Certej Updated Definitive Feasibility Study Summary Technical Report

Total Page:16

File Type:pdf, Size:1020Kb

Certej Updated Definitive Feasibility Study Summary Technical Report Certej Updated Definitive Feasibility Study Summary Technical Report Authors:- Patrick Forward February 26th 2009 Neil Liddell Tony Jackson Certej Updated Definitive Feasibility Study Summary Technical Report Contents 3. SUMMARY ................................................................................................................................................................... 1 4. INTRODUCTION AND TERMS OF REFERENCE ................................................................................................................ 6 5. RELIANCE ON OTHER EXPERTS ...................................................................................................................................... 7 6. PROPERTY DESCRIPTION AND LOCATION ..................................................................................................................... 8 7. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY ............................................. 10 7.1. ACCESS ............................................................................................................................................................. 10 7.2. CLIMATE ........................................................................................................................................................... 10 7.3. LOCAL RESOURCES AND INFRASTRUCTURE ....................................................................................................... 10 7.4. PHYSIOGRAPHY ................................................................................................................................................ 11 8. HISTORY ..................................................................................................................................................................... 14 8.1. PRIOR TO WORLD WAR 2 .................................................................................................................................. 14 8.2. POST WORLD WAR 2 ........................................................................................................................................ 15 8.3. RECENT HISTORY .............................................................................................................................................. 16 8.3.1. HISTORICAL INFORMATION ON EXISTING DUMPS ............................................................................................ 19 9. GEOLOGICAL SETTING ................................................................................................................................................ 20 9.1. REGIONAL GEOLOGY......................................................................................................................................... 20 9.2. LOCAL GEOLOGY ............................................................................................................................................... 21 10. DEPOSIT TYPES .......................................................................................................................................................... 27 11. MINERALISATION ....................................................................................................................................................... 28 11.1. ALTERATION ..................................................................................................................................................... 30 11.2. DEPOSIT ZONATION .......................................................................................................................................... 31 12. EXPLORATION ............................................................................................................................................................ 36 12.1. EXPLORATION BY PREVIOUS OWNERS .............................................................................................................. 36 12.2. EXPLORATION BY CURRENT OWNERS ............................................................................................................... 36 12.3. EXPLORATION MANAGED BY RSG GLOBAL – 2000 TO 2003 ............................................................................... 36 12.4. INVOLVEMENT OF OTHER CONSULTANTS – NOVEMBER 2003 TO OCTOBER 2004 ............................................. 36 12.5. MANAGEMENT BY EUROPEAN GOLDFIELDS TECHNICAL TEAM ......................................................................... 37 12.5.1. EXPLORATION OF EXISTING DUMPS .............................................................................................................. 37 13. DRILLING .................................................................................................................................................................... 39 13.1. DRILLING OF DEPOSIT ....................................................................................................................................... 39 13.2. DRILLING OF EXISTING DUMPS ......................................................................................................................... 39 14. SAMPLING METHOD AND APPROACH ........................................................................................................................ 42 14.1. DUMP SAMPLING APPROACH ........................................................................................................................... 43 14.1.1. SURFACE CHANNEL ........................................................................................................................................ 43 14.1.2. REVERSE CIRCULATION .................................................................................................................................. 44 15. SAMPLE PREPARATION, ANALYSES AND SECURITY ..................................................................................................... 47 15.1. DUMP SAMPLE PREPARATION, ANALYSIS AND SECURITY ................................................................................. 49 16. DATA VERIFICATION ................................................................................................................................................... 51 16.1. ACCURACY ........................................................................................................................................................ 51 16.2. ASSAY PRECISION ............................................................................................................................................. 52 16.3. DATA VERIFICATION FOR THE DUMP EXPLORATION DATABASE. ...................................................................... 53 16.3.1. ASSAY STANDARDS ....................................................................................................................................... 53 16.3.2. DUMP FIELD DUPLICATES (RC AND CHANNEL) ............................................................................................... 54 16.3.3. LABORATORY REPLICATES AND REPEATS ....................................................................................................... 57 16.3.4. LABORATORY PREPARATION REPEATS – SPLITS (FOR 2004-2005) .................................................................. 59 16.3.5. LABORATORY BLANKS ................................................................................................................................... 61 16.3.6. INTER-LABORATORY ROUND ROBIN .............................................................................................................. 61 16.3.7. CONCLUSIONS DUMP QAQC .......................................................................................................................... 61 17. ADJACENT PROPERTIES .............................................................................................................................................. 63 18. MINERAL PROCESSING AND METALLURGICAL TESTING .............................................................................................. 64 Certej Updated Definitive Feasibility Study Summary Technical Report 18.1. INTRODUCTION ................................................................................................................................................ 64 18.2. MINERALOGY ................................................................................................................................................... 64 18.2.1. INTRODUCTION ............................................................................................................................................. 64 18.2.2. MINERALOGY PRE 2004 ................................................................................................................................. 65 18.2.3. DEPORTMENT OF GOLD AND SILVER IN CERTEJ FLOTATION CONCENTRATES AND TAILS ............................... 66 18.2.4. COMMENTS AND OBSERVATIONS ................................................................................................................. 72 18.3. METALLURGICAL TESTWORK ............................................................................................................................ 73 18.3.1. HISTORIC METALLURGICAL TESTWORK (PRE 2005) ........................................................................................ 73 18.3.2. 2005 TESTWORK SAMPLES ............................................................................................................................ 73 18.3.3. 2005 FLOTATION
Recommended publications
  • From Base Metals and Back – Isamills and Their Advantages in African Base Metal Operations
    The Southern African Institute of Mining and Metallurgy Base Metals Conference 2013 H. de Waal, K. Barns, and J. Monama From base metals and back – IsaMills and their advantages in African base metal operations H. de Waal, K. Barns, and J. Monama Xstrata IsaMill™ technology was developed from Netzsch Feinmahltechnik GmbH stirred milling technology in the early 1990s to bring about a step change in grinding efficiency that was required to make Xstrata’s fine-grained lead/zinc orebodies economic to process. From small-scale machines suited to ultrafine grinding, the IsaMill™ has developed into technology that is able to treat much larger tonnages, in coarser applications, while still achieving high energy efficiency, suited for coarser more standard regrind and mainstream grinding applications. The unique design of the IsaMillTM, combining high power intensity and effective internal classification, achieves high energy efficiency and tight product distribution which can be effectively scaled from laboratory scale to full-sized models. The use of fine ceramic media also leads to significant benefits in downstream flotation and leaching operations. These benefits are key drivers for the adoption of the technology into processing a diverse range of minerals worldwide, and offer major opportunities for power reduction and improved metallurgy for the African base metal operations. Keywords: IsaMill, regrind, energy efficiency, inert grinding. Introduction The development of the IsaMillTM, by MIM (now GlencoreXstrata) and Netzsch Feinmahltechnik GmbH, was initiated to enable the development of the fine-grained ore deposits at Mt Isa and McArthur River in Northern Australia. To liberate the valuable minerals and so produce a saleable concentrate this ultrafine-grained ore needed to be ground to a P80 of 7 μm.
    [Show full text]
  • Administraţia Bazinală De Apă Mureş
    PLANUL DE MANAGEMENT AL RISCULUI LA INUNDAŢII Administraţia Bazinală de Apă Mureş Planul de Management al Riscului la Inundaţii Administraţia Bazinală de Apă Mureş Planul de Management al Riscului la Inundaţii Administraţia Bazinală de Apă Mureş CUPRINS Abrevieri ................................................................................................................................... 4 Cap. 1: Prezentarea generală a bazinului hidrografic Mureș .................................................. 6 Cap. 2: Riscul la inundaţii în bazinul hidrografic Mureş ....................................................... 14 2.1. Descrierea lucrărilor existente de protecție împotriva inundațiilor ............................. 14 2.2. Descrierea sistemelor existente de avertizare - alarmare şi de răspuns la inundaţii ............................................................................................ 43 2.3. Istoricul inundaţiilor .................................................................................................... 51 2.4. Evenimentele semnificative de inundaţii ..................................................................... 53 2.5. Zone cu risc potențial semnificativ la inundații ........................................................... 55 2.6. Hărți de hazard și hărți de risc la inundații .................................................................. 59 2.7. Indicatori statistici ....................................................................................................... 63 Cap. 3: Descrierea obiectivelor
    [Show full text]
  • Challenges Related to the Processing of Fines in the Recovery of Platinum Group Minerals (Pgms)
    minerals Review Challenges Related to the Processing of Fines in the Recovery of Platinum Group Minerals (PGMs) Kirsten C. Corin 1,* , Belinda J. McFadzean 1, Natalie J. Shackleton 2 and Cyril T. O’Connor 1 1 Centre for Minerals Research, Chemical Engineering Department, University of Cape Town, P Bag X3, Rondebosch, Cape Town 7700, South Africa; [email protected] (B.J.M.); [email protected] (C.T.O.) 2 Minerals Expertise Tech Pty Ltd., Germiston 2007, South Africa; [email protected] * Correspondence: [email protected] Abstract: In order to increase the recovery of PGMs by flotation, it is necessary to optimise the liberation of the key minerals in which the platinum group elements (PGEs) are contained which include sulphides, arsenides, tellurides, and ferroalloys among others, while at the same time ensuring the optimal depression of gangue minerals. In order to achieve this, comminution circuits usually consist of two or three stages of milling, in which the first stage is autogeneous, followed by ball milling. Further liberation is achieved in subsequent stages using ultra-fine grinding. Each comminution stage is followed by flotation in the so-called MF2 or MF3 circuits. While this staged process increases overall recoveries, overgrinding may occur, hence creating problems associated with fine particle flotation. This paper presents an overview of the mineralogy of most of the more significant PGM ores processed in South Africa and the various technologies used in comminution circuits. The paper then summarises the methodology used in flotation circuits to optimise recovery Citation: Corin, K.C.; McFadzean, of fine particles in terms of the collectors, depressants, and frothers used.
    [Show full text]
  • Form 40-F Eldorado Gold Corporation
    ______________________________________________________________________________________________ UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 40-F o REGISTRATION STATEMENT PURSUANT TO SECTION 12 OF THE SECURITIES EXCHANGE ACT OF 1934 OR x ANNUAL REPORT PURSUANT TO SECTION 13(a) OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2016 Commission file number: 001-31522 ELDORADO GOLD CORPORATION ______________________________________________________________________________________________ (Exact Name of Registrant as Specified in its Charter) CANADA ______________________________________________________________________________________________ (Province or other jurisdiction of incorporation or organization) 1040 (Primary Standard Industrial Classification Code) N/A (I.R.S. Employer Identification No.) Suite 1188 – 550 Burrard Street Vancouver, British Columbia, Canada V6C 2B5 (604) 687-4018 (Address and Telephone Number of Registrant’s Principal Executive Offices) CT Corporation System Copies to: 11 Eighth Avenue, 13 th Floor Kenneth G. Sam New York, New York 10011 Dorsey & Whitney LLP (212) 894-8940 1400 Wewatta Street, Suite 400 (Name, address (including zip code) and telephone number (including area code) of agent for service Denver, Colorado 80202 in the United States) (303) 629-3400 ______________________________________________________________________________________________ Securities registered or to be registered pursuant to Section 12(b) of the Act: Title of Each Class:
    [Show full text]
  • Evolution of the Isamill™ Into Magnetite Processing
    EVOLUTION OF THE ISAMILL™ INTO MAGNETITE PROCESSING Greg Rasmussen, Xstrata Technology Pty Ltd Tommy Do , Ernest Henry Mining Michael Larson, Xstrata Technology Pty Ltd Katie Barns, Xstrata Technology Pty Ltd Xstrata Technology • Mount Isa Mines (MIM), a large Australian mining company, was acquired by Xstrata in 2003 who then merged with Glencore in 2013 • MIM internal technology group was re-named Xstrata Technology (XT) and became an independent technology developer and supplier to the global minerals industry with 250 staff worldwide • The equipment and processes which are marketed by XT are developed in our own operations • XT offers full-package solutions including: • Equipment and processes • Engineering • Commissioning and Training • Dedicated after-market support IsaMill™ Technology Development ™ • Development of IsaMill driven by inability Broken Hill to efficiently treat fine grained orebodies • Late 1980s, Xstrata required 7µm grind for new Pb/Zn orebodies in Australia • Conventional mining technologies tested (1975-1990), but 0 40 micron − Too high power consumption to achieve target size McArthur River − Ball/tower mills ineffective below 20-30μm − Negative influence of steel grinding on flotation 0 40 micron IsaMill™ Technology Development A technology was found... • Horizontal Bead Mills − Used in industries other than mining (pharmaceuticals, paint, food, etc.) − Small, batch scale − Very expensive and exotic media types • Cross-over into mining required: − Much larger scale − Continuous operation − Ability to use cheap,
    [Show full text]
  • Regrinding and Fine Grinding Technology - the Facts and Myths
    A review of regrinding and fine grinding technology - the facts and myths Dr Alex Jankovic, Metso Minerals Process Technology Asia-Pacific, [email protected] ABSTRACT Stirred milling technology is used extensively for fine grinding in the ceramic, paint and pharmaceutical industrials. It has been recently adopted by the mining industry. Specific conditions in the mining industry require somewhat different operation of this technology. However, the basic principles of operation are the same and the accumulated knowledge and experience developed in these other industries could be used to assist mining operations to get the most benefit from the stirred milling technology. This paper presents some of the important aspects of stirred milling operation discussed in the literature and not commonly known within the mining industry: grinding media motion, active grinding volume, wear of grinding media and energy transfer, stress intensity, scale-up issues and flow limitations. The intention is to introduce a “different perspective” of stirred milling technology, in particular highlighting its potential benefits and limitations. HISTORY Stirred milling technology may be regarded as relatively new in minerals processing, however it is a mature and extensively used technology in the ceramic, paint and pharmaceutical industries. The latest development of this technology is in the area of “Nano-grinding” for grinding down to nano-sizes. One may say that stirred mills used today in mining and minerals processing are equivalent to the early models of stirred mills used in parallel industries. The most commonly used stirred mills in mining and minerals processing are the VERTIMILL®, STIRRED MEDIA DETRITOR (SMD®) and ISAMILL® and a brief history of their development is given below.
    [Show full text]
  • Isamill™ Technology Used in Efficient Grinding Circuits
    1 IsaMill™ Technology Used in Efficient Grinding Circuits B.D. Burford1 and L.W. Clark2 High intensity stirred milling is now an industry accepted method to efficiently grind fine and coarse particles. In particular, the IsaMill™, which was invented for, and transformed the fine grinding industry, is now being included in many new comminution circuits in coarser applications. While comminution has always been regarded as important from a processing perspective, the pressure being applied by environmental concerns on all large scale power users, now make highly energy efficient processes more important than ever. The advantages that were developed in fine grinding in the early IsaMill™ installations have been carried over into coarse grinding applications. These advantages include a simple grinding circuit that operates in open circuit with a small footprint, the ability to offer sharp product size classification, as well as the use of inert media in a high energy intensive environment. This paper will examine the use of IsaMill™ technology in fine grinding (P80 below 15 micron), and examine the use of the technology in conventional grinding applications (P80 20 - 150 µm). Recent installations will be examined, including fine and coarse grinding applications, as well as the recent test work that was undertaken using an IsaMill™ in a primary grinding circuit, and the resulting circuit proposal for this site. While comminution has been relatively unchanged for the last century, the need to install energy efficient technology will promote further growth in IsaMill™ installations, and result in one of the biggest challenges to traditional comminution design. 1. Senior Process Engineer, Xstrata Technology, L4, 307 Queen Street, Brisbane 4000, Qld, Australia 2.
    [Show full text]
  • The Effect of Regrinding Chemistry and Particle Breakage Mechanisms on Subsequent Cleaner Flotation Xumeng Chen Beng and Meng in Materials Engineering
    The Effect of Regrinding Chemistry and Particle Breakage Mechanisms on Subsequent Cleaner Flotation Xumeng Chen BEng and MEng in Materials Engineering A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in November 2014 Sustainable Minerals Institute Julius Kruttschnitt Mineral Research Centre Abstract Regrinding rougher flotation concentrates is typically used to liberate valuable minerals from gangue prior to the cleaner separation stage in processing of low grade ores. Compared to the rougher flotation after primary grinding, it is usually more challenging to achieve a satisfactory performance in post-regrind cleaner flotation especially when fine particles are generated. One main factor which results in this reduction in flotation is the unsuitable particle surfaces produced after regrinding. However, this factor is not usually considered when designing and optimizing the regrinding process. Extensive studies have demonstrated that grinding chemistry can influence mineral floatability. However, earlier studies focused on primary grinding and rougher flotation rather than regrinding and cleaner flotation. In addition, different types of regrind mills are used in industry, and these provide different particle breakage mechanisms which may also influence mineral floatability. Therefore, the overall objective of this thesis study is to investigate the effects of regrinding chemistry and particle breakage mechanisms on the cleaner flotation. The implementation of regrinding in the copper and pyrite flotation circuits at Telfer gold mine was taken as a case study and four research areas were addressed with the objective of developing fundamental understanding to provide practical guidance for the plant operation. The four areas investigated are: 1. Effect of regrinding chemistry on copper activation of pyrite and its flotation; 2.
    [Show full text]
  • Telfer Processing Plant Upgrade – the Implementation of Additional
    Telfer Processing Plant Upgrade – The Implementation of Additional Cleaning Capacity and the Regrinding of Copper and Pyrite Concentrates D R Seaman1, F Burns2, B Adamson3, B A Seaman4 and P Manton5 ABSTRACT The Telfer concentrator, located in the Great Sandy Desert of Western Australia, consists of a dual train gold/copper operation processing ore from one underground and, currently, two open pit mines with differing mineralogy. The fl otation circuit of each train was designed to operate in several modes depending on the feed mineralogy. The majority of ore mined at Telfer is processed in a sequential mode where copper minerals are fi rst fl oated into a saleable copper concentrate followed by the fl otation of an auriferous pyrite concentrate which is treated in an on-site hydrometallurgical plant (carbon-in-leach (CIL)). Gold is recovered as a gravity product within the primary grinding circuit, to the copper concentrate, and to a lesser extent, the CIL circuit. Since Telfer was re-opened, with a new concentrator, in 2004, the processing plant has struggled with poor copper concentrate grades, partially due to the excessive entrainment of non-sulfi de gangue minerals in the copper fl otation circuit and, more recently, due to composite copper particles produced when processing ore from a supplementary satellite pit that has not previously been processed through the new Telfer concentrator. Gold recoveries in the CIL circuit have also been below industry standard. This paper presents the implementation of recent changes made to the circuit to address these performance issues. The reconfi guration of the circuit has involved the installation of the following major equipment items: two ISAMills™ in ultra-fi ne grinding applications (one in the copper circuit and one in the pyrite circuit), two Jameson Cells to improve fi ne gangue rejection and a bank of 5 × Outotec TC30s to recovery copper and gold from the reground pyrite stream.
    [Show full text]
  • Judecatoria Ilia 1848-1968
    JUDECĂTORIA ILIA P R E F A Ţ Ă Istoricul fondurilor judecătoreşti din Transilvania, după 1848, cuprinde date referitoare la evoluţia organizării judecătoreşti în anii dualismului austro-ungar (1867- 1918) şi de după Unirea din 1918, corespunzători epocilor modernă şi, respectiv, contemporană. Anterior anului 1867, în Transilvania, pe lângă reforma administrativă, în anul 1854, are loc şi o reformă a justiţiei în care Codul civil austriac din 1853 va sta la baza procedurilor de judecată de pe teritoriul Marelui Principat al Transilvaniei. Astfel că, pe lângă Prefectura Orăştie va funcţiona Tribunalul ţinutal Orăştie în calitate de curte judecătorească de primă instanţă, în timp ce pentru cele nouă preturi câte avea Prefectura Orăştie (Hălmagiu, Baia de Criş, Ilia, Şoimuş, Deva, Haţeg, Pui, Orăştie şi Dobra) se stabilise un număr de patru tribunale de cercetare. Important de reţinut este faptul că, dacă până la 1867, organizarea judecătorească din Transilvania se baza pe codurile de legi austriece, după 1867, instanţele de judecată au fost rapid adaptate la noile condiţii izvorâte din încheierea pactului dualist austro- ungar. În acest context instanţele de judecată obişnuite, care au creat fondurile documentare, au fost: judecătoriile de plasă, tribunalele de comitate, tablele judecătoreşti (câte una pentru mai multe comitate), Curtea de al III-lea grad şi Curia (una singură ca instanţă supremă la Budapesta). Judecătoriile de plasă aveau competenţă în materie civilă şi comercială, pentru cauze ce nu depăşeau valoarea de 300 florini, iar în materie penală soluţionau cea mai mare parte a contravenţiilor, putând face şi instrucţie penală. Legea IV din 1869 prevedea organizarea corpului judecătoresc, menţionând că judecătorii fiind independenţi şi inamovibili erau subordonaţi numai „legii şi cutumei”.
    [Show full text]
  • LEI Denumire Indicator Suma Platita Beneficiarul Explicatii Sucursala
    SITUATIA platilor efectuate in data de 01.03.2013 LEI Denumire Suma platita Beneficiarul Explicatii Sucursala indicator 2.768,10 SC AUTO TOP CO.SRL contravaloare reparatii auto OJP Mures SERVICIUL ECONOMIC SERVICIUL ECONOMIC 2.615,16 SC RADIALMURES SRL contravaloare reparatii auto OJP Mures TERITORIAL – BRASOV SERVICIUL ECONOMIC 6,03 SC AQUA NOVA HARGITA SA contravaloare consum apa OP Praid, luna ianuarie 2013 TERITORIAL – BRASOV SERVICIUL ECONOMIC 650,99 SC SCHUSTER ECOSAL SRL contravaloare salubritate OJP Mures, luna ianuarie 2013 TERITORIAL – BRASOV SERVICIUL ECONOMIC 45,93 SC HARVIZ SA contravaloare consum apa OP Tulghes, luna ianuarie 2013 TERITORIAL – BRASOV contravaloare refacturare consum apa si salubritate Op Balan, luna SERVICIUL ECONOMIC 38,88 PRIMARIA ORASULUI BALAN ianuarie 2013 TERITORIAL – BRASOV ASOCIATIA DE PROPRIETARI contravaloare cheltuieli comune OP Odorheiu Secuiesc 3, luna ianuarie SERVICIUL ECONOMIC 15,85 BECLEAN 2013 TERITORIAL – BRASOV ASOCIATIA DE PROPRIETARI SERVICIUL ECONOMIC 74,13 contravaloare cheltuieli comune OP Targu Mures 6, luna ianuarie 2013 NR. 343 TERITORIAL – BRASOV contravaloare refacturare consum energie termica OP Targu Mures 4, SERVICIUL ECONOMIC 4.444,54 SC LOCATIV SA luna ianuarie 2013 TERITORIAL – BRASOV contravaloare refacturare consum energie termica OP Odorheiu SERVICIUL ECONOMIC 2.329,43 SC URBANA SA Secuiesc 3, luna ianuarie 2013 TERITORIAL – BRASOV contravaloare consum gaze naturale OJP Brasov, perioada 29,12,2012 SERVICIUL ECONOMIC 14.522,47 SC GDF SUEZ SA – 29,01,2013 TERITORIAL –
    [Show full text]
  • Tabel Atribute RO 11.05.2015
    Garda Cod / Validare Justificari eliminare (doar la nivel Id trup ID judet / trup Judet Bazinet C1 C2 C3 C4 Forestiera Nivel risc finala de bazinete /trup) 7 AB-7 Cluj AB Molivis AB-7 Total trup 1 0 0 0 galben 9 AB-9 Cluj AB Miras (Cotul) AB-9 Total trup 1 1 0 0 rosu 10 AB-10 Cluj AB Raul Mic AB-10 Total trup 1 0 0 0 galben 12 AB-12 Cluj AB Martinie (Marginea, Tetu) AB-12 Total trup 0 1 0 0 rosu 14 AB-14 Cluj AB Grosesti AB-14 Total trup 0 1 0 0 rosu 15 AB-15 Cluj AB Brustura AB-15 Total trup 1 0 0 0 galben 16 AB-16 Cluj AB Valea Tonii AB-16 Total trup 1 0 0 0 galben 19 AB-19 Cluj AB Chipesa AB-19 Total trup 1 0 0 0 galben 20 AB-20 Cluj AB Garbova AB-20 Total trup 1 0 0 0 galben 26 AB-26 Cluj AB Boz AB-26 Total trup 0 1 0 0 rosu 27 AB-27 Cluj AB Vingard AB-27 Total trup 0 1 0 0 rosu 29 AB-29 Cluj AB Ungurei AB-29 Total trup 0 1 0 0 rosu 30 AB-30 Cluj AB Gardan AB-30 Total trup 0 1 0 0 rosu 31 AB-31 Cluj AB Ohaba (Valea Mare) AB-31 Total trup 0 1 0 0 rosu 38 AB-38 Cluj AB Cenade AB-38 Total trup 0 1 0 0 rosu 39 AB-39 Cluj AB Tarnava (Tarnava Mare) AB-39 Total trup 0 0 0 0 galben 40 AB-40 Cluj AB Lodroman AB-40 Total trup 0 1 0 0 rosu 41 AB-41 Cluj AB Valea Lunga (Tauni) AB-41 Total trup 0 1 0 0 rosu 44 AB-44 Cluj AB Graben AB-44 Total trup 0 1 0 0 rosu 45 AB-45 Cluj AB Spinoasa AB-45 Total trup 1 1 0 1 rosu 46 AB-46 Cluj AB Tatarlaua AB-46 Total trup 1 1 0 1 rosu 48 AB-48 Cluj AB Veseus AB-48 Total trup 1 0 0 0 galben 49 AB-49 Cluj AB Pe Dealul cel mai Departe AB-49 Total trup 1 0 0 0 galben 53 AB-53 Cluj AB Dunarita (Bucerdea) AB-53 Total
    [Show full text]