Supplementary Materials For

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Materials For Supplementary Materials for Identification of candidate biomarkers for Idiopathic Thrombocytopenic Purpura by Bioinformatics Analysis of Microarray Data Samira Gilanchi, Hakimeh Zali*, Mohammad Faranoush*, Mostafa Rezaei Tavirani, Keyvan Shahriary and Mahyar Daskareh To whom correspondence should be addressed. E-mail [email protected]; [email protected] Volume 19, issue 4 (autumn 2020) This PDF file includes: Tables S1 to S8 Table S1. Up-regulated DEGs that obtain from analysis from 7 newly diagnosed ITP than 6 chronic ITP samples. In table M means log2FC, T is T statistics, P-values evaluated based on Benjamini false discovery rate. Top genes are selected for more valuation with P-value < 0.05, and B is B statistic. Up-regulated genes M T P-Value B 1 FNBP4 1.089255 9.645201 0.0067318 6.692063 2 G2E3 0.993745 7.38905 0.0306136 4.269833 3 SAR1B 1.523974 7.35994 0.0306136 4.233735 4 PER3 1.297768 7.261088 0.0306136 4.11015 5 MSI2 1.60714 7.23665 0.0306136 4.079358 6 CASK 1.854101 7.07773 0.0324118 3.876782 7 TM2D1 1.510449 7.006354 0.0326833 3.784474 8 RPRD1A 1.155052 6.971092 0.0326833 3.738565 9 SLC39A6 1.032869 6.868857 0.033521 3.604313 10 CAMTA1 2.258868 6.855413 0.033521 3.586531 11 PTAR1 1.602835 6.828607 0.033521 3.550986 12 LOC101929734 1.620399 6.561583 0.039368 3.190433 13 ADNP2 1.084491 6.519255 0.0400375 3.132189 14 ZNF224 1.234505 6.365865 0.0400375 2.918603 15 TUBE1 0.990095 6.354317 0.0400375 2.902363 16 GIGYF2 0.741529 6.353043 0.0400375 2.900571 17 ABCA5 1.293839 6.341226 0.0400375 2.883927 18 FBXW7 1.205229 6.303732 0.0400375 2.830962 19 METTL8 1.073161 6.298249 0.0400375 2.823197 20 IL1RAP 1.257333 6.24383 0.0404726 2.74585 21 TNRC6A 0.894899 6.218077 0.0404726 2.709073 22 GSPT1 1.406084 6.210119 0.0404726 2.697685 23 FAM178A 1.428243 6.187739 0.0404726 2.665603 24 GFPT1 1.229498 6.155903 0.0404726 2.619821 25 BAZ1B 0.63851 6.098917 0.0416029 2.537444 26 IFNGR1 1.406398 6.044768 0.0435208 2.458658 27 TAOK1 1.135816 6.031329 0.0435546 2.439026 28 MIER3 1.470019 6.010599 0.0437901 2.408686 29 EML4 1.21403 5.992304 0.0437901 2.381849 30 SF1 2.419055 5.979368 0.0437901 2.36284 31 BBS2 0.900097 5.966395 0.0437901 2.343747 32 DYNC1LI2 0.94218 5.935166 0.0437901 2.29767 33 GPATCH11 0.768424 5.923691 0.0437901 2.280697 34 SCARB2 1.14523 5.922954 0.0437901 2.279606 35 PJA2 1.008988 5.910003 0.0439652 2.260422 36 RAB8B 1.803071 5.867977 0.0451902 2.197976 37 C2orf49 0.631136 5.839604 0.0451902 2.155649 38 CLIP1 1.182693 5.837234 0.0451902 2.152107 39 CAPN7 0.64129 5.816295 0.0451902 2.120774 40 TMED2 1.869119 5.805709 0.0451902 2.104904 41 TBC1D5 0.615565 5.779152 0.0451902 2.06501 42 ELL2 1.252154 5.731373 0.0451902 1.992939 43 ATF2 0.947451 5.711385 0.0451902 1.962674 44 GSPT1 0.873036 5.709465 0.0451902 1.959763 45 LINS 1.566022 5.699534 0.0451902 1.944699 46 SOCS5 1.382893 5.680112 0.0451902 1.915188 47 PAK2 0.922675 5.679562 0.0451902 1.914352 48 ERO1L 0.743072 5.664249 0.0451902 1.891038 49 ZNF382 1.33402 5.649846 0.0451902 1.869075 50 AKT3 1.097085 5.64984 0.0451902 1.869067 51 DNAJB14 1.2606 5.642786 0.0451902 1.858296 52 KIAA0430 0.830526 5.631546 0.0451902 1.841119 53 LOC283357 1.388744 5.614235 0.0451902 1.814622 54 ABL2 0.970876 5.611618 0.0451902 1.810612 55 EIF4E3 1.490178 5.581755 0.0461011 1.764772 56 FBXO38 1.473477 5.563832 0.0461011 1.737189 57 BUB3 0.846439 5.559647 0.0461011 1.730741 58 FOXN3 0.729011 5.551631 0.0461011 1.718382 59 FYCO1 0.685791 5.550846 0.0461011 1.71717 60 RCOR3 1.111475 5.540362 0.0461011 1.700989 61 CELF2 0.950587 5.514707 0.0461011 1.661313 62 LOC286161 0.874993 5.496367 0.0461011 1.632884 63 MID2 2.498842 5.487535 0.0461011 1.619173 64 VIM 1.077912 5.478964 0.0461011 1.605856 65 FKBP5 1.340329 5.462894 0.0461011 1.580853 66 DDI2 0.802653 5.447908 0.0461011 1.557498 67 FAM102B 1.604417 5.441605 0.0461011 1.547664 68 SSR1 0.671231 5.41403 0.0464563 1.504564 69 USP33 1.082804 5.413965 0.0464563 1.504464 70 LOC441155 1.320178 5.407527 0.0465531 1.494382 71 EBLN3 0.865344 5.399293 0.0465531 1.48148 72 TAOK1 1.238425 5.394765 0.0465619 1.47438 73 FEM1C 1.176922 5.381844 0.0468877 1.454102 74 PHLPP2 0.842615 5.377182 0.0468877 1.446778 75 KATNBL1 1.066378 5.369693 0.0468877 1.435007 76 RYK 1.038018 5.369199 0.0468877 1.434229 77 PCF11 0.923752 5.346921 0.0480425 1.399155 78 ZNF652 0.702938 5.320464 0.049098 1.357397 Table S2. Down-regulated DEGs that obtain from analysis from 7 newly diagnosed ITP and 6 chronic ITP samples. In table M means log2FC, T is T statistics, P-values evaluated based on Benjamini false discovery rate. Top genes are selected for more valuation with P-value < 0.05, and B is B statistics Down- regulated genes M t P-Value B 1 ANPEP -0.735878826 -9.534773023 0.006731833 6.589335938 2 CHST2 -1.88015076 -8.319640697 0.017919754 5.355538925 3 DTX1 -1.749320818 -8.249838309 0.017919754 5.278554231 4 HDAC1 -0.774621454 -7.334693025 0.030613591 4.202317954 5 RNF123 -1.692692914 -7.289549357 0.030613591 4.145891021 6 AIF1 -1.004697039 -6.753471759 0.035415994 3.450729146 7 ATG7 -1.053550632 -6.721844599 0.035415994 3.408247991 8 FTH1P5 -0.626809793 -6.652339759 0.037015382 3.314307169 9 LOC100134317 -1.193919711 -6.629978435 0.037015382 3.283913481 10 SETMAR -0.837673399 -6.372754087 0.04003745 2.928280907 11 ACRC -0.923974318 -6.328993446 0.04003745 2.866672611 12 ZNF324 -1.293234841 -6.299714425 0.04003745 2.82527201 13 LOC100130093 -1.091433807 -6.237114887 0.04047256 2.736270886 14 DAGLB -1.12014016 -6.1993276 0.04047256 2.682226349 15 DUSP22 -0.69810855 -6.143905623 0.04047256 2.60252354 16 DAP -1.15484218 -6.110946593 0.041602909 2.554878573 17 KPNA2 -0.757591152 -5.96667344 0.043790091 2.34415709 18 TOPORS-AS1 -1.026182831 -5.927690522 0.043790091 2.286615563 19 SMIM12 -1.164931094 -5.8345256 0.045190183 2.148057695 20 ARRB1 -1.855926621 -5.831570925 0.045190183 2.143639442 21 TBC1D9B -1.003040692 -5.79978503 0.045190183 2.096015561 22 FARSA -1.089148521 -5.760964566 0.045190183 2.037621166 23 TUFM -0.737102234 -5.746319758 0.045190183 2.015526331 24 PPM1G -0.809004205 -5.698111162 0.045190183 1.942538785 25 MAU2 -0.725621444 -5.688755813 0.045190183 1.928329651 26 CYB561A3 -1.291094781 -5.68285354 0.045190183 1.919357586 27 MRPL45 -0.600284876 -5.671898012 0.045190183 1.902688575 28 TEX264 -0.96019039 -5.654495545 0.045190183 1.876169124 29 GRK5 -0.896145434 -5.654157813 0.045190183 1.875653956 30 COPRS -0.973549797 -5.52372126 0.046101091 1.675266232 31 MFNG -0.666183832 -5.49299702 0.046101091 1.627653526 32 HIST1H2BK -1.427762269 -5.488703475 0.046101091 1.620987469 33 TOPORS-AS1 -0.748894367 -5.486521934 0.046101091 1.617599291 34 TEX264 -0.971091862 -5.482213726 0.046101091 1.610905853 35 AIF1 -1.159172706 -5.481899391 0.046101091 1.610417367 36 PLA2G6 -0.971440161 -5.473211953 0.046101091 1.59691037 37 TBC1D13 -0.988326082 -5.471430671 0.046101091 1.59413934 38 COMMD9 -0.765036844 -5.469800785 0.046101091 1.59160337 39 RHOG -1.37279767 -5.467830565 0.046101091 1.588537282 40 TOX2 -1.727269695 -5.464495332 0.046101091 1.583345479 41 EIF4E2 -1.052136382 -5.460569655 0.046101091 1.577232208 42 MEN1 -1.034120822 -5.454648946 0.046101091 1.568007362 43 LASP1 -0.831433786 -5.446247014 0.046101091 1.554906698 44 TMEM214 -1.042821964 -5.429086581 0.046456312 1.528113287 45 UBE2R2 -0.859762728 -5.421047185 0.046456312 1.515544335 46 HDAC7 -0.861652419 -5.400374922 0.046553106 1.48317619 47 B4GALT7 -0.873618293 -5.3516994 0.047991908 1.406684887 48 PUSL1 -1.015661172 -5.339559454 0.048314234 1.387547283 49 ABHD16A -0.708618318 -5.32449758 0.049097958 1.363770168 50 CDIP1 -0.860815247 -5.318151293 0.049097958 1.353740696 51 UBAP2 -0.735560264 -5.31243509 0.049244602 1.344701393 52 TUBA1A -0.85617395 -5.305815959 0.04947288 1.334227626 53 UQCR11 -0.712583116 -5.30149897 0.049503945 1.327392822 Table S3. Gene ontology enrichment based on biological process term for up-regulated DEGs. They were selected with P-value < 0.05 as the significant biological process. Enrichment Score is related the type of analysis in DAVID database with selecting "functional annotation clustering" for analysis of gene lists. Category Term P-Value Genes Annotation Cluster 1 Enrichment Score: 1.6089173346492356 DYNC1LI2, RAB8B, TAOK1, VIM, EML4, ATF2, BBS2, GO:1902589 single-organism organelle organization 0.005313 FBXW7, CLIP1, TUBE1, FYCO1, USP33, ABL2, BUB3 GO:0000226 microtubule cytoskeleton organization 0.020728 BBS2, DYNC1LI2, CLIP1, TUBE1, USP33, EML4 BBS2, DYNC1LI2, CLIP1, TUBE1, FYCO1, USP33, GO:0007017 microtubule-based process 0.026109 EML4 Annotation Cluster 2 Enrichment Score: 1.5454786370206883 GO:0010506 regulation of autophagy 0.003125 FBXW7, TBC1D5, ABL2, FYCO1, USP33, MID2 GO:0010508 positive regulation of autophagy 0.03688 TBC1D5, FYCO1, MID2 Annotation Cluster 3 Enrichment Score: 1.1276637957883262 GO:0000075 cell cycle checkpoint 0.010137 TAOK1, GIGYF2, BUB3, FOXN3, ATF2 FBXW7, GSPT1, TAOK1, KIAA0430, CLIP1, TUBE1, GO:0022402 cell cycle process 0.010174 GIGYF2, USP33, BUB3, FOXN3, EML4, ATF2 GO:0000077 DNA damage checkpoint 0.017372 TAOK1, GIGYF2, FOXN3, ATF2 TAOK1, KIAA0430, FOXN3, EML4, ATF2, FBXW7, GO:0007049 cell cycle 0.017944 GSPT1, PAK2, CLIP1, TUBE1, USP33, GIGYF2, BUB3 GO:0031570 DNA integrity checkpoint 0.020624 TAOK1, GIGYF2, FOXN3, ATF2 GO:0007093 mitotic cell cycle checkpoint 0.020967 GIGYF2, BUB3, FOXN3, ATF2 GO:0045930 negative regulation of mitotic cell cycle 0.047204 GIGYF2, BUB3, FOXN3, ATF2 Annotation Cluster 4 Enrichment Score: 1.0524732568167308 DYNC1LI2, VIM, KIAA0430, ATF2, ABCA5, SSR1, FBXW7, TMED2, PAK2, IL1RAP, TBC1D5, TUBE1, SCARB2,
Recommended publications
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Manuscript for Proximity Interactome Analysis of Lassa
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452739; this version posted July 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Main Manuscript for 2 Proximity interactome analysis of Lassa polymerase reveals 3 eRF3a/GSPT1 as a druggable target for host directed antivirals. 4 Jingru Fang1,2, Colette Pietzsch3,4, George Tsaprailis5, Gogce Crynen5, Kelvin Frank Cho6, Alice 5 Y. Ting7,8, Alexander Bukreyev3,4,9, Erica Ollmann Saphire2* and Juan Carlos de la Torre1* 6 1 Department of Immunology and Microbiology, Scripps Research, La Jolla CA 92037 7 2La Jolla Institute for Immunology, La Jolla CA 92037 8 3Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550 9 4Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550 10 5Proteomics Core, Scripps Research, Jupiter, FL 33458 11 6Cancer Biology Program, Stanford University, Stanford, CA 94305 12 7Department of Genetics, Department of Biology and Department of Chemistry, Stanford 13 University, Stanford, CA 94305 14 8Chan Zuckerberg Biohub, San Francisco, CA 94158 15 9Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 16 TX 77550 17 *Erica Ollmann Saphire; Juan Carlos de la Torre. 18 Email: [email protected] and [email protected] 19 Author Contributions: J.F., E.O.S., and J.C.T designed research; J.F. performed all non-BSL4 20 experiments and analyzed data; C.P.
    [Show full text]
  • Functional Interactomes of the Ebola Virus Polymerase Identified by Proximity Proteomics 2 in the Context of Viral Replication
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.20.453153; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Functional interactomes of the Ebola virus polymerase identified by proximity proteomics 2 in the context of viral replication 3 Jingru Fang1,2, Colette Pietzsch3,4, George Tsaprailis5, Gogce Crynen6, Kelvin Frank Cho7, Alice 4 Y. Ting8,9, Alexander Bukreyev3,4,10*, Juan Carlos de la Torre2*, Erica Ollmann Saphire1* 5 1La Jolla Institute for Immunology, La Jolla CA 92037 6 2Department of Immunology and Microbiology, Scripps Research, La Jolla CA 92037 7 3Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550 8 4Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550 9 5Proteomics Core, Scripps Research, Jupiter, FL 33458 10 6Bioinformatics and Statistics Core, Scripps Research, Jupiter, FL 33458 11 7Cancer Biology Program, Stanford University, Stanford, CA 94305 12 8Department of Genetics, Department of Biology and Department of Chemistry, Stanford 13 University, Stanford, CA 94305 14 9Chan Zuckerberg Biohub, San Francisco, CA 94158 15 10 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 16 TX 77550 17 Correspondence: [email protected], [email protected], [email protected] 18 Lead contact: [email protected] 19 SUMMARY 20 Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral 21 RNA genome.
    [Show full text]
  • Influence of Erf3a/GSPT1 Gene Expression on Susceptibility to Carcinogenesis
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL INFLUENCE OF ERF3 A/GSPT1 GENE EXPRESSI ON ON SUSCEPTIBILITY TO CARCINOGENESIS JOANA FERREIRA TOMÉ MALTA VACAS Tese orientada por: Professor Doutor Rui Miguel Brito Professora Doutora Maria Manuela Coelho DOUTORAMENTO EM BIOLOGIA (Biologia Molecular) 2009 This study was supported by the Fundação Para a Ciência e a Tecnologia: PhD fellowship SFRH/BD/21468/2005, projects POCTI/MGI/40071/2001 and PTDC/SAU-GMG/67031/2006. This dissertation should be cited as: Malta-Vacas J. (2009) Influence of eRF3a/GSPT1 gene expression on susceptibility to carcinogenesis. PhD Thesis, University of Lisbon, Portugal. “O erro é a noite dos espíritos e a armadilha da inocência” Luc de Clapiers, Marquês de Vauvenargues NOTAS PRÉVIAS Nos termos do n.º 1 do Artigo 40, Capítulo V, do Regulamento de Estudos Pós-Graduados da Universidade de Lisboa, publicado no Diário da República – II Série N.º 153, de 5 de Julho de 2003, esclarece-se que na elaboração da presente dissertação foram usados integralmente artigos científicos já publicados (4) ou submetidos para publicação (1) em revistas indexadas de circulação internacional, os quais integram os Capítulos II e III da presente tese. Tendo os referidos trabalhos sido realizados em colaboração, a candidata esclarece que participou integralmente no planeamento e na elaboração de todos os trabalhos, assim como na análise e discussão dos resultados. Esclarece-se ainda que a formatação dos vários artigos que integram a presente dissertação obedece às regras das revistas em que foram publicados ou submetidos para publicação. Por este motivo, não foi possível adoptar um critério uniforme ao longo dos vários capítulos.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Uncovering RNA Binding Proteins Associated with Age and Gender During Liver Maturation
    OPEN Uncovering RNA binding proteins SUBJECT AREAS: associated with age and gender during GENOME-WIDE ASSOCIATION STUDIES liver maturation REGULATORY NETWORKS Praneet Chaturvedi1, Yaseswini Neelamraju1, Waqar Arif2, Auinash Kalsotra2 & Sarath Chandra Janga1,3,4 AGEING GENE REGULATORY NETWORKS 1Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, Indiana 46202, 2Departments of Biochemistry and Medical Biochemistry, University Received of Illinois, Urbana-Champaign, Illinois 61801, USA, 3Center for Computational Biology and Bioinformatics, Indiana University 11 December 2014 School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, Indiana, 46202, 4Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Accepted Building, 975 West Walnut Street, Indianapolis, Indiana, 46202. 9 March 2015 Published In the present study, we perform an association analysis focusing on the expression changes of 1344 RNA 31 March 2015 Binding proteins (RBPs) as a function of age and gender in human liver. We identify 88 and 45 RBPs to be significantly associated with age and gender respectively. Experimental verification of several of the predicted associations in mice confirmed our findings. Our results suggest that a small fraction of the gender-associated RBPs (,40%) are expressed higher in males than females. Altogether, these observations Correspondence and show that several of these RBPs are important and conserved regulators in maintaining liver function. requests for materials Further analysis of the protein interaction network of RBPs associated with age and gender based on the should be addressed to centrality measures like degree, betweenness and closeness revealed that several of these RBPs might be S.C.J.
    [Show full text]
  • Nahar Et Al. Supplementary Figure 1 (%) 10
    A (%) 5,000 4,000 3,000 hADSC 2,000 mADSC 1,000 0 day0 day3 day5 B CD90 CD44 hADSC 600µm 600µm CD90.2 CD44 mADSC 600µm 600µm Nahar et al. Supplementary Figure 1 (%) 10 0 2 4 6 8 biological adhesion biological regulation cell killing cellular process developme ntal proce ss establishment of localization Biological Process Biological growth immune system process localization locom otion metabolic process multi-organism process multicellular organismal process pigmentation reproduction reproductive process hADSC response to stimulus rhythmic process viral process Golgi apparatus mADSC cytoplasm cytoskeleton Cellular Component endoplasmic reticulum endosome extracellular region Both hADSC and mADSC and hADSC Both Nahar intracellular organelle membrane mitochondrion nucleus et al. organelle membrane organelle part plasma membrane ribosome Supplementary antioxidant activity transport binding catalytic activity obsolete chaperone regulator activity chemoattractant activity Molecular Function Molecular chemorepellent activity electron carrier activity enzyme regulator activity Figure metallochaperone activity molecular function molecular transducer activity motor activity 2 nutrient reservoir activity ( protein tag Figure structural molecule activity obsolete transcription regulator activity translation regulator activity 4) transporter activity Supplementary Table 1. Identification of endogenous proteins contained both hADSC and mADSC. a UniProt/SWISS- Biological Process Cellular Component Molecular Function emPAI PROT ID Alternate ID biological
    [Show full text]
  • Mrna Expression in Human Leiomyoma and Eker Rats As Measured by Microarray Analysis
    Table 3S: mRNA Expression in Human Leiomyoma and Eker Rats as Measured by Microarray Analysis Human_avg Rat_avg_ PENG_ Entrez. Human_ log2_ log2_ RAPAMYCIN Gene.Symbol Gene.ID Gene Description avg_tstat Human_FDR foldChange Rat_avg_tstat Rat_FDR foldChange _DN A1BG 1 alpha-1-B glycoprotein 4.982 9.52E-05 0.68 -0.8346 0.4639 -0.38 A1CF 29974 APOBEC1 complementation factor -0.08024 0.9541 -0.02 0.9141 0.421 0.10 A2BP1 54715 ataxin 2-binding protein 1 2.811 0.01093 0.65 0.07114 0.954 -0.01 A2LD1 87769 AIG2-like domain 1 -0.3033 0.8056 -0.09 -3.365 0.005704 -0.42 A2M 2 alpha-2-macroglobulin -0.8113 0.4691 -0.03 6.02 0 1.75 A4GALT 53947 alpha 1,4-galactosyltransferase 0.4383 0.7128 0.11 6.304 0 2.30 AACS 65985 acetoacetyl-CoA synthetase 0.3595 0.7664 0.03 3.534 0.00388 0.38 AADAC 13 arylacetamide deacetylase (esterase) 0.569 0.6216 0.16 0.005588 0.9968 0.00 AADAT 51166 aminoadipate aminotransferase -0.9577 0.3876 -0.11 0.8123 0.4752 0.24 AAK1 22848 AP2 associated kinase 1 -1.261 0.2505 -0.25 0.8232 0.4689 0.12 AAMP 14 angio-associated, migratory cell protein 0.873 0.4351 0.07 1.656 0.1476 0.06 AANAT 15 arylalkylamine N-acetyltransferase -0.3998 0.7394 -0.08 0.8486 0.456 0.18 AARS 16 alanyl-tRNA synthetase 5.517 0 0.34 8.616 0 0.69 AARS2 57505 alanyl-tRNA synthetase 2, mitochondrial (putative) 1.701 0.1158 0.35 0.5011 0.6622 0.07 AARSD1 80755 alanyl-tRNA synthetase domain containing 1 4.403 9.52E-05 0.52 1.279 0.2609 0.13 AASDH 132949 aminoadipate-semialdehyde dehydrogenase -0.8921 0.4247 -0.12 -2.564 0.02993 -0.32 AASDHPPT 60496 aminoadipate-semialdehyde
    [Show full text]
  • The Effects of GSPT1 Degradation on Serum Calcium, Parathyroid Hormone, and Fibroblast Growth Factor 23 Concentrations in Human Cereblon Knock-In Mice
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2020 The Effects of GSPT1 Degradation on Serum Calcium, Parathyroid Hormone, and Fibroblast Growth Factor 23 Concentrations in Human Cereblon Knock-in Mice Kamran Ghoreishi Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Other Medicine and Health Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/6490 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. The Effects of GSPT1 Degradation on Serum Calcium, Parathyroid Hormone, and Fibroblast Growth Factor 23 Concentrations in Human Cereblon Knock-in Mice by Kamran Ghoreishi Bachelor of Science in Microbiology and Clinical Laboratory Sciences, San Diego State University, 1995 Master of Science in Public Health (Toxicology), San Diego State University, 2003 Master of Science in Regulatory Affairs, San Diego State University, 2013 A dissertation submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. Virginia Commonwealth University, 2020 Advisor: William J. Korzun, Ph.D. Associate Professor Department of Clinical Laboratory Sciences Virginia Commonwealth University Richmond, Virginia November 19, 2020 ACKNOWLEDGEMENT Firstly, I would like to express my sincere gratitude to my advisor Dr. William Korzun for the continuous support and guidance of my research, which incented me to widen my research from various perspectives. My sincere thanks also go to Dr.
    [Show full text]
  • Figure S1. Apoptosis and Cell Cycle Analyses in Acute Myeloid Leukemia Lines Under Pulsed Kevetrin Treatment
    Figure S1. Apoptosis and cell cycle analyses in acute myeloid leukemia lines under pulsed kevetrin treatment. Representative histograms of Annexin V staining in (A) MOLM‑13 and (B) KASUMI‑1 cells treated with different concentrations of kevetrin (85, 170 and 340 µM) for 6 and 6+66 h wo (x3). Representative histograms of PI staining for cell cycle analysis in (C) MOLM‑13 and (D) KASUMI‑1 cells untreated or treated with kevetrin 340 µM for 6 and 6+66 h wo (x3). KEV, kevetrin; wo, washout; CTRL, control; PI, propidium iodide. Figure S2. Viability of acute myeloid leukemia cell lines after 72 h of kevetrin treatment. Viability of OCI‑AML3, MOLM‑13, KASUMI‑1 and NOMO‑1 cell lines treated with different concentrations of kevetrin (85, 170 and 340 µM) for 72 h. Values represent the mean ± standard deviation of three biological replicates. **P<0.01, ***P<0.001. Figure S3. Apoptosis analysis in acute myeloid leukemia cell lines under 24 h of continuous kevetrin treatment. Representative histograms of Annexin V staining in OCI‑AML3, MOLM‑13, KASUMI‑1 and NOMO‑1 cells treated with different concentra‑ tions of kevetrin (85, 170 and 340 µM) for 24 h. KEV, kevetrin; CTRL, control. Figure S4. Apoptosis analysis in acute myeloid leukemia cell lines under 48 h of continuous kevetrin treatment. Representative histograms of Annexin V staining in OCI‑AML3, MOLM‑13, KASUMI‑1 and NOMO‑1 cells treated with different concentra‑ tions of kevetrin (85, 170 and 340 µM) for 48 h. KEV, kevetrin; CTRL, control. Figure S5. Apoptosis analyses in acute myeloid leukemia cell lines under continuous kevetrin treatment.
    [Show full text]
  • Supplementary Tables
    Supplementary Tables Supplementary Table 1. Differentially methylated genes in correlation with their expression pattern in the A4 progression model A. Hypomethylated–upregulated Genes (n= 76) ALOX5 RRAD RTN4R DSCR6 FGFR3 HTR7 WNT3A POGK PLCD3 ALPPL2 RTEL1 SEMA3B DUSP5 FOSB ITGB4 MEST PPL PSMB8 ARHGEF4 BST2 SEMA7A SLC12A7 FOXQ1 KCTD12 LETM2 PRPH PXMP2 ARNTL2 CDH3 SHC2 SLC20A2 HSPA2 KIAA0182 LIMK2 NAB1 RASIP1 ASRGL1 CLDN3 DCBLD1 SNX10 SSH1 KREMEN2 LIPE NDRG2 ATF3 CLU DCHS1 SOD3 ST3GAL4 MAL LRRC1 NR3C2 ATP8B3 CYC1 DGCR8 EBAG9 SYNGR1 TYMS MCM2 NRG2 RHOF DAGLA DISP2 FAM19A5 TNNI3 UNC5B MYB PAK6 RIPK4 DAZAP1 DOCK3 FBXO6 HSPA4L WHSC1 PNMT PCDH1 B. Hypermethylated-downregulated Genes (n= 31) ARHGAP22 TNFSF9 KLF6 LRP8 NRP1 PAPSS2 SLC43A2 TBC1D16 ASB2 DZIP1 TPM1 MDGA1 NRP2 PIK3CD SMARCA2 TLL2 C18orf1 FBN1 LHFPL2 TRIO NTNG2 PTGIS SOCS2 TNFAIP8 DIXDC1 KIFC3 LMO1 NR3C1 ODZ3 PTPRM SYNPO Supplementary Table 2. Genes enriched for different histone methylation marks in A4 progression model identified through ChIP-on-chip a. H3K4me3 (n= 978) AATF C20orf149 CUL3 FOXP1 KATNA1 NEGR1 RAN SPIN2B ABCA7 C20orf52 CWF19L1 FRK KBTBD10 NEIL1 RANBP2 SPPL2A ABCC9 C21orf13-SH3BGR CXCL3 FSIP1 KBTBD6 NELF RAPGEF3 SPRY4 ABCG2 C21orf45 CYC1 FUK KCMF1 NFKB2 RARB SPRYD3 ABHD7 C22orf32 CYorf15A FXR2 KCNH7 NGDN RASAL2 SPTLC2 ACA15 C2orf18 DAXX FZD9 KCNMB4 NKAP RASD1 SRFBP1 ACA26 C2orf29 DAZ3 G6PD KCTD18 NKTR RASEF SRI ACA3 C2orf32 DBF4 GABPB2 KDELR2 NNT RASGRF1 SRM ACA48 C2orf55 DBF4B GABRA5 KIAA0100 NOL5A RASSF1 SSH2 ACAT1 C3orf44 DBI GADD45B KIAA0226 NOLC1 RASSF3 SSH3 ACSL5
    [Show full text]
  • Exome Sequencing Enhanced Package Department of Pathology and Laboratory Medicine Feb 2012 UCLA Molecular Diagnostics Laboratories Page:1
    UCLA Health System Clinical Exome Sequencing Enhanced Package Department of Pathology and Laboratory Medicine Feb 2012 UCLA Molecular Diagnostics Laboratories Page:1 Gene_Symbol Total_coding_bp %_bp_>=10X Associated_Disease(OMIM) MARC1 1093 80% . MARCH1 1005 100% . MARC2 1797 92% . MARCH3 802 100% . MARCH4 1249 99% . MARCH5 861 96% . MARCH6 2907 100% . MARCH7 2161 100% . MARCH8 900 100% . MARCH9 1057 73% . MARCH10 2467 100% . MARCH11 1225 56% . SEPT1 1148 100% . SEPT2 1341 100% . SEPT3 1175 100% . SEPT4 1848 96% . SEPT5 1250 94% . SEPT6 1440 96% . SEPT7 1417 96% . SEPT8 1659 98% . SEPT9 2290 96% Hereditary Neuralgic Amyotrophy SEPT10 1605 98% . SEPT11 1334 98% . SEPT12 1113 100% . SEPT14 1335 100% . SEP15 518 100% . DEC1 229 100% . A1BG 1626 82% . A1CF 1956 100% . A2LD1 466 42% . A2M 4569 100% . A2ML1 4505 100% . UCLA Health System Clinical Exome Sequencing Enhanced Package Department of Pathology and Laboratory Medicine Feb 2012 UCLA Molecular Diagnostics Laboratories Page:2 Gene_Symbol Total_coding_bp %_bp_>=10X Associated_Disease(OMIM) A4GALT 1066 100% . A4GNT 1031 100% . AAAS 1705 100% Achalasia‐Addisonianism‐Alacrima Syndrome AACS 2091 94% . AADAC 1232 100% . AADACL2 1226 100% . AADACL3 1073 100% . AADACL4 1240 100% . AADAT 1342 97% . AAGAB 988 100% . AAK1 3095 100% . AAMP 1422 100% . AANAT 637 93% . AARS 3059 100% Charcot‐Marie‐Tooth Neuropathy Type 2 AARS 3059 100% Charcot‐Marie‐Tooth Neuropathy Type 2N AARS2 3050 100% . AARSD1 1902 98% . AASDH 3391 100% . AASDHPPT 954 100% . AASS 2873 100% Hyperlysinemia AATF 1731 99% . AATK 4181 78% . ABAT 1563 100% GABA‐Transaminase Deficiency ABCA1 6991 100% ABCA1‐Associated Familial High Density Lipoprotein Deficiency ABCA1 6991 100% Familial High Density Lipoprotein Deficiency ABCA1 6991 100% Tangier Disease ABCA10 4780 100% .
    [Show full text]