2021 Doropo PEA Update

Total Page:16

File Type:pdf, Size:1020Kb

2021 Doropo PEA Update DOROPO GOLD PROJECT PEA UPDATE JUNE 2021 Revision 0 Doropo Gold Project PEA Update TABLE OF CONTENTS 1 SUMMARY .......................................................................................................................................... 4 1.1 PROPERTY DESCRIPTION AND OWNERSHIP ................................................................................................ 4 1.2 GEOLOGY AND MINERALISATION ............................................................................................................. 4 1.3 STATUS OF EXPLORATION, DEVELOPMENT AND OPERATIONS ........................................................................ 5 1.4 MINERAL PROCESSING AND METALLURGICAL TESTING ................................................................................ 5 1.5 MINERAL RESOURCE ESTIMATES.............................................................................................................. 6 1.6 MINE DESIGN ...................................................................................................................................... 7 1.7 INFRASTRUCTURE .................................................................................................................................. 8 1.8 CAPEX ESTIMATE .................................................................................................................................. 9 1.9 OPEX ESTIMATE ................................................................................................................................. 10 1.10 FINANCIALS ....................................................................................................................................... 10 1.11 CONCLUSIONS .................................................................................................................................... 12 1.12 RECOMMENDATIONS ........................................................................................................................... 12 2 INTRODUCTION ................................................................................................................................ 13 3 RELIANCE ON OTHER EXPERTS ......................................................................................................... 14 4 PROPERTY DESCRIPTION AND LOCATION......................................................................................... 15 5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY .................. 17 6 HISTORY ........................................................................................................................................... 20 7 GEOLOGICAL SETTING AND MINERALISATION ................................................................................. 21 7.1 REGIONAL SCALE GEOLOGY .................................................................................................................. 21 7.2 PROJECT SCALE GEOLOGY ..................................................................................................................... 24 7.3 WEATHERING PROFILES ....................................................................................................................... 27 7.4 ALTERATION AND MINERALISATION ....................................................................................................... 29 8 DEPOSIT TYPES ................................................................................................................................. 32 9 EXPLORATION .................................................................................................................................. 33 9.1 COORDINATES, SURVEY CONTROLS AND TOPOGRAPHIC SURVEYS ................................................................. 33 9.2 GEOLOGICAL RECONNAISSANCE, MAPPING AND ROCK CHIP SAMPLING ........................................................ 33 9.3 AIRBORNE GEOPHYSICAL SURVEY ........................................................................................................... 34 9.4 SOIL SAMPLING .................................................................................................................................. 35 9.5 AUGER DRILLING ................................................................................................................................ 36 9.6 TRENCHING ....................................................................................................................................... 38 9.7 REGOLITH MAPPING AND INTERPRETATION ............................................................................................. 38 9.8 GRADIENT ARRAY INDUCED POLARISATION SURVEY .................................................................................. 38 9.9 AIRCORE DRILLING .............................................................................................................................. 38 10 DRILLING .......................................................................................................................................... 39 10.1 REVERSE CIRCULATION DRILLING ........................................................................................................... 39 10.2 DIAMOND DRILLING ............................................................................................................................ 40 10.3 SAMPLE RECOVERY AND GRADE ............................................................................................................ 40 42 10.4 TWIN HOLES ...................................................................................................................................... 42 10.5 WET RC SAMPLES .............................................................................................................................. 42 10.6 DRILL HOLE COVERAGE ........................................................................................................................ 42 11 SAMPLE PREPARATION, ANALYSES AND SECURITY .......................................................................... 60 11.1 REVERSE CIRCULATION SAMPLING METHODS .......................................................................................... 60 11.2 DIAMOND CORE SAMPLING METHODS ................................................................................................... 60 11.3 CHAIN OF CUSTODY AND TRANSPORT ..................................................................................................... 61 11.4 SAMPLE PREPARATION AND ANALYSIS .................................................................................................... 61 11.5 SAMPLE PREPARATION BY LABORATORY: ................................................................................................. 61 Page 1 of 163 Doropo Gold Project PEA Update 11.6 SAMPLES ANALYSES AT LABORATORY: .................................................................................................... 61 11.7 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLING .......................................................................... 62 12 DATA VERIFICATION ......................................................................................................................... 69 12.1 DATA VERIFICATION BY CENTAMIN ........................................................................................................ 69 12.2 SITE VISIT .......................................................................................................................................... 69 12.3 DATABASE AUDIT ............................................................................................................................... 69 13 MINERAL PROCESSING AND METALLURGICAL TESTING ................................................................... 71 14 MINERAL RESOURCE ESTIMATES ...................................................................................................... 75 14.1 INTRODUCTION .................................................................................................................................. 75 14.2 DATA PROVIDED TO CUBE .................................................................................................................... 75 14.3 DATABASE ......................................................................................................................................... 75 14.4 WIREFRAME REVIEW AND DATA CODING ................................................................................................. 76 14.5 EXPLORATORY DATA ANALYSIS .............................................................................................................. 85 14.6 VARIOGRAPHY:................................................................................................................................... 89 14.7 BLOCK MODEL DEFINITION................................................................................................................... 91 14.8 GRADE ESTIMATION: ........................................................................................................................... 93 14.9 INITIAL PANEL ORDINARY KRIGING VALIDATION ........................................................................................ 96 14.10 DENSITY AND WEATHERING .................................................................................................................. 98 14.11 LOCALISED UNIFORM CONDITIONING ESTIMATE ....................................................................................... 99 14.12 CLASSIFICATION AND
Recommended publications
  • From Base Metals and Back – Isamills and Their Advantages in African Base Metal Operations
    The Southern African Institute of Mining and Metallurgy Base Metals Conference 2013 H. de Waal, K. Barns, and J. Monama From base metals and back – IsaMills and their advantages in African base metal operations H. de Waal, K. Barns, and J. Monama Xstrata IsaMill™ technology was developed from Netzsch Feinmahltechnik GmbH stirred milling technology in the early 1990s to bring about a step change in grinding efficiency that was required to make Xstrata’s fine-grained lead/zinc orebodies economic to process. From small-scale machines suited to ultrafine grinding, the IsaMill™ has developed into technology that is able to treat much larger tonnages, in coarser applications, while still achieving high energy efficiency, suited for coarser more standard regrind and mainstream grinding applications. The unique design of the IsaMillTM, combining high power intensity and effective internal classification, achieves high energy efficiency and tight product distribution which can be effectively scaled from laboratory scale to full-sized models. The use of fine ceramic media also leads to significant benefits in downstream flotation and leaching operations. These benefits are key drivers for the adoption of the technology into processing a diverse range of minerals worldwide, and offer major opportunities for power reduction and improved metallurgy for the African base metal operations. Keywords: IsaMill, regrind, energy efficiency, inert grinding. Introduction The development of the IsaMillTM, by MIM (now GlencoreXstrata) and Netzsch Feinmahltechnik GmbH, was initiated to enable the development of the fine-grained ore deposits at Mt Isa and McArthur River in Northern Australia. To liberate the valuable minerals and so produce a saleable concentrate this ultrafine-grained ore needed to be ground to a P80 of 7 μm.
    [Show full text]
  • Rapport Final
    REPUBLIQUE DE COTE D’IVOIRE Union – Discipline – Travail -------------------------------- MINISTERE DU PETROLE, DE L’ENERGIE ET DES ENERGIES RENOUVELABLES --------------------------------- --------------------------------- PROJET DE RENFORCEMENT DES OUVRAGES DU SYSTEME ELECTRIQUE ET D’ACCES A L’ELECTRICITE – PHASE 1 (PROSER 1) : ELECTRIFICATION RURALE DE 1088 LOCALITES --------------------------------- LOT 2 : ELECTRIFICATION RURALE DE 442 LOCALITES DANS LA REGION DU BOUNKANI --------------------------------- PLAN CADRE REINSTALLATION (PCR) --------------------------------- RAPPORT FINAL -- Octobre 2019-- --TABLE DES MATIÈRES SIGLES ET ACRONYMES __________________________________________________________ 6 LISTE DES TABLEAUX ________________________________________________________ 7 LISTE DES PLANCHES ________________________________________________________ 7 LISTE DES GRAPHIQUES ______________________________________________________ 7 LISTE DES FIGURES _________________________________________________________ 7 DEFINITION DES TERMES UTILISES DANS CE RAPPORT _____________________________ 8 RÉSUMÉ EXÉCUTIF _________________________________________________________ 12 1.1. Contexte du projet et justification de l’étude _______________________________________ 16 1.1.1 Contexte du projet_________________________________________________________________ 16 1.1.2. Justification de l’élaboration du Plan Cadre de Réinstallation ______________________________ 16 1.1.3. Objectif du PCR ___________________________________________________________________
    [Show full text]
  • Use of the Inverse Slope Method for the Characterization of Geometry of Basement Aquifers: Case of the Department of Bouna (Ivory Coast)
    Journal of Geoscience and Environment Protection, 2019, 7, 166-183 http://www.scirp.org/journal/gep ISSN Online: 2327-4344 ISSN Print: 2327-4336 Use of the Inverse Slope Method for the Characterization of Geometry of Basement Aquifers: Case of the Department of Bouna (Ivory Coast) Rock Armand Michel Bouadou1, Kouamé Auguste Kouassi1, Francis Williams Kouassi1, Adama Coulibaly2, Théophile Gnagne1 1Laboratory of Geosciences and Environment, UFR of Sciences and Management of the Environment, University of Nangui Abrogoua, Abidjan, Ivory Coast 2Department of Science and Technology of Water and Environmental Engineering, UFR of Earth Sciences and Mineral Resources, University of Félix Houphouët-Boigny, Abidjan, Ivory Coast How to cite this paper: Bouadou, R. A. M., Abstract Kouassi, K. A., Kouassi, F. W., Coulibaly, A., & Gnagne, T. (2019). Use of the Inverse The inverse slope method (ISM) was used to interpret electric sounding data Slope Method for the Characterization of to determine the geoelectric parameters of the alteration zones (continuous Geometry of Basement Aquifers: Case of media) and rocky environments (discontinuous environments) of the Bouna the Department of Bouna (Ivory Coast). Journal of Geoscience and Environment Department. Having both qualitative and quantitative interpretation, the in- Protection, 7, 166-183. verse slope method (ISM) has the ability to determine the different geoelectric https://doi.org/10.4236/gep.2019.76014 layers while characterizing their resistivities and true thicknesses. In the Bouna department, this method allowed us to count a maximum of four (4) Received: April 24, 2019 Accepted: June 27, 2019 geoelectric layers with a total thickness ranging from 12.99 m to 24.66 m.
    [Show full text]
  • Challenges Related to the Processing of Fines in the Recovery of Platinum Group Minerals (Pgms)
    minerals Review Challenges Related to the Processing of Fines in the Recovery of Platinum Group Minerals (PGMs) Kirsten C. Corin 1,* , Belinda J. McFadzean 1, Natalie J. Shackleton 2 and Cyril T. O’Connor 1 1 Centre for Minerals Research, Chemical Engineering Department, University of Cape Town, P Bag X3, Rondebosch, Cape Town 7700, South Africa; [email protected] (B.J.M.); [email protected] (C.T.O.) 2 Minerals Expertise Tech Pty Ltd., Germiston 2007, South Africa; [email protected] * Correspondence: [email protected] Abstract: In order to increase the recovery of PGMs by flotation, it is necessary to optimise the liberation of the key minerals in which the platinum group elements (PGEs) are contained which include sulphides, arsenides, tellurides, and ferroalloys among others, while at the same time ensuring the optimal depression of gangue minerals. In order to achieve this, comminution circuits usually consist of two or three stages of milling, in which the first stage is autogeneous, followed by ball milling. Further liberation is achieved in subsequent stages using ultra-fine grinding. Each comminution stage is followed by flotation in the so-called MF2 or MF3 circuits. While this staged process increases overall recoveries, overgrinding may occur, hence creating problems associated with fine particle flotation. This paper presents an overview of the mineralogy of most of the more significant PGM ores processed in South Africa and the various technologies used in comminution circuits. The paper then summarises the methodology used in flotation circuits to optimise recovery Citation: Corin, K.C.; McFadzean, of fine particles in terms of the collectors, depressants, and frothers used.
    [Show full text]
  • Evolution of the Isamill™ Into Magnetite Processing
    EVOLUTION OF THE ISAMILL™ INTO MAGNETITE PROCESSING Greg Rasmussen, Xstrata Technology Pty Ltd Tommy Do , Ernest Henry Mining Michael Larson, Xstrata Technology Pty Ltd Katie Barns, Xstrata Technology Pty Ltd Xstrata Technology • Mount Isa Mines (MIM), a large Australian mining company, was acquired by Xstrata in 2003 who then merged with Glencore in 2013 • MIM internal technology group was re-named Xstrata Technology (XT) and became an independent technology developer and supplier to the global minerals industry with 250 staff worldwide • The equipment and processes which are marketed by XT are developed in our own operations • XT offers full-package solutions including: • Equipment and processes • Engineering • Commissioning and Training • Dedicated after-market support IsaMill™ Technology Development ™ • Development of IsaMill driven by inability Broken Hill to efficiently treat fine grained orebodies • Late 1980s, Xstrata required 7µm grind for new Pb/Zn orebodies in Australia • Conventional mining technologies tested (1975-1990), but 0 40 micron − Too high power consumption to achieve target size McArthur River − Ball/tower mills ineffective below 20-30μm − Negative influence of steel grinding on flotation 0 40 micron IsaMill™ Technology Development A technology was found... • Horizontal Bead Mills − Used in industries other than mining (pharmaceuticals, paint, food, etc.) − Small, batch scale − Very expensive and exotic media types • Cross-over into mining required: − Much larger scale − Continuous operation − Ability to use cheap,
    [Show full text]
  • Regrinding and Fine Grinding Technology - the Facts and Myths
    A review of regrinding and fine grinding technology - the facts and myths Dr Alex Jankovic, Metso Minerals Process Technology Asia-Pacific, [email protected] ABSTRACT Stirred milling technology is used extensively for fine grinding in the ceramic, paint and pharmaceutical industrials. It has been recently adopted by the mining industry. Specific conditions in the mining industry require somewhat different operation of this technology. However, the basic principles of operation are the same and the accumulated knowledge and experience developed in these other industries could be used to assist mining operations to get the most benefit from the stirred milling technology. This paper presents some of the important aspects of stirred milling operation discussed in the literature and not commonly known within the mining industry: grinding media motion, active grinding volume, wear of grinding media and energy transfer, stress intensity, scale-up issues and flow limitations. The intention is to introduce a “different perspective” of stirred milling technology, in particular highlighting its potential benefits and limitations. HISTORY Stirred milling technology may be regarded as relatively new in minerals processing, however it is a mature and extensively used technology in the ceramic, paint and pharmaceutical industries. The latest development of this technology is in the area of “Nano-grinding” for grinding down to nano-sizes. One may say that stirred mills used today in mining and minerals processing are equivalent to the early models of stirred mills used in parallel industries. The most commonly used stirred mills in mining and minerals processing are the VERTIMILL®, STIRRED MEDIA DETRITOR (SMD®) and ISAMILL® and a brief history of their development is given below.
    [Show full text]
  • World Bank Document
    The World Bank Cote d'Ivoire: Education Service Delivery Enhancement Project (P163218) Public Disclosure Authorized Public Disclosure Authorized Project Information Document/ Integrated Safeguards Data Sheet (PID/ISDS) Concept Stage | Date Prepared/Updated: 24-May-2017 | Report No: PIDISDSC21363 Public Disclosure Authorized Public Disclosure Authorized Apr 06, 2017 Page 1 of 8 The World Bank Cote d'Ivoire: Education Service Delivery Enhancement Project (P163218) BASIC INFORMATION A. Basic Project Data OPS TABLE Country Project ID Parent Project ID (if any) Project Name Cote d'Ivoire P163218 Cote d'Ivoire: Education Service Delivery Enhancement Project (P163218) Region Estimated Appraisal Date Estimated Board Date Practice Area (Lead) AFRICA Jun 26, 2017 Oct 31, 2017 Education Financing Instrument Borrower(s) Implementing Agency Investment Project Financing Ministry of Economy and Ministry of National Finance Education and Technical and Vocational Education and Training Proposed Development Objective(s) The Project Development Objective is to i) further increase access to basic and early childhood education, and ii) improve the enabling environment for better learning outcomes in primary education. Financing (in USD Million) Finance OLD Financing Source Amount Education for All Supervising Entity 24.10 Total Project Cost 24.10 Environmental Assessment Category Concept Review Decision B-Partial Assessment Track II-The review did authorize the preparation to continue Other Decision (as needed) Apr 06, 2017 Page 2 of 8 The World Bank Cote d'Ivoire: Education Service Delivery Enhancement Project (P163218) B. Introduction and Context Country Context 1. After a decade of socio-political instability marked by low economic growth (real GDP growth of 1.1 percent per year between 2000 and 2010, against 5 percent per year in sub-Saharan Africa over the same period), Cote d'Ivoire is now making economic gains with economic growth reaching 9.2 percent in 2015.
    [Show full text]
  • Isamill™ Technology Used in Efficient Grinding Circuits
    1 IsaMill™ Technology Used in Efficient Grinding Circuits B.D. Burford1 and L.W. Clark2 High intensity stirred milling is now an industry accepted method to efficiently grind fine and coarse particles. In particular, the IsaMill™, which was invented for, and transformed the fine grinding industry, is now being included in many new comminution circuits in coarser applications. While comminution has always been regarded as important from a processing perspective, the pressure being applied by environmental concerns on all large scale power users, now make highly energy efficient processes more important than ever. The advantages that were developed in fine grinding in the early IsaMill™ installations have been carried over into coarse grinding applications. These advantages include a simple grinding circuit that operates in open circuit with a small footprint, the ability to offer sharp product size classification, as well as the use of inert media in a high energy intensive environment. This paper will examine the use of IsaMill™ technology in fine grinding (P80 below 15 micron), and examine the use of the technology in conventional grinding applications (P80 20 - 150 µm). Recent installations will be examined, including fine and coarse grinding applications, as well as the recent test work that was undertaken using an IsaMill™ in a primary grinding circuit, and the resulting circuit proposal for this site. While comminution has been relatively unchanged for the last century, the need to install energy efficient technology will promote further growth in IsaMill™ installations, and result in one of the biggest challenges to traditional comminution design. 1. Senior Process Engineer, Xstrata Technology, L4, 307 Queen Street, Brisbane 4000, Qld, Australia 2.
    [Show full text]
  • Interrupting Seasonal Transmission of Schistosoma Haematobium and Control of Soil-Transmitted Helminthiasis in Northern and Cent
    Tian-Bi et al. BMC Public Health (2018) 18:186 DOI 10.1186/s12889-018-5044-2 STUDYPROTOCOL Open Access Interrupting seasonal transmission of Schistosoma haematobium and control of soil-transmitted helminthiasis in northern and central Côte d’Ivoire: a SCORE study protocol Yves-Nathan T. Tian-Bi1,2*, Mamadou Ouattara1,2, Stefanie Knopp3,4, Jean T. Coulibaly1,2,3,4, Eveline Hürlimann3,4, Bonnie Webster5, Fiona Allan5, David Rollinson5, Aboulaye Meïté6, Nana R. Diakité1,2, Cyrille K. Konan1,2, Eliézer K. N’Goran1,2 and Jürg Utzinger3,4* Abstract Background: To achieve a world free of schistosomiasis, the objective is to scale up control and elimination efforts in all endemic countries. Where interruption of transmission is considered feasible, countries are encouraged to implement a comprehensive intervention package, including preventive chemotherapy, information, education and communication (IEC), water, sanitation and hygiene (WASH), and snail control. In northern and central Côte d’Ivoire, transmission of Schistosoma haematobium is seasonal and elimination might be achieved. In a cluster-randomised trial, we will assess different treatment schemes to interrupt S. haematobium transmission and control soil-transmitted helminthiasis over a 3-year period. We will compare the impact of (i) arm A: annual mass drug administration (MDA) with praziquantel and albendazole before the peak schistosomiasis transmission season; (ii) arm B: annual MDA after the peak schistosomiasis transmission season; (iii) arm C: two yearly treatments before and after peak schistosomiasis transmission; and (iv) arm D: annual MDA before peak schistosomiasis transmission, coupled with chemical snail control using niclosamide. Methods/design: The prevalence and intensity of S.
    [Show full text]
  • ADMINISTRATIVE MAP of COTE D'ivoire Map Nº: 01-000-June-2005 COTE D'ivoire 2Nd Edition
    ADMINISTRATIVE MAP OF COTE D'IVOIRE Map Nº: 01-000-June-2005 COTE D'IVOIRE 2nd Edition 8°0'0"W 7°0'0"W 6°0'0"W 5°0'0"W 4°0'0"W 3°0'0"W 11°0'0"N 11°0'0"N M A L I Papara Débété ! !. Zanasso ! Diamankani ! TENGRELA [! ± San Koronani Kimbirila-Nord ! Toumoukoro Kanakono ! ! ! ! ! !. Ouelli Lomara Ouamélhoro Bolona ! ! Mahandiana-Sokourani Tienko ! ! B U R K I N A F A S O !. Kouban Bougou ! Blésségué ! Sokoro ! Niéllé Tahara Tiogo !. ! ! Katogo Mahalé ! ! ! Solognougo Ouara Diawala Tienny ! Tiorotiérié ! ! !. Kaouara Sananférédougou ! ! Sanhala Sandrégué Nambingué Goulia ! ! ! 10°0'0"N Tindara Minigan !. ! Kaloa !. ! M'Bengué N'dénou !. ! Ouangolodougou 10°0'0"N !. ! Tounvré Baya Fengolo ! ! Poungbé !. Kouto ! Samantiguila Kaniasso Monogo Nakélé ! ! Mamougoula ! !. !. ! Manadoun Kouroumba !.Gbon !.Kasséré Katiali ! ! ! !. Banankoro ! Landiougou Pitiengomon Doropo Dabadougou-Mafélé !. Kolia ! Tougbo Gogo ! Kimbirila Sud Nambonkaha ! ! ! ! Dembasso ! Tiasso DENGUELE REGION ! Samango ! SAVANES REGION ! ! Danoa Ngoloblasso Fononvogo ! Siansoba Taoura ! SODEFEL Varalé ! Nganon ! ! ! Madiani Niofouin Niofouin Gbéléban !. !. Village A Nyamoin !. Dabadougou Sinémentiali ! FERKESSEDOUGOU Téhini ! ! Koni ! Lafokpokaha !. Angai Tiémé ! ! [! Ouango-Fitini ! Lataha !. Village B ! !. Bodonon ! ! Seydougou ODIENNE BOUNDIALI Ponondougou Nangakaha ! ! Sokoro 1 Kokoun [! ! ! M'bengué-Bougou !. ! Séguétiélé ! Nangoukaha Balékaha /" Siempurgo ! ! Village C !. ! ! Koumbala Lingoho ! Bouko Koumbolokoro Nazinékaha Kounzié ! ! KORHOGO Nongotiénékaha Togoniéré ! Sirana
    [Show full text]
  • See Full Prospectus
    G20 COMPACT WITHAFRICA CÔTE D’IVOIRE Investment Opportunities G20 Compact with Africa 8°W To 7°W 6°W 5°W 4°W 3°W Bamako To MALI Sikasso CÔTE D'IVOIRE COUNTRY CONTEXT Tengrel BURKINA To Bobo Dioulasso FASO To Kampti Minignan Folon CITIES AND TOWNS 10°N é 10°N Bagoué o g DISTRICT CAPITALS a SAVANES B DENGUÉLÉ To REGION CAPITALS Batie Odienné Boundiali Ferkessedougou NATIONAL CAPITAL Korhogo K RIVERS Kabadougou o —growth m Macroeconomic stability B Poro Tchologo Bouna To o o u é MAIN ROADS Beyla To c Bounkani Bole n RAILROADS a 9°N l 9°N averaging 9% over past five years, low B a m DISTRICT BOUNDARIES a d n ZANZAN S a AUTONOMOUS DISTRICT and stable inflation, contained fiscal a B N GUINEA s Hambol s WOROBA BOUNDARIES z a i n Worodougou d M r a Dabakala Bafing a Bere REGION BOUNDARIES r deficit; sustainable debt Touba a o u VALLEE DU BANDAMA é INTERNATIONAL BOUNDARIES Séguéla Mankono Katiola Bondoukou 8°N 8°N Gontougo To To Tanda Wenchi Nzerekore Biankouma Béoumi Bouaké Tonkpi Lac de Gbêke Business friendly investment Mont Nimba Haut-Sassandra Kossou Sakassou M'Bahiakro (1,752 m) Man Vavoua Zuenoula Iffou MONTAGNES To Danane SASSANDRA- Sunyani Guemon Tiebissou Belier Agnibilékrou climate—sustained progress over the MARAHOUE Bocanda LACS Daoukro Bangolo Bouaflé 7°N 7°N Daloa YAMOUSSOUKRO Marahoue last four years as measured by Doing Duekoue o Abengourou b GHANA o YAMOUSSOUKRO Dimbokro L Sinfra Guiglo Bongouanou Indenie- Toulepleu Toumodi N'Zi Djuablin Business, Global Competitiveness, Oumé Cavally Issia Belier To Gôh CÔTE D'IVOIRE Monrovia
    [Show full text]
  • Observatory of Illicit Economies in West Africa
    ISSUE 1 | SEPTEMBER 2021 OBSERVATORY OF ILLICIT ECONOMIES IN WEST AFRICA ABOUT THIS RISK BULLETIN his is the first issue of the Risk Bulletin of the newly established Observatory of Illicit Economies Tin West Africa, a network of analysts and researchers based in the region. The articles in the bulletin, which will be published quarterly, analyze trends, developments and insights into the relation- ship between criminal economies and instability across wider West Africa and the Sahel.1 Drawing on original interviews and fieldwork, the articles shed light on regional patterns, and dive deeper into the implications of significant events. The stories will explore the extent to which criminal econ- omies provide sources of revenue for violent actors, focusing on hotspots of crime and instability in the region. Articles will be translated into French or Portuguese, as most appropriate, and published on the GI-TOC website. SUMMARY HIGHLIGHTS 1. Northern Côte d’Ivoire: new jihadist threats, attackers assaulted an informal gold-mining site old criminal networks. near the village of Solhan. The massacre marked A surge in jihadist activity in northern Côte not only a grim milestone amid ongoing inter- d’Ivoire since June 2020 has come alongside a communal violence in Burkina Faso, but further rise in criminal activity in the border region of reinforces the extent to which places like Solhan Bounkani. Although there have been reports that can become violent flashpoints as various actors jihadists are leveraging local criminal economies compete for control over access to natural for funding (particularly in the wake of declin- resources, such as gold.
    [Show full text]