Cretaceous Ammonites from the Lower Part of the Matanuska Formation Southern Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Cretaceous Ammonites from the Lower Part of the Matanuska Formation Southern Alaska Cretaceous Ammonites From the Lower Part of The Matanuska Formation Southern Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 547 Cretaceous Ammonites From the Lower Part of The Matanuska Formation Southern Alaska By DAVID L. JONES With a STRATIGRAPHIC SUMMARY By ARTHUR GRANTZ GEOLOGICAL SURVEY PROFESSIONAL PAPER 547 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 66-286 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.25 (paper cover) CONTENTS Page Page Abstract_ ________________________________________ 1 Stratigraphic summary of the lower part of the Matanuska Introduction. ______________________________________ 1 Formation Continued Mid-Cretaceous faunal sequence in southern Alaska. 2 Unit B, sandstone of Cenomanian age_____________ 9 Albian _________________________________________ 3 Unit C, strata of Cenomanian to Santonian(?) age _ 10 Cenomanian_ __________________________________ 4 Unit C 1, lutite of Cenomanian to Coniacian or Stratigraphic summary of the lower part of the Matanuska Santonian age__-___________-__---_-_---__ 10 Formation, by Arthur Grantz______________________ 4 Unit C-2, composite sequence of Coniacian and Unit A, strata of Albian age____________________ 6 Santonian(?) age-_------_--_-_------------ 11 Limestone Hills area._______________________ 7 Regional correlation of the lower part of the Matanuska North front of the Chugach Mountains.------- 7 Formation _______________________________________ 12 Matanuska Valley______________________ 7 Geographic distribution of ammonites___-__--__----_-- 15 Nelchina area and southwest Copper River Systematic descriptions..---------------------------- 21 lowland__ __________________________ References--___--_--_-_-_--_-_---------_----------- 44 Correlation within the Matanuska Valley- Index. ____________________________-- 47 Nelchina area.___________________________ ILLUSTRATIONS [Plates 1-9 follow index; plate 10 is in pocketl PLATE 1. Gaudryceras, Anagaudryceras, Lytoceras, and Parajaubertella. 2. Tetragonites and Sciponoceras. 3. Calycoceras and Eogunnarites. 4. Puzosia, Desmoceras (Pseudouhligella), Scaphites, Otoscaphites, Hulenites, Moffitites, Aucellina and Mesopuzosia. 5. Grantziceras. 6. Grantziceras, Brewericeras, and Subprionocyclus. 7. Freboldiceras and Arcthoplites. 8. Arcthoplites. 9. Arcthoplites. 10. Map of Matanuska Valley-Nelchina area, Alaska, showing fossil localities. Page FIGUEE 1. Index map of Alaska._________________________________________________-__-__------------------------ 2 2. Schematic diagram showing relationship of informal Stratigraphic units._____-__-_------------------------- 5 3. Generalized columnar section of the Matanuska Formation, Limestone Hills area_______________--_-_------- 6 4. Generalized columnar section of the Matanuska Formation and correlation with rocks in the upper Chitina Valley area._______________________________-____________________-_-.,-_-_-_-_--------------------- 13 5. Cross section of Lytoceras sp_ _____________-____________-_____-___-_-__---_-_-_-_--------------------- 22 6. Suture lines of Gabbioceras, Jauberticeras, Parajaubertella, and Anagaudryceras------------------------------ 24 7. Cross sections of Gabbioceras and Parajaubertella.------------------------------------------------------- 27 8. Suture line of Otoscaphites teshioensis- ____________-_________________----------------------------------- 27 9. Cross section of Sciponoceras sp---------------------------------------------------------------------- 28 10. Suture line of Sciponoceras sp-._----_-_---------_--_----_------------_-------------------------------- 28 11. Suture line of Brewericeras hulenense------------------------------------------------------------------ 30 12. Scatter diagram showing whorl relationship of Grantziceras affine .--------------------------------------- 31 13. Scatter diagram showing relation of umbilical width to whorl shape in Grantziceras affine-------------------- 32 14. Bar graph showing frequency distribution in Grantziceras affine------------------------------------------- 32 15. Suture lines of Grantziceras affine--------------------------------------------------------------------- 34 16. Suture lines of Grantziceras glabrum------------------------------------------------------------------- 36 17. Derivation of Grantziceras, Freboldiceras, and Arcthoplites------------------------------------------------ 37 18. Suture line of Freboldiceras singular-e------------------------------------------------------------------ 38 19. Suture line of Arcthoplites talkeetnanus.---------------------------------------------------------------- 40 20. Suture line of Moffitites robustus---------------------------------------------------------------------- 42 21. Reconstructed cross section of Calycoceras sp---._---._----_-----_-__------_------------------------------ 42 22. Suture line of Subprionocyclus normalis---------------------------------------------------------------- 43 23. Suture line of Hulenites sp------------------------------...------------------------------------------ 44 IV CONTENTS TABLES Page TABLE 1. Checklist of fossils__________________________________________________________________________________ 16 2. Ammonite'and selected /nocerawus-bearing localities,___________________________________________________ 17 CRETACEOUS AMMONITES FROM THE LOWER PART OF THE MATANUSKA FORMATION SOUTHERN ALASKA By DAVID L. JONES ABSTRACT necessitates showing only the affinities of others. Although The lower part of the Matanuska Formation comprises a thick some of the forms discussed are apparently new, the scarce and and complexly intertongued assemblage of siltstone, shale, sand­ poorly preserved material now at hand does not warrant stone, and conglomerate that ranges in age from Early Creta­ assignment of new names at this time. ceous (Albian) to Late Cretaceous (Coniacian or Santonian). These rocks were deposited mainly on eroded Jurassic sedi­ INTRODUCTION mentary and volcanic rocks in a tectonically narrow trough lying between an emergent area to the north in the area The main purpose of this report is to provide of the Talkeetna Mountains and the northern Copper River paleontologic data to substantiate the correlation of Lowland and a sporadically emergent area to the south, complex sequences of upper Lower Cretaceous and which is now part of the northern Chugach Mountains. The rocks are overlain by claystone and siltstone of lower Upper Cretaceous rocks in the Matanuska For­ Santonian and Campanian age at the base of the upper mation of south-central Alaska (fig. 1). Ammonites part of the Ma,tanuska Formation. Deformation, uplift, from the upper part of the formation have been dis­ and erosion during deposition of the Matanuska Formation pro­ cussed by Jones (1964). duced intraformational unconformities which now bound many An account of the changing concepts concerning the of the cartographic units into which the formation has been divided. Statigraphic and structural studies by Arthur Grantz age of the Matanuska Formation and a brief description have shown that after (and perhaps also during) deposition of of the entire formation were given by Grantz (1964) the Matanuska Formation, the Nelchina area was broken into and Jones (1964) in earlier reports and will not be three major blocks by lateral movement on two splay faults of treated fully here. The lower part of the formation the Castle Mountain fault system, and that these major blocks was considered by Imlay and Reeside (1954, p. 232) to display different rock sequences, informally termed the northern, central, and southern sequences. The stratigraphic record be of Coniacian age on the basis of its stratigraphic of each sequence differs significantly from the others, and de­ position below beds bearing the Santonian species tailed reconstruction of the history of sedimentation and defor­ Inoceramus undulatoplicatws, the supposed presence of mation of the Matanuska Formation rests heavily on paleonto- Parapuzosia and Prohauericeras, and the presence of logic correlations between these sequences. Inoceramus close to 7. uwajimensis. Imlay later The oldest beds of the Matanuska Formation in the Matanuska Valley-Nelchina area, near Limestone Gap in the northern se­ changed the identification of Prohauericeras to Son- quence, consist of sandstone-bearing abundant specimens of ninia of Bajocian age (written commun., 1954) and that Aucellina sp. and rare specimens of Moffitites robustus. These of Inoceramus undulatoplicatus to /. scJvmidti of Cam­ rocks are assigned to the early early Albian zone of Moffitites panian age (written commun., 1955). Later studies by robustus. Upper lower Albian rocks assigned to the zone of Jones showed that the Parapuzosia belongs to Can- Brewericeras hulenense occur in both the northern and southern sequences but have not been positively identified in the central adoceras and that some of the specimens referred to as sequence. Middle Albian rocks are unknown throughout the 7. uwajimensis belong to a new species of Cenomanian area, but upper Albian rocks may be present in the southern sequence. These changes, together with the identification by Cenomanian rocks, characterized by Desmoceras (PseudouJili- gella) japonicum, rare specimens of Calycoceras sp., and a new Imlay (1959) of Albian ammonites obtained from
Recommended publications
  • Handbook of Texas Cretaceous Fossils
    University of Texas Bulletin No. 2838: October 8, 1928 HANDBOOK OF TEXAS CRETACEOUS FOSSILS B y W. S. ADKINS Bureau of Economic Geology J. A. Udden, Director E. H. Sellards, Associate Director PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH, AND ENTERED AS SECOND-CLASS MATTER AT THE POSTOFFICE AT AUSTIN, TEXAS. UNDER THE ACT OF AUGUST 24. 1912 The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free govern­ m en t. Sam Houston Cultivated mind is the guardian genius of democracy. It is the only dictator that freemen acknowl­ edge and the only security that free­ men desire. Mirabeau В. Lamar CONTENTS P age Introduction __________________________________________________ 5 Summary of Formation Nomenclature_______________________ 6 Zone Markers and Correlation_______________________________ 8 Types of Texas Cretaceous Fossils___________________________ 36 Bibliography ________________________________________________ 39 L ist and Description of Species_________________________________ 46 P lants ______________________________________________________ 46 Thallophytes ______________________________________________ 46 Fungi __________________________________________________ 46 Algae __________________________________________________ 47 Pteridophytes ____________________________________________ 47 Filices __________________________________________________ 47 Spermatophytes __________________________________________ 47 Gymnospermae _________________________________________
    [Show full text]
  • Or Early Callovian) Ammonites from Alaska and Montana
    Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2.
    [Show full text]
  • Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
    Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S.
    [Show full text]
  • Non-Invasive Imaging Methods Applied to Neo- and Paleo-Ontological Cephalopod Research
    Biogeosciences, 11, 2721–2739, 2014 www.biogeosciences.net/11/2721/2014/ doi:10.5194/bg-11-2721-2014 © Author(s) 2014. CC Attribution 3.0 License. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research R. Hoffmann1, J. A. Schultz2, R. Schellhorn2, E. Rybacki3, H. Keupp4, S. R. Gerden1, R. Lemanis1, and S. Zachow5 1Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany 2Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany 3Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ Sektion 3.2, Geomechanik und Rheologie, Telegrafenberg, D 429, 14473 Potsdam, Germany 4Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Freie Universität Berlin, Malteserstrasse 74–100, 12249 Berlin, Germany 5Zuse Institut Berlin, Takustrasse 7, 14195 Berlin, Germany Correspondence to: R. Hoffmann ([email protected]) Received: 28 October 2013 – Published in Biogeosciences Discuss.: 29 November 2013 Revised: 14 March 2014 – Accepted: 29 March 2014 – Published: 22 May 2014 Abstract. Several non-invasive methods are common prac- tially preserved within the surrounding rocks, requires imag- tice in natural sciences today. Here we present how they ing methods that are primarily used in non-destructive test- can be applied and contribute to current topics in cephalo- ing. The conservation of the specimen is of main importance pod (paleo-) biology. Different methods will be compared in using these methods since former techniques used destruc- terms of time necessary to acquire the data, amount of data, tive methods leading to the loss of the specimen or parts accuracy/resolution, minimum/maximum size of objects that of the specimen.
    [Show full text]
  • APPLICATIONS of QUANTITATIVE METHODS and CHAOS THEORY in ICHNOLOGY for ANALYSIS of INVERTEBRATE BEHAVIOR and EVOLUTION by James
    APPLICATIONS OF QUANTITATIVE METHODS AND CHAOS THEORY IN ICHNOLOGY FOR ANALYSIS OF INVERTEBRATE BEHAVIOR AND EVOLUTION by James Richard Woodson Lehane A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Department of Geology and Geophysics The University of Utah August 2014 Copyright © James Richard Woodson Lehane 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of James Richard Woodson Lehane has been approved by the following supervisory committee members: Allan A. Ekdale , Chair May 5th, 2014 Date Approved Randall B. Irmis , Member June 6th, 2014 Date Approved Marjorie A. Chan , Member May 5th, 2014 Date Approved Elena A. Cherkaev , Member June 12th, 2014 Date Approved Leif Tapanila , Member June 6th, 2014 Date Approved and by John M. Bartley , Chair/Dean of the Department/College/School of Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Trace fossils are the result of animal behaviors, such as burrowing and feeding, recorded in the rock record. Previous research has been mainly on the systematic description of trace fossils and their paleoenvironmental implications, not how animal behaviors have evolved. This study analyzes behavioral evolution using the quantification of a group of trace fossils, termed graphoglyptids. Graphoglyptids are deep marine trace fossils, typically found preserved as casts on the bottom of turbidite beds. The analytical techniques performed on the graphoglyptids include calculating fractal dimension, branching angles, and tortuosity, among other analyses, for each individual trace fossil and were performed on over 400 trace fossils, ranging from the Cambrian to the modem.
    [Show full text]
  • ALBIAN AMMONITES of POLAND (Plates 1—25)
    PALAEONTOLOGIA POLQNICA mm ■'Ъ-Ь POL T S H ACADEMY OF SCIENCES INSTITUTE OF PALEOBIOLOGY PALAEONTOLOGIA POLONICA—No. 50, 1990 t h e a l b ia w AMMONITES OF POLAND (AMQNITY ALBU POLS К I) BY RYSZARD MARCINOWSKI AND JOST WIEDMANN (WITH 27 TEXT-FIGURES, 7 TABLES AND 25 PLATES) WARSZAWA —KRAKÔW 1990 PANSTWOWE WYDAWNICTWO NAUKOWE KEDAKTOR — EDITOR JOZEP KA2MIERCZAK 2ASTEPCA HEDAKTOHA _ ASSISTANT EDITOR m AôDAlenA BÛRSUK-BIALYNICKA Adres Redakcjl — Address of the Editorial Office Zaklad Paleobiologij Polska Akademia Nauk 02-089 Warszawa, AI. 2w irki i Wigury 93 KOREKTA Zespol © Copyright by Panstwowe Wydawnictwo Naukowe Warszawa — Krakôw 1990 ISBN 83-01-09176-2 ISSN 0078-8562 Panstwowe Wydawnielwo Naukowe — Oddzial w Krakowie Wydanie 1, Naklad 670 + 65 cgz. Ark. wyd. 15. Ark. druk. 6 + 25 wkladek + 5 wklejek. Papier offset, sat. Ill kl. 120 g. Oddano do skiadania w sierpniu 1988 r. Podpisano do druku w pazdzierniku 1990 r. Druk ukoriczono w listopadzie 1990 r. Zara. 475/87 Drukarnia Uniwersytetu Jagielloriskiego w Krakowie In Memory of Professor Edward Passendorfer (1894— 1984) RYSZARD MARCINOWSKI and JOST WIEDMANN THE ALBIAN AMMONITES OF POLAND (Plates 1—25) MARCINOWSKI, R. and WIEDMANN, J.: The Albian ammonites of Poland. Palaeonlologia Polonica, 50, 3—94, 1990. Taxonomic and ecological analysis of the ammonite assemblages, as well as their general paleogeographical setting, indicate that the Albian deposits in the Polish part of the Central European Basin accumulated under shallow or extremely shallow marine conditions, while those of the High-Tatra Swell were deposited in an open sea environment. The Boreal character of the ammonite faunas in the epicontinental area of Poland and the Tethyan character of those in the Tatra Mountains are evident in the composition of the analyzed assemblages.
    [Show full text]
  • Thermochronology of the Talkeetna Intraoceanic Arc of Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf Dating
    TECTONICS, VOL. 30, TC1011, doi:10.1029/2010TC002798, 2011 Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf dating B. R. Hacker,1 Peter B. Kelemen,2 Matthew Rioux,1,3 Michael O. McWilliams,4 Philip B. Gans,1 Peter W. Reiners,5 Paul W. Layer,6 Ulf Söderlund,7 and Jeffrey D. Vervoort8 Received 17 September 2010; revised 8 December 2010; accepted 27 December 2010; published 26 February 2011. [1] As one of two well‐exposed intraoceanic arcs, the of the Talkeetna arc was spatially variable. One‐ Talkeetna arc of Alaska affords an opportunity to under- dimensional finite difference thermal models show that stand processes deep within arcs. This study reports new this kind of spatial variability is inherent to intraoceanic Lu‐Hf and Sm‐Nd garnet ages, 40Ar/39Ar hornblende, arcs with simple construction histories. Citation: Hacker, mica and whole‐rock ages, and U‐Th/He zircon and B. R., P. B. Kelemen, M. Rioux, M. O. McWilliams, P. B. Gans, apatite ages from the Chugach Mountains, Talkeetna P. W. Reiners, P. W. Layer, U. Söderlund, and J. D. Vervoort Mountains, and Alaska Peninsula, which, in conjunc- (2011), Thermochronology of the Talkeetna intraoceanic arc of tion with existing geochronology, constrain the thermal Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf dating, Tectonics, history of the arc. Zircon U‐Pb ages establish the 30, TC1011, doi:10.1029/2010TC002798. main period of arc magmatism as 202–181 Ma in the Chugach Mountains and 183–153 Ma in the 1.
    [Show full text]
  • Stratigraphy and General Geology of Jke Mccarthy C-5 Quadrangle; Alaska
    Stratigraphy and General Geology of jke McCarthy C-5 Quadrangle; Alaska By E. M. MAcKEVETT, JR. Descriptions of the rocks of a quadrangle famous for its copper mines UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1971 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 79-609946 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 30 cents (paper cover) CONTENTS Page Abstract . .....-.. .... ........_.. .. .. .. .. .. .. 1 Introduction ...-. ..... .... .... .. .. ... .. ._. 1 Geology -. ... _. __ .._____ _ . _ __.. _ __. ____. 4 General summary, regional setting, and structure......................... __...... 4 Stratigraphy and lithology . ... __. _ . 8 Hasen Creek Formation .. .. _ . ._.. 8 Nikolai Greenstone ..__ ......_ . _ 8 Chitistone Limestone ... .... ._ . __ _... _ _ _ . 10 Nizina Limestone . .... _ .. .._._ _..._ . _. 11 McCarthy Formation ._ . ... 13 Lower member ...... _...__. __ _ . ._ . _ ._ 13 Upper member . _ .. __. _ .. 14 Lubbe Creek Formation _. __ .. 15 Nizina Mountain Formation .. _ . _-- . .. 16 Root Glacier Formation . __. ._.. ..__ . .. 17 Kennicott Formation .. .__. _. ___ ___. _ ' ._ 19 Schulze Formation ..._... ___ __.. 20 Moonshine Creek Formation _.. ... _ 20 Frederika Formation .. _. .. _. _. 21 Intrusive rocks . .. _. .._... .. 23 Andesitic dikes and sills. ......................... ,.._ . .................. 23 Intermediate rocks ......................................-.......-..^.....................-.
    [Show full text]
  • 12. Lower Cretaceous Ammonites from the South Atlantic Leg 40 (Dsdp), Their Stratigraphic Value and Sedimentologic Properties
    12. LOWER CRETACEOUS AMMONITES FROM THE SOUTH ATLANTIC LEG 40 (DSDP), THEIR STRATIGRAPHIC VALUE AND SEDIMENTOLOGIC PROPERTIES Jost Wiedmann and Joachim Neugebauer, Geol.-palaont. Institut der Universitat Tubingen, BRD ABSTRACT Eleven ammonites have been cored during Leg 40. They were found concentrated in the lower parts of the drilled section at Sites 363 (Walvis Ridge) and 364 (Angola Basin), and permit recognition of upper Albian, middle Albian, and upper Aptian. So far, no lower Albian could be recognized. A high ammonite density can be assumed for the South Atlantic Mid-Cretaceous. In contrast to data available so far, the Walvis Ridge associations consisting of phylloceratids and desmoceratids show more open- basin relationships than those of the Angola Basin, which are composed of mortoniceratids, desmoceratids, and heteromorphs. Paleobiogeographically, the South Atlantic fauna can be related to the well-known onshore faunas of Angola, South Africa, and Madagascar as well as to the European Mid-Cretaceous. This means that the opening of the South Atlantic and its connection with the North Atlantic occurred earlier as was generally presumed, i.e., in the middle Albian. Records of lower Aptian ammonite faunas from Gabon and Brazil remain doubtful. High rates of sedimentation prevailed especially in the Aptian and Albian, in connection with the early deepening of the South Atlantic basins. The mode of preservation of the ammonites suggests that they were deposited on the outer shelf or on the upper continental slope and were predominantly buried under sediments of slightly reducing conditions. In spite of a certain variability of the depositional environment, the ammonites show a uniform and particular mode of preservation.
    [Show full text]
  • Geological Survey Canada
    1-32 GEOLOGICAL PAPER 70-32 SURVEY OF CANADA DEPARTMENT OF ENERGY, MINES AND RESOURCES BROCK RIVER MAP-AREA, DISTRICT OF MACKENZIE (97 D) (Report, 6 figures, 2 tables and P.S. Map 13-1970) H. R. Balkwill and C. J. Yorath Price, $2.00 1970 GEOLOGICAL SURVEY OF CANADA CANADA PAPER 70-32 BROCK RIVER MAP-AREA, DISTRICT OF MACKENZIE (97 D) H. R. Balkwill and C. J. Yorath DEPARTMENT OF ENERGY, MINES AND RESOURCES @)Crown Copyrights reserved Available by mail from Information Canada, Ottawa from the Geological Survey of Canada 601 Booth St., Ottawa and Information Canada bookshops in HALIFAX - 1735 Barrington Street MONTREAL - 1182 St. Catherine Street West OTTAWA - 171 Slater Street TORONTO - 221 Yonge Street WINNIPEG - 499 Portage Avenue VANCOUVER - 657 Granville Street or through your bookseller Price: $2.00 Catalogue No. M:44-70-32 Price subject to change without notice Information Canada Ottawa 1971 - iii - CONTENTS Page Abstract.............................. ...... ................ ... ....... v Introduction . 1 Physiography . 1 Stratigraphy . 5 Proterozoic.............. 8 Shaler Group . • . 8 Diabase sills and dykes . 11 Age and correlation of Proterozoic rocks . 11 Paleozoic . 12 Old Fort Island Formation . 12 Mount Cap Formation . .. 13 Saline River Formation . 15 'Ronning Group' . 15 Bear Rock Formation . 16 Cretaceous . 17 •Silty zone' . 18 1Benton°itic zone' . 18 Age and correlation of Cretaceous rocks . 18 Quaternary . 19 Structural Geology...... 19 Coppermine Arch . 19 Horton Plain and Wollaston structural basin . 20 Structural control of topography . 21 Economic Geology ..................... ........................ ·. 21 Addendum . 22 References 23 Illustrations Map 13- 1970: Geology, Brock River area (97D), District of Mackenzie ..... in pocket Table 1. Table of map-units .
    [Show full text]
  • The Cretaceous of North Greenland
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zitteliana - Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Histor. Geologie Jahr/Year: 1982 Band/Volume: 10 Autor(en)/Author(s): Birkelund Tove, Hakansson Eckhart Artikel/Article: The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis 7-25 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 7 Zitteliana 10 7-25 München, 1. Juli 1983 ISSN 0373-9627 The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis By TOVE BIRKELUND & ECKART HÄKANSSON*) With 6 text figures and 3 plates ABSTRACT Mapping of the Wandel Sea Basin (81-84°N) has revealed realites, Peregrinoceras, Neotollia, Polyptycbites, Astieripty- an unusually complete Late Jurassic to Cretaceous sequence chites) are Boreal and Sub-Boreal, related to forms primarily in the extreme Arctic. The Cretaceous pan of the sequence in­ known from circum-arctic regions (Sverdrup Basin, Svalbard, cludes marine Ryazanian, Valanginian, Aptian, Albian, Tu­ Northern and Western Siberia), but they also have affinities to ranian and Coniacian deposits, as well as outliers of marine occurrences as far south as Transcaspia. The Early Albian Santonian in a major fault zone (the Harder Fjord Fault Zone) contains a mixing of forms belonging to different faunal pro­ west of the main basin. Non-marine PHauterivian-Barremian vinces (e. g. Freboldiceras, Leymeriella, Arctboplites), linking and Late Cretaceous deposits are also present in addition to North Pacific, Atlantic, Boreal/Russian platform and Trans­ Late Cretaceous volcanics. caspian faunas nicely together. Endemic Turonian-Coniacian Scapbites faunas represent new forms related to European An integrated dinoflagellate-ammonite-5«c/;D stratigra­ species.
    [Show full text]
  • Late Jurassic Ammonites from Alaska
    Late Jurassic Ammonites From Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Late Jurassic Ammonites From Alaska By RALPH W. IMLAY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Studies of the Late jurassic ammonites of Alaska enables fairly close age determinations and correlations to be made with Upper Jurassic ammonite and stratigraphic sequences elsewhere in the world UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1981 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress catalog-card No. 81-600164 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ----------------------------------------- 1 Ages and correlations -----------------------------­ 19 19 Introduction -------------------------------------- 2 Early to early middle Oxfordian --------------­ Biologic analysis _________________________________ _ 14 Late middle Oxfordian to early late Kimmeridgian 20 Latest Kimmeridgian and early Tithonian _____ _ 21 Biostratigraphic summary ------------------------- 14 Late Tithonian ______________________________ _ 21 ~ortheastern Alaska -------------------------­ 14 Ammonite faunal setting --------------------------­ 22 Wrangell Mountains -------------------------- 15 Geographic distribution ---------------------------- 23 Talkeetna Mountains -------------------------­ 17 Systematic descriptions ___________________________ _ 28 Tuxedni Bay-Iniskin Bay area ----------------- 17 References
    [Show full text]