Obelia Longissima Class: Hydrozoa, Hydroidolina

Total Page:16

File Type:pdf, Size:1020Kb

Obelia Longissima Class: Hydrozoa, Hydroidolina Phylum: Cnidaria Obelia longissima Class: Hydrozoa, Hydroidolina Order: Leptothecata A floating dock hydroid Family: Campanularidae Taxonomy: Obelia longissima was first de- about 0.5 mm in diameter; as they mature, scribed by Pallas in 1766. Synonymous in- they grow to 5 mm in diameter (Cornelius clude Campanularia flabellata, Gonothyraea 1975; Kozloff 1983). longissima, Laomeda flabellata, L. longissi- Color: Medusae are primarily clear. ma, O. flabellata, Sertularia longissima Their tentacle bases, mouths, gonads, and (WoRMS 2015). O. lucifera may also be a stomachs are sometimes yellow to brown, synonym (especially of the medusa form), while their gonads and mouths can be bright but further research is necessary to be sure. green (Puget Sound) (Arai and Brinckmann- There has been much debate over the spe- Voss 1980). cies identities within the genus Obelia Body: (Cornelius 1975; Arai and Brinckmann-Voss Bell: The bell is very thin and flat, with 1980). The taxonomy above was taken from a small stomach, no peduncle, and a rudi- the World Register of Marine Species mentary velum (Fig. 3). It is eversible (Arai (WoRMS 2015). In addition to confusion in and Brinckmann-Voss 1980). the lower taxonomy, the higher taxonomy Radial canals: There are four has undergone revision. The order Hydroida straight radial canals, each containing a glob- was determined to be synonymous with sub- ular gonad (Fig. 3). class Hydroidolina in 2004 (Schuchert Ring canal: The ring canal is 2015). narrow, with eight statocysts (balance struc- tures) (Arai and Brinckmann-Voss 1980) and Description no ocelli (Fig. 3). General Morphology: Obelia longissima Mouth: The mouth has 4 small, has two forms. The sexual form is a gelati- simple lips (Arai and Brinckmann-Voss 1980); nous hydromedusa. It has radial canals that in mature specimens these contain nemato- run from the top of the peduncle to the bell cysts (Boero et al. 2007). margin, where they are connected by a ring Tentacles: Tentacles are nu- canal. Suspended from the inside of the bell merous, solid (as opposed to hollow), and by a peduncle is the manubrium, or mouth. short. There are usually 16-26 in young me- A velum rings the inside of the bell margin dusae (Ricketts et al. 1985; Mills and Strath- (Fig. 3). Its asexual morphology is a large mann 1987), and more develop as they ma- polyp. Each polyp has a stem (hydrocaulus), ture. and most have a sheathed (thecate) hy- Velum: Reduced (Arai and dranth with a mouth (manubrium), stomach, Brinckmann-Voss 1980) and tentacles. Rather than having hy- Gonads: There are 4 round gonads on dranths, some polyps have gonothecae (Fig. the middle of each radial canal (Arai and 2). Brinckmann-Voss 1980). Medusa: Polyp: Size: Newly-released medusae are Size: Each colony can be up to 60 cm A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Piazzola, C.D. and T.C. Hiebert. 2015. Obelia longissima. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biol- ogy, Charleston, OR. long (Mills et al. 2007) (Fig. 1). Older side lack operculum. The genus Obelia includes branches are all about the same length species that have a nearly flat and eversible (towards the base), but younger branches bell, a reduced velum, eight statocysts, and gradually get shorter near the growing tip solid (rather than hollow) tentacles (Arai and (Mills et al. 2007). Brinckmann-Voss 1980). Within the genus, Color: The polyp is transparent white the species look so similar (especially in the when young, while old, mature colonies look hydromedusa stage) that it is common for re- dirty. Stems are brown to black (Mills el al. searchers to identify only to the genus level 2007). (Arai and Brinckmann-Voss 1980). Body: Lacks nematophores (non- There are two very closely related spe- feeding defensive polyps) (Mills et al. 2007) cies of Obelia: (Fig. 4) Pedicel: Stems are thread-like Obelia geniculata has a central zig zag and often monosiphonic (consist of a single stem, thickened at the joints, while O. longis- tube or row of cells) except sometimes near sima has a much straighter and narrower the base. Internodes of the stem are straight stem. Obelia geniculata has a rather conical or curve very slightly (Mills et al. 2007). hydrothecae (as opposed to bell-shaped) that Each stem has many branches, which are is only slightly longer than wide, and has plain ringed at the joints, alternate, and have short margins rather than cusped (Fig. 4a). Colony stalks (Fig. 2). Stems hold many hydranths size is also a difference; the maximum size of rather than just one (Mills et al. 2007). an O. geniculata colony is 2 cm (Cornelius Hydranth: The hydranth is 1975), much smaller than the 60 cm maxi- covered by a theca (hydrothecae), which is mum of O. longissima. This size also gives O. campanulate (bell-shaped, hence family geniculata a delicate white and fuzzy appear- name) and deep enough to contain the hy- ance (Kozloff 1983). The species are similar dranth when contracted. The margin is cren- in that they both have ringed branches and ulate rather than cusped, and lacks an oper- axillary gonothecae that are urn-shaped, with culum (Mills et al. 2007). Each hydranth is a raised center and a short ringed stalk. Their on the end of a long, ringed pedicels (Fig. hydromedusae are also similar enough that 2d, f). they are often not identified past the genus Gonangium: The reproductive level (Arai and Brinckmann-Voss 1980). buds (gonotheca, gonangia) asexually pro- Obelia dichotoma is very similar to O. duce medusae (Fig. 2c) (Ricketts et al. longissima. Both have slender and annulated 1985). These buds are axillary (i.e., grow out stems, though O. dichotoma has curved inter- of the angle between the stem and the hy- nodes and is irregularly branched while O. drotheca). They are oval-shaped and longissima has a straight stem and is alter- smooth, with a raised central aperture nately branched. These are essentially the (Parker et al. 1951) and a terminal collar only differences. Both have hydrothecae that (Mills et al. 2007). are broad, bell-shaped, with slightly sinuated margins; their gonothecae are axillar, slender, Possible Misidentifications and smooth. They widen from the base, and The family Campanulariidae includes end in a “raised, somewhat conical aper- leptomedusae possessing four radial canals, ture” (Russell 1953) (Fig. 4b). No one has yet and lacking excretory pores and marginal or been able to definitively identify differences in lateral cirri. The polyps in the family have a the hydromedusae forms. club or trumpet-shaped manubrium, and A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Other hydroids, which have stalks, was found down to 12 (Cornelius 1975). and thecae within which their hydranths can Temperature: Specimens have been found in be retracted (Fig. 2b) include those of the cold and temperate waters; settling may occur families Campanulinidae and Phialellidae in cooler temperatures during the year (Rees and Hand 1975), which are very small (Standing 1976). and have tubular thecae with a pointed oper- Tidal Level: They are most abundant in mid- culum. Other Campanularidae (bell-shaped intertidal and just below, and have been found hydrothecae) include Phialidium sp. and from low tide to 128 m (Mills et al. 2007). Campanularia sp. both of which have colo- Associates: The hydroid colonies serve as a nies of less than 2 cm in height, and are good habitat for many epibionts. Some of rarely branched. these include caprellid and garnmarid amphi- The genus most closely related to pods; asellote isopods; copepods; diatoms; Obelia is Gonothyraea, which does not re- the sea slug Eubranchus; nudibranchs Den- lease free medusae, but retains them within dronotus frondosus and Phidiana crassicornis the gonotheca (Kozloff 1983). (Bodega Bay); and pycnogonid Halosoma veridintestinale. The medusa form plays host Ecological Information to pycnogonid larvae of Anaphia (England). Range: The type locality is Belgium (Ralph Despite both species’ prevalence as fouling 1957). The genus Obelia is found worldwide. organisms, barnacle larvae cannot settle Obelia longissima is found from Alaska to where O. longissima growth is heavy San Pedro, California (Ricketts et al. 1985). (Standing 1976). Local Distribution: All three closely related Abundance: Obelia longissima is particularly species (O. longissima, O. geniculata, O. common in harbors in northern California dictotoma) are found from northern Califor- (Rees and Hand 1975), British Columbia, and nia to Puget Sound, Washington; other spe- Puget Sound (Arai and Brinckmann-Voss cies may be present as well, some of them 1980; Ricketts et al. 1985). In the Strait of introduced (Rees and Hand 1975). Georgia, it is collected from March to Sept., Habitat: This is a frequent fouling organism, and common from April to June (Arai and common in harbors (Mills et al. 2007), on Brinckmann-Voss 1980). Medusae are re- docks, kelp, and floats in bays, and in eel- leased primarily during summer, but also in grass beds (Elkhorn Slough, CA) (Ricketts smaller quantities throughout year (Ricketts et et al. 1985). Healthy colonies are found on al. 1985). Medusa blooms and subsequent exposed pilings, particularly where water is massive shoreline settlement are not common clean and fast-moving. Medusae are found but do occasionally occur (Genzano et al.
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Hydrozoa of the Eurasian Arctic Seas 397 S
    THE ARCTIC SEAS CI imatology, Oceanography, Geology, and Biology Edited by Yvonne Herman IOm51 VAN NOSTRAND REINHOLD COMPANY ~ -----New York This work relates to Department of the Navy Grant NOOOI4-85- G-0252 issued by the Office of Naval Research. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein. Copyright © 1989 by Van Nostrand Reinhold Softcover reprint of the hardcover 1st edition 1989 Library of Congress Catalog Card Number 88-33800 ISBN-13 :978-1-4612-8022-4 e-ISBN-13: 978-1-4613-0677-1 DOI: 10.1007/978-1-4613-0677-1 All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without written permission of the publisher. Designed by Beehive Production Services Van Nostrand Reinhold 115 Fifth Avenue New York, New York 10003 Van Nostrand Reinhold (International) Limited 11 New Fetter Lane London EC4P 4EE, England Van Nostrand Reinhold 480 La Trobe Street Melbourne, Victoria 3000, Australia Nelson Canada 1120 Birchmount Road Scarborough, Ontario MIK 5G4, Canada 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging in Publication Data The Arctic Seas. Includes index. 1. Oceanography-Arctic Ocean. 2. Geology-ArctiC Ocean. 1. Herman, Yvonne. GC401.A76 1989 551.46'8 88-33800 ISBN-13: 978-1-4612-8022-4 For Anyu Contents Preface / vii Contributors / ix 1.
    [Show full text]
  • Zoology Diversity of Invertebrates Structure
    ZOOLOGY DIVERSITY OF INVERTEBRATES STRUCTURE OF OBELIA --------------------------------------------------------------------------- Introduction: Obelia is worldwide in distribution in the form of plant and is observed in white or light brown in colour in the form of fur in the seas and oceans. It is usually known as Sea-fur. Its name is derived from the Greek word called ‘obelias’,means loaf baked on a spit. • Phylum: Colenterata • Class: Hydrozoa • Order: Hydroida • Sub-order: Leptomedusae • Genus: Obelia • Species: geniculata As it is having three forms like polyp, medusa and blasto style, it is described as trimorphic hydrozoan. Among many species like O. geniculate, O. longissimi, O. bidentata, O. dichotoma. O. geniculate is the most common example studied. Habit and Habitat of Obelia: It is sedentary, marine colonial form present throughout the world on the surfaces of sea weeds, rocks, wooden piles, molluscan shells etc., in the shallow water up to 80-100 meters depth. It is observed in both sexual forms as hydroid colony and asexual form as medusa. Structure of Hydroid Colony: Hydroid colony of obelia is sensitive, transparent consists of horizontal hydrorhiza and vertical hydrocaulus. Hydrorhiza: Hydrorhiza is horizontal thread like root attached to the substratum. It is hollow tube like and gives of vertical branches called hydrocaulus. The tubular part of hydrorhiza are also called stolons. Hydrocaulus: Hydrocaulus are vertical branches arising from hydrorhiza for a length of 2-3 cms. These are also hollow with short lateral branches alternatively in cymose manner. Each alternate branch bears terminal polyp zooids. OBELIA COLONY Each ultimate branch terminates in nutritive zooids called hydranth and axils of the older polyps consists of reproductive zooids called blastostyles or gonangia, thus obelia colony is dimorphic and when gonangia produces saucer shaped buds as a result of asexual reproduction and develops into sexual zooids called medusae, obelia colony becomes trimorphic colony.
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Cnidaria: Hydrozoa) Associated to a Subtropical Sargassum Cymosum (Phaeophyta: Fucales) Bed
    ZOOLOGIA 27 (6): 945–955, December, 2010 doi: 10.1590/S1984-46702010000600016 Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed Amanda Ferreira Cunha1 & Giuliano Buzá Jacobucci2 1 Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14, 101, Cidade Universitária, 05508-900 São Paulo, SP, Brazil. E-mail: [email protected] 2 Instituto de Biologia, Universidade Federal de Uberlândia. Rua Ceará, Campus Umuarama, 38402-400 Uberlândia, MG, Brazil. E-mail: [email protected] ABSTRACT. Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S.
    [Show full text]
  • Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
    Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Hydroids and Hydromedusae of Southern Chesapeake Bay
    W&M ScholarWorks Reports 1971 Hydroids and hydromedusae of southern Chesapeake Bay Dale Calder Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Calder, D. (1971) Hydroids and hydromedusae of southern Chesapeake Bay. Special papers in marine science; No. 1.. Virginia Institute of Marine Science, William & Mary. http://doi.org/10.21220/V5MS31 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. LIST OF TABLES Table Page Data on Moerisia lyonsi medusae ginia ...................... 21 rugosa medusae 37 Comparison of hydroids from Virginia, with colonies from Passamaquoddy Bay, New Brunswick.. .................. Hydroids reported from the Virginia Institute of Marine Science (Virginia Fisheries Laboratory) collection up to 1959 ................................................ Zoogeographical comparisons of the hydroid fauna along the eastern United States ............................... List of hydroids from Chesapeake Bay, with their east coast distribution ...me..................................O 8. List of hydromedusae known from ~hesa~eakeBay and their east coast distribution .................................. LIST OF FIGURES Figure Page 1. Southern Chesapeake Bay and adjacent water^.............^^^^^^^^^^^^^^^^^^^^^^^^ 2. Oral view of Maeotias inexpectata ........e~~~~~e~~~~~~a~~~~~~~~~~~o~~~~~~e 3. rature at Gloucester Point, 1966-1967..........a~e.ee~e~~~~~~~aeaeeeeee~e 4. Salinity at Gloucester Point, 1966-1967..........se0me~BIBIeBIBI.e.BIBIBI.BIBIBIs~e~eeemeea~ LIST OF PLATES Plate Hydroids, Moerisia lyonsi to Cordylophora caspia a a e..a a * a 111 ...................
    [Show full text]
  • Phylum Cnidaria-Radiate Animals
    Phylum Cnidaria-Radiate Animals • Tissue level of organization • 2 Germ layers • Hydrostatic Skeleton • Gastrovascular Cavity- for digestion • Polymorphism • Polyp (sessile) and Medusa (free-living) stages Class Hydrozoa 1. Lifestyle- Both polyp and medusa stages dominant 2. Reproduction- asexual by budding or sexual 3. 10 tentacles 4. Ex: Obelia, Obelia medusae, Hydra, Hydra reproductive stages Class Scyphozoa- True Jellyfish 1. Lifestyle- Solitary- Medusa-stage dominant 2. Ex: Aurelia, Aurelia lifecycle Class Anthozoa 1. Lifestyle- Polyp stage dominant 2. Gastrovascular cavity divided into mesenteries 3. Ex: Mertidium, Metridium dissection Return to original outline Return to phyla outline Class Hydrozoa Hydra C.S L.S 100X W.M Male Female Return to original outline Return to phyla outline Hydra 40X W.M Return to original outline Return to phyla outline Budding 40X Spermary Ovary 40X Return to original outline Return to phyla outline Obelia Obelia Colony 40X Return to original outline Return to phyla outline Medusae 100x Return to original outline Return to phyla outline Class Scyphozoa Aurelia Lifecycle Planula 100x Schyphistoma 100x Strobila 100x Ephrya 40x Return to original outline Return to phyla outline Aurelia Return to original outline Return to phyla outline Class Anthozoa Metridium LS CS Dissection scope Return to original outline Return to phyla outline Metridium Return to original outline Return to phyla outline Phylum Porifera-The Sponges • Multicellular • Cellular level of organization • No division of labor among cells • No body systems, no organs, no mouth/digestive tract • No germ layers • Pores and canal systems Class Calcarea 1. Spicule type- calcium carbonate 2. Canal system- asconoid, leuconoid and syconoid 3.
    [Show full text]