KFCP Vegetation Monitoring Rates of Change for Forest Characteristics, and the Influence of Environmental Conditions, in the KFCP Study Area

Total Page:16

File Type:pdf, Size:1020Kb

KFCP Vegetation Monitoring Rates of Change for Forest Characteristics, and the Influence of Environmental Conditions, in the KFCP Study Area SCIENTIFIC REPORT KFCP Vegetation Monitoring Rates of change for forest characteristics, and the influence of environmental conditions, in the KFCP study area Laura L. B. Graham, Tri Wahyu Susanto, Fransiscus Xaverius, Eben Eser, Didie, Andri Thomas Salahuddin, Abdi Mahyudi, and Grahame Applegate Kalimantan Forests and Climate Partnership SCIENTIFIC REPORT KFCP Vegetation Monitoring Rates of change for forest characteristics, and the influence of environmental conditions, in the KFCP study area Laura L. B. Graham, Tri Wahyu Susanto, Fransiscus Xaverius, Eben Eser, Didie, Andri Thomas Salahuddin, Abdi Mahyudi and Grahame Applegate Kalimantan Forests and Climate Partnership May 2014 ACKNOWLEDGEMENTS This report was prepared by Laura L. B. Graham, Tri Wahyu Susanto, Fransiscus Xaverius, Eben Eser, Didie, Andri Thomas Salahuddin, Abdi Mahyudi, and Grahame Applegate. We wish to thank all team members for their inputs into this paper, and particularly Laura Graham as lead writer. We also wish to thank Grahame Applegate for his technical guidance in the field, Fatkhurohman for his data support, Susan E. Page for her technical review, Rachael Diprose and Lis Nuhayati for their assistance in preparing this paper and other related papers, and the communications team (James Maiden and Nanda Aprilia) for their publishing assistance. Copy editor: Lisa Robins Reviewer: Susan E. Page Layout and publication: James Maiden and Nanda Aprilia This research was carried out in collaboration with the governments of Australia and Indonesia, but the analysis and findings presented in this paper represent the views of the authors and do not necessarily represent the views of those governments. Any errors are the authors’ own. The paper constitutes a technical scientific working paper and, as such, there is potential for future refinements to accommodate feedback and emerging evidence. KFCP Vegetation Monitoring Page i EXECUTIVE SUMMARY Tropical peatlands and tropical peat swamp forests are among the most challenging and relevant ecosystems to monitor, as required by Reducing Emissions from Deforestation and forest Degradation (REDD+). The logistical difficulties associated with implementing monitoring systems in tropical peatland means that few studies have considered the effect of different environmental conditions and disturbance regimes on peatlands’ forests. Unlike most other forest types, in peatlands the soil stores more carbon than the forest vegetation. Peat carbon stores are important, but are difficult to measure. The forest vegetation inputs carbon to the peat and is integral to the protection, maintenance and long-term stability of peatlands. Studies such as this are essential to: • Understand peatland forest dynamics including biomass accumulation, rate of regeneration, and species diversity under different environmental settings; • Determine the appropriate actions to protect and preserve peatlands and their forests; and, • Support emissions estimation, including for Indonesia’s National Carbon Accounting System. To address this need, the Kalimantan Forests and Climate Partnership started a Vegetation Monitoring Program. The program aimed to quantify the biomass, structure and species composition of tropical peat swamp forests under different environmental and disturbance conditions. To do this, 96 plots were established at eight locations covering different environmental conditions and disturbance histories. Five of these locations were situated adjacent to canals that formed part of the extensive Ex-Mega Rice Project canal system in Central Kalimantan, Indonesia. Trees within each plot were measured annually for the diameter at breast height, height and species of seedlings, saplings, poles and trees. The fire history, hydrology, peat depth and light intensity for each plot were also recorded. The program ran for four years to allow for analysis of change. The results of the study showed the range of forest conditions and dynamics across the KFCP site—an area which cover parts of the heavily degraded Block A and the relatively intact Block E forest areas of the Ex- Mega Rice Project—with forests ranging from relatively undegraded, to regenerating, to severly degraded. The results also show the influence that environmental conditions and disturbance history have on these forest states. For example, occurance of a single fire event dramatically affects forest structure, with subsequent fires having a less marked effect. Furthermore, the forest regeneration and composition is limited in Block A due to the altered hydrology, and also the newly open-canopy. The study identifies optimal water table depths for future canal blocking in Block A to promote forest regeneration. The study also indicated that, at least for vegetation, hydrology is less of a concern in Block E, which remains less impacted by drainage. The data show the importance of protecting deep peat areas, preventing fire in forested areas and the need for shade-cover for successful regeneration of most tree species. The Vegetation Monitoring Program represents a first step in the work necessary to estimate changes in forest biomass, regeneration rates, biodiversity and emissions, especially with regard to altered environmental conditions. Future studies should aim to develop and maintain this level of monitoring, allowing long-term analyses of the rates of change and responses to implementation activities that are aimed at protection of forest and peat carbon stocks, as well as of biodiversity. KFCP Vegetation Monitoring Page ii CONTENTS ACKNOWLEDGEMENTS ............................................................................................................................. i EXECUTIVE SUMMARY ............................................................................................................................. ii CONTENTS .............................................................................................................................................. iii ABBREVIATIONS ....................................................................................................................................... v LIST OF TABLES ....................................................................................................................................... vi LIST OF FIGURES ..................................................................................................................................... vii 1 INTRODUCTION ............................................................................................................................... 1 1.1 Project background ................................................................................................................... 1 1.2 Aims and principles of monitoring in REDD+............................................................................... 3 1.3 Tropical peat swamp forest vegetation ...................................................................................... 3 1.4 Objectives ................................................................................................................................. 5 2 METHODS ........................................................................................................................................ 6 2.1 Study site .................................................................................................................................. 6 2.2 Plot locations ............................................................................................................................ 6 2.3 Plot design and layout ............................................................................................................... 8 2.4 Methods for measuring environmental conditions ..................................................................... 9 2.5 Analysis .................................................................................................................................. 11 3 RESULTS ........................................................................................................................................ 12 3.1 Forest characteristics across the KFCP area .............................................................................. 12 3.1.1 Seedling, sapling, pole and tree densities .................................................................................. 13 3.1.2 Basal area .................................................................................................................................. 15 3.1.3 Species number .......................................................................................................................... 17 3.2 The influence of environmental conditions on forest characteristics ......................................... 19 3.2.1 Fire history ................................................................................................................................. 19 3.2.2 Hydrology—average annual water table .................................................................................. 21 3.2.3 Peat depth ................................................................................................................................. 25 3.2.4 Light intensity ............................................................................................................................ 28 3.3 Changes in the forest characteristics over time ........................................................................ 33 4 DISCUSSION ..................................................................................................................................
Recommended publications
  • Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D
    Prosiding Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D. E. Seminar Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 2013 Dianjurkan oleh Jabatan Perhutanan Semenanjung Malaysia Jabatan Perhutanan Negeri Selangor Malaysian Nature Society Ditaja oleh ASEAN Peatland Forest Programme (APFP) Dengan Kerjasama Kementerian Sumber Asli and Alam Sekitar (NRE) Jabatan Perlindungan Hidupan Liar dan Taman Negara (PERHILITAN) Semenanjung Malaysia PROSIDING 1 SEMINAR EKSPEDISI SAINTIFIK BIODIVERSITI HUTAN PAYA GAMBUT SELANGOR UTARA 2013 ISI KANDUNGAN PENGENALAN North Selangor Peat Swamp Forest .................................................................................................. 2 North Selangor Peat Swamp Forest Scientific Biodiversity Expedition 2013...................................... 3 ATURCARA SEMINAR ........................................................................................................................... 5 KERTAS PERBENTANGAN The Socio-Economic Survey on Importance of Peat Swamp Forest Ecosystem to Local Communities Adjacent to Raja Musa Forest Reserve ........................................................................................ 9 Assessment of North Selangor Peat Swamp Forest for Forest Tourism ........................................... 34 Developing a Preliminary Checklist of Birds at NSPSF ..................................................................... 41 The Southern Pied Hornbill of Sungai Panjang, Sabak
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Diospyros Species
    Floribunda 5(2) 2015 31 LEAF FLUSHING AS TAXONOMIC EVIDENCE OF SOME DIOSPYROS SPECIES Eva Kristinawati Putri1 & Tatik Chikmawati2 1Graduate School of Bogor Agricultural University, Biology Department, Indonesia [email protected] (corresponding author) 2Bogor Agricultural University, Indonesia Eva Kristinawati Putri & Tatik Chikmawati. 2015. Pemoposan Sebagai Bukti Taksonomi Beberapa Jenis Diospyros. Floribunda 5(2): 31–47. — Kita cenderung menggunakan struktur generatif untuk identifikasi tanaman, meskipun ketersediaan struktur generatif di lapangan seringkali menjadi masalah bagi praktik identifikasi tanaman yang berbuah hanya sekali dalam setahun, seperti pada Diospyros L. (Ebenaceae). Pemoposan (leaf flushing) masih jarang digunakan dan implikasi taksonominya belum pernah diperhitungkan. Penelitian ini mempelajari pemoposan dan implikasi taksonominya pada delapan jenis Diospyros di Ecopark Cibinong Science Center LIPI, Bogor (Jawa Barat). Observasi karakter morfologi dilakukan pada tiga cabang (masing-masing memiliki tiga set pemoposan dan sebuah kuncup apikal dorman) pada 22 individu Diospyros. Perkembangan kuncup Diospyros menghasilkan satu set pemoposan yang dapat dibedakan dengan set pemoposan yang sebelumnya. Pemoposan setelah periode dormansi dan adanya daun tereduksi pada beberapa spesies mengindikasikan adanya ritme pertumbuhan kuncup. Pemoposan dapat dite- mukan beberapa bulan sekali atau di sepanjang tahun dengan membutuhkan waktu 40–55 hari hingga terben- tuknya daun dewasa. Pemoposan menyediakan 39 karakter yang dapat digunakan sebagai bukti taksonomi untuk membedakan delapan jenis Diospyros berikut dengan kunci identifikasinya. Kata kunci: Diospyros, pemoposan, bukti taksonomi Eva Kristinawati Putri & Tatik Chikmawati. 2015. Leaf Flushings as Taxonomic Evidence of Some Diospyros Species. Floribunda 5(2): 31–47. — People tend to use generative structures for plant identification. Nevertheless, generative structure availibility limits the identification practice for a plant with once-a-year fruit-bearing phase, such as Diospyros L.
    [Show full text]
  • A Phytochemical and Biotechnological
    Phytochemical and Biotechnological Studies on Diospyros kaki (Family Ebenaceae) Cultivated in Egypt Thesis Submitted By Iman Abdel Aziz El Seody Abdel Gaffar El Sheikh Research Assistant, Phytochemistry Department Pharmaceutical Industries Research Division National Research Centre For the Degree of Master in Pharmaceutical Sciences "Pharmacognosy" Under the Supervision of Prof. Dr. Seham S. El-Hawary Prof. Dr. Soad Hanna Tadros Pharmacognosy Department Pharmacognosy Department Faculty of Pharmacy Faculty of Pharmacy Cairo University Cairo University Prof. Dr. Medhat M. Seif El-Nasr Phytochemistry Department Pharmaceutical Industries Research Division National Research Centre Pharmacognosy Department Faculty of Pharmacy Cairo University, Egypt 2016 Abstract Diospyros kaki L. or Costata cultivar is the main persimmon variety, progressively consumed in the Egyptian market and exportation, it is grown in clay soil under flood irrigation system. The volatile constituents isolated from leaves, comprised 6 identified components, constituting 83.12% of the total oil. GC/MS analysis of the unsaponifiable matter of fruits revealed the presence of 13 compounds, representing 85.61% of the total identified compounds, while that of leaves revealed the presence of 10 compounds, representing 87.16% of the total identified compounds. GC/MS analysis of the fatty acids methyl esters of fruits showed the presence of 13 components, representing 84.79% of the total identified compounds, while that leaves indicated the presence of 10 components, representing
    [Show full text]
  • Jose Antonio Guzmán Quesada
    REMOTE SENSING TOOLS FOR DETECTING AND QUANTIFYING LIANAS AND TREES AT THE TROPICAL DRY FOREST by Jose Antonio Guzmán Quesada A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth and Atmospheric Sciences University of Alberta © Jose Antonio Guzmán Quesada, 2021 ABSTRACT Lianas are woody thick-stemmed climbers that use host trees to reach the forest canopy. Studies have shown a remarkable increase in liana abundance in the last two decades, while others have shown that liana abundance is associated with detrimental effects on forest dynamics. Liana abundance presents peaks in highly seasonal forests such as the Tropical Dry Forest (TDF); regions that are under threat for frequent droughts, fires, and anthropogenic pressures. Despite their abundance and relevance in these fragile ecosystems, there are no clear research priorities that help to conduct an efficient detection and monitoring of lianas. This dissertation aims to integrate new remote sensing perspectives to detect and quantify lianas and trees at the TDF. This was addressed using passive (Chapters 2 ‒ 4) and active remote sensing (Chapter 5). Using thermography, Chapters 2 explored the temporal variability of leaf temperature of lianas and trees at the canopy. Temperature observations were conducted in different seasons and ENSO years on lianas and trees infested and non-infested by lianas. The findings revealed that the presence of lianas on trees does not affect the temperature of exposed tree leaves; however, liana leaves tended to be warmer than tree leaves at noon. The results emphasize that lianas are an important biotic factor that can influence canopy temperature, and perhaps, its productivity.
    [Show full text]
  • Systematic Conservation Planning in Thailand
    SYSTEMATIC CONSERVATION PLANNING IN THAILAND DARAPORN CHAIRAT Thesis submitted in total fulfilment for the degree of Doctor of Philosophy BOURNEMOUTH UNIVERSITY 2015 This copy of the thesis has been supplied on condition that, anyone who consults it, is understood to recognize that its copyright rests with its author. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i ii Systematic Conservation Planning in Thailand Daraporn Chairat Abstract Thailand supports a variety of tropical ecosystems and biodiversity. The country has approximately 12,050 species of plants, which account for 8% of estimated plant species found globally. However, the forest cover of Thailand is under threats: habitat degradation, illegal logging, shifting cultivation and human settlement are the main causes of the reduction in forest area. As a result, rates of biodiversity loss have been high for some decades. The most effective tool to conserve biodiversity is the designation of protected areas (PA). The effective and most scientifically robust approach for designing networks of reserve systems is systematic conservation planning, which is designed to identify conservation priorities on the basis of analysing spatial patterns in species distributions and associated threats. The designation of PAs of Thailand were initially based on expert consultations selecting the areas that are suitable for conserving forest resources, not systematically selected. Consequently, the PA management was based on individual management plans for each PA. The previous work has also identified that no previous attempt has been made to apply the principles and methods of systematic conservation planning. Additionally, tree species have been neglected in previous analyses of the coverage of PAs in Thailand.
    [Show full text]
  • Assessing the Role of Seed Dispersal in Peat Swamp Forest Regeneration
    Assessing the Role of Seed Dispersal in Peat Swamp Forest Regeneration Cassie Freund Submitted in partial fulfillment of the requirements for the degree Master of Arts in Conservation Biology, Graduate School of Arts and Sciences COLUMBIA UNIVERSITY May 2012 i ABSTRACT Both biotic and abiotic factors, especially seed dispersal, influence the process of forest regeneration, but there has been relatively little research on these factors in peat swamp forest ecosystems. Large-scale forest fires are the biggest disturbance affecting peat swamp forests, especially in the heavily degraded peatlands of Central Kalimantan, Indonesia. It is important to examine the barriers to forest regeneration in this system because peat swamp forest provides important ecosystem services for people and habitat for Indonesia’s unique biodiversity. Several studies have suggested that seed dispersal limitation will be one of the most significant barriers to peat swamp forest regeneration. This study examined the composition of regenerating seedlings and saplings in the former Mega-Rice project area to determine if there was evidence for seed dispersal limitation in general, and how species with different seed dispersal mechanisms (wind, bird or bat, and primate) were distributed across the landscape. The results indicate that (1) there are more primary forest species present in the regenerating flora than expected and (2) seedling and sapling abundance is highest near the forest edge, declining significantly as distance from the edge increases. As predicted, primate-dispersed species were the most dispersal limited, and wind dispersed species were found at the furthest distances from the forest edge. However, of the species with known dispersal mechanisms, bird and bat dispersed species were the most common, suggesting that these animals play a significant role in peat swamp forest regeneration.
    [Show full text]
  • Agricultural Plant Diversity of the Orchards Along the Bank of Chao Phraya River and Ko Kret Areas in Nonthaburi Province
    Kasetsart J. (Nat. Sci.) 42 : 215 - 225 (2008) Agricultural Plant Diversity of the Orchards along the Bank of Chao Phraya River and Ko Kret Areas in Nonthaburi Province Kittipong Treetaruyanont*, Wanlop Phosunk and Panom Suthisaksopon ABSTRACT A survey of the agricultural plant diversity in the orchards on the bank of Chao Phraya river and Ko Kret areas of Nonthaburi province was conducted in the year 2005. The soil in these areas was Banglen Series : (Bl, clay and silty clay loam) and pH was between 4.2-6.6. Soil fertility was considered to contain high plant nutrients, ranging form good to very good level, and the quality of water was also good. The total plant diversity of 48 orders, 96 families, 246 genera and 429 species of agricultural plants was recorded. The majority of plants was ornamental plants, 52.57 percent. Agricultural crops were categorized into 3 groups, i.e. native species, threatened species and extirpated species. Variability in cultivars of durians and rose apples were decreased. The threatened species were Kruai (Horsfieldia irya Gaertn Warb), Chomphu Mamiao (Syzygium mallacsense L. Merr. & L.M. Perry ST), Somsa (Citrus aurantium L. var. aurantium ExST), Reo (Alpinia nigra gaertn. Burtt H), and Dipli (Piper retrofractum Vahl C). The extirpated species were Chanthet (Myristica fragrans Houtt. ExS), Clove (Syzygium aromaticum (L.) Merr.& L.M. Perry ExST), Langsat (Landsium domesticum), Raksorn (Calotropis giganted R.Br.), Payom (Shorea roxburghii), and purple Chabasorn (Hibiscus rosa-sinensis L.). The results of this survey should be further used as the base line for plant genetic conservation policy and for environmental conservation.
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volume 8, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treat- ments, and also in nomenclatural citations, the titles of serials are rendered in the forms recom- mended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbreviated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu et al. (1992– 2009). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alpha- betically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. There may be citations in this list that have dates suffixed “b” but that are not preceded by citations of “[a]” works for the same year, or that have dates suffixed “c,” “d,” or “e” but that are not preceded by citations of “[a],” “b,” “c,” and/or “d” works for that year.
    [Show full text]
  • A Census of the Tree Species in The
    IndianJ.Sci.Res.7(1):67-75,2016 ISSN:0976-2876(Print) ISSN:2250-0138(Online) A CENSUSOF THE TREESPECIESIN THEGOLAPBAGCAMPUSOF BURDWAN UNIVERSITY, WEST BENGAL (INDIA) WITH THEIRIUCNREDLIST STATUS AND CARBONSEQUESTRATIONPOTENTIAL OF SOMESELECTEDSPECIES SHARMISTHA GANGULYa1 AND AMBARISHMUKHERJEEb aUGCCASDepartmentofBotany,UniversityofBurdwan,Burdwan, WestBengal,India ABSTRACT The present census brings out an inventory of tree species in the Golapbag campus of The University of Burdwan, Burdwan in the West Bengal State of India.As many as 91 species belonging to 82 genera of 39 families, of which of which 85 species of 76 genera representing 38 families are dicotyledonous and 6 species of one family( Arecaceae) are monocotyledonous, could be included in the checklist thus prepared. Many of these species are botanically interesting, attractive and potentially sources of various phytoresources and aesthetic pleasure. The IUCN Red List status of each of these species was determined. Six of the dominating species were worked to reveal their carbon sequestration potential with an objective to find their utilitarian value in landscape designing for aesthetic rejuvenation and environmental optimization. It was found that Ficus benghalensis is the best of the lot in Carbon sequestration being successively followed byMimusops elengi , Roystonia regia , Senna siamea , Dalbergia lanceolariaand Cassia fistula . Thus, it can be concluded that the trees composing the campus flora needs to be protected and some of them can well be chosen for further evaluation
    [Show full text]
  • SUMMARY: RSPO MANUAL on BEST MANAGEMENT PRACTICES (Bmps)
    SUMMARY: RSPO MANUAL ON BEST MANAGEMENT PRACTICES (BMPs) FOR MANAGEMENT AND REHABILITATION OF NATURAL VEGETATION ASSOCIATED WITH OIL PALM CULTIVATION ON PEAT SUPPORTED BY: SUMMARY: RSPO MANUAL ON BEST MANAGEMENT PRACTICES (BMPs) FOR MANAGEMENT AND REHABILITATION OF NATURAL VEGETATION ASSOCIATED WITH OIL PALM CULTIVATION ON PEAT Authors: Summary prepared by: Faizal Parish Si Siew Lim Si Siew Lim Balu Perumal Wim Giesen SUMMARY: ACKNOWLEDGEMENTS RSPO MANUAL ON RSPO would like to thank all PLWG members and the Co-Chairs (Faizal Parish of BEST MANAGEMENT PRACTICES (BMPS) GEC and Ibu Rosediana of IPOC) for the successful completion of this Summary. SUPPORTED BY: FOR MANAGEMENT AND REHABILITATION The compilation of information and editing of this Summary has been done by OF NATURAL VEGETATION ASSOCIATED Faizal Parish of GEC and Si Siew Lim of Grassroots. Field visits were hosted by WITH OIL PALM CULTIVATION ON PEAT GEC (Selangor, Malaysia). Thanks are due to the staff of GEC, IPOC and RSPO Parish F., Lim, S. S., Perumal, B. and Giesen, W. (eds) who supported activities and meetings of the PLWG. Photographs were mainly 2013. Summary: RSPO Manual on Best Management Practices (BMPs) for Management and Rehabilitation provided by Faizal Parish, Balu Perumal, Julia Lo Fui San and Jon Davies. of Natural Vegetation Associated with Oil Palm Cultivation on Peat. RSPO, Kuala Lumpur. Funding to support the PLWG was provided by the RSPO and a range of agencies Authors: from the UK Government. The input by staff of GEC was supported through Faizal Parish Si Siew Lim grants from IFAD-GEF (ASEAN Peatland Forests Project) and the European Balu Perumal Wim Giesen Union (SEAPeat Project).
    [Show full text]
  • Modelling and Communicating the Ecological Characteristics of Peat Swamp Forest Communities in Brunei
    MODELLING AND COMMUNICATING THE ECOLOGICAL CHARACTERISTICS OF PEAT SWAMP FOREST COMMUNITIES IN BRUNEI Thesis submitted for the degree of Master of Philosophy at the University of Leicester by Pg Nor Zamzam Pg Hassan (MSc. Perth) Department of Geography University of Leicester 2016 Modelling and Communicating the Ecological Characteristics of Peat Swamp Forest Communities in Brunei Pg Nor Zamzam Pg Hassan ABSTRACT An ecosystem approach to sustainable forest management aims to enhance ecological understanding at the level of the plant community. This thesis demonstrates a novel approach to the study of vegetation ecology in a tropical peat swamp forest (PSF) ecosystem which integrates ecology, visualisation and 3D visualisation in GIS (Geographic Information Systems). The thesis presents some of the first detailed floristic information on the tree species diversity of the Badas PSF, Brunei. The study adds to the knowledge that intact PSF shows considerable variation even at the small, single site level. Three phasic communities (PC) were identified in a 2.25 ha study area namely PC 2, PC 4 Dipterocarpaceae, PC 4 Sapotaceae, in addition to a heath forest. Shannon-Weiner diversity index values of 1.70 to 2.99 are among the highest in Borneo. Each community is unique in both species pool and ecological characteristics. The ecologically dominant species which are characterised by tree diameter of more than 80 cm dbh as well as the 11-20 cm tree diameter distribution class patterns in combination are both distinctive from other PSFs in Southeast Asia and lowland dipterocarp forest in Brunei. Visualisation in 3D provided a novel exploration of floristic and structural data via photorealistic trees.
    [Show full text]