a general principle (Theorem 1.1, Section 1) which serves to relate Hodge theory and defor- mation theory. This principle, which we state in a somewhat technical abstract-nonsense framework, takes on two dual forms which say roughly, respectively, that: (0.1) for a functorial homomorphism from a Hodge-type group to an infinitesimal deformation group, im( 1") consists of unobstructed deformations; (0.2) for a functorial homomorphism from an obstruction group to a Hodge-type group, "actual" obstructions lie in ker( n). A familiar example of (0.1) is the case of deformations of manifolds with trivial canonical bundle, treated from a similar viewpoint in [Rl] ; a familiar example of (0.2) is Bloch’s semi-regularity map [B], treated from a similar viewpoint in [R3].
    [Show full text]
  • George David Birkhoff and His Mathematical Work
    GEORGE DAVID BIRKHOFF AND HIS MATHEMATICAL WORK MARSTON MORSE The writer first saw Birkhoff in the fall of 1914. The graduate stu­ dents were meeting the professors of mathematics of Harvard in Sever 20. Maxime Bôcher, with his square beard and squarer shoes, was presiding. In the back of the room, with a different beard but equal dignity, William Fogg Osgood was counseling a student. Dun­ ham Jackson, Gabriel Green, Julian Coolidge and Charles Bouton were in the business of being helpful. The thirty-year-old Birkhoff was in the front row. He seemed tall even when seated, and a friendly smile disarmed a determined face. I had no reason to speak to him, but the impression he made upon me could not be easily forgotten. His change from Princeton University to Harvard in 1912 was de­ cisive. Although he later had magnificent opportunities to serve as a research professor in institutions other than Harvard he elected to remain in Cambridge for life. He had been an instructor at Wisconsin from 1907 to 1909 and had profited from his contacts with Van Vleck. As a graduate student in Chicago he had known Veblen and he con­ tinued this friendsip in the halls of Princeton. Starting college in 1902 at the University of Chicago, he changed to Harvard, remained long enough to get an A.B. degree, and then hurried back to Chicago, where he finished his graduate work in 1907. It was in 1908 that he married Margaret Elizabeth Grafius. It was clear that Birkhoff depended from the beginning to the end on her deep understanding and encouragement.
    [Show full text]
  • Remembering Paul Cohen (1934–2007) Peter Sarnak, Coordinating Editor
    Remembering Paul Cohen (1934–2007) Peter Sarnak, Coordinating Editor Paul Joseph Cohen, one of the stars some classic texts. There he got his first exposure of twentieth-century mathematics, to modern mathematics, and it molded him as a passed away in March 2007 at the mathematician. He tried working with André Weil age of seventy-two. Blessed with a in number theory, but that didn’t pan out, and unique mathematical gift for solving instead he studied with Antoni Zygmund, writing difficult and central problems, he a thesis in Fourier series on the topic of sets of made fundamental breakthroughs uniqueness. In Chicago he formed many long- in a number of fields, the most spec- lasting friendships with some of his fellow stu- tacular being his resolution of Hil- dents (for example, John Thompson, who re- bert’s first problem—the continuum mained a lifelong close friend). hypothesis. The period after he graduated with a Ph.D. Like many of the mathematical gi- was very productive, and he enjoyed a series of Paul Cohen ants of the past, Paul did not restrict successes in his research. He solved a problem his attention to any one specialty. of Walter Rudin in group algebras, and soon To him mathematics was a unified subject that after that he obtained his first breakthrough on one could master broadly. He had a deep under- what was considered to be a very difficult prob- standing of most areas, and he taught advanced lem—the Littlewood conjecture. He gave the first courses in logic, analysis, differential equations, nontrivial lower bound for the L1 norm of trigo- algebra, topology, Lie theory, and number theory nometric polynomials on the circle whose Fourier on a regular basis.
    [Show full text]
  • Relative Cohomology and Projective Twistor Diagrams
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 324, Number 1, March 1991 RELATIVE COHOMOLOGY AND PROJECTIVE TWISTOR DIAGRAMS S. A. HUGGETT AND M. A. SINGER ABSTRACT. The use of relative cohomology in the investigation of functionals on tensor products of twistor cohomology groups is considered and yields a significant reduction in the problem of looking for contours for the evaluation of (projective) twistor diagrams. The method is applied to some simple twistor diagrams and is used to show that the standard twistor kernel for the first order massless scalar ¢ 4 vertex admits a (cohomological) contour for only one of the physical channels. A new kernel is constructed for the ¢4 vertex which admits contours for all channels. 1. INTRODUCTION Since the discovery that the twistor description of massless fields is best un- derstood in terms of the analytic cohomology of twistor space [3, 9, 13], the question of how to interpret twistor diagrams [6, 16] in a cohomologically sat- isfactory way has attracted considerable interest [4, 5, 8]. The introduction of such diagrams is motivated by the desire to extend the twistor description of massless fields so as to include their basic (quantum field theoretic) interactions. A Feynman diagram specifies a kernel which defines, by substitution into an appropriate integral, a functional on some tensor product of Hilbert spaces. Similarly, a twistor diagram specifies a holomorphic kernel h which is to define a functional on some tensor product of analytic cohomology groups. In fact, one generally expects on physical grounds to associate a (finite) family of func- tionals to anyone kernel, since there are generally many physically significant 'channels' for anyone Feynman diagram.
    [Show full text]