Unlock the Full Value of Mainframe Technology with a Switched-FICON Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Unlock the Full Value of Mainframe Technology with a Switched-FICON Architecture White Paper Mainframe Unlock the Full Value of Mainframe Technology with a Switched-FICON Architecture Technical and Business Reasons for Implementing a Switched-FICON Architecture Abstract A networked FICON storage architecture for your mainframe is a long-term, well-documented industry best practice. Networked storage architectures beat direct-attached architectures in terms of RAS, performance, scalability, and long-run costs. This paper explores the technical and business reasons for implementing switched-FICON instead of direct-attached storage infrastructures and explores the advantages of Brocade’s FICON SAN product family, which provides an outstanding, industry-leading solution for mainframe environments. Executive Summary Some mainframe organizations might consider implementing an old-style, traditional direct-attached high-performance FICON for IBM Z (zHPF) architecture. However, organizations should ask what they would be giving up by not deploying mainframe over a switched-FICON architecture. Will it actually result in efficiencies and cost savings? With the many enhancements and improvements in mainframe I/O technology in the past 10 years, a frequently asked question is “Do I need FICON switching technology, or should I go with direct-attached storage?” With up to 320 FICON Express16SA channels supported on an IBM z15, why not just direct-attach the control units? The short answer is that with all of the ongoing I/O improvements, switching technology is needed—now more than ever. In fact, there are more reasons to use switched-FICON than there were to use switched-ESCON. Some of these reasons are purely technical; others are more business-related. FICON switching directors provide high availability (architected for 99.999% availability) with redundant components and no single points of failure or repair. You can use modern FICON directors to attach Fibre Channel hosts and devices in addition to FICON hosts and devices. With Fibre Channel and FICON intermix mode, both Fibre Channel Protocol (FCP) and FICON upper-level protocols can be supported within the same director when deployed independently by port. Director ports operate in either Fibre Channel or FICON mode. A total cost of ownership (TCO) analysis focused on the long term will clearly demonstrate that the modern mainframe customer is better off implementing a switched-FICON architecture. Brocade’s unique history of technical development with the IBM Z Systems I/O product team has produced the world’s most advanced mainframe computing and storage systems SAN. Brocade’s technical heritage stretches back to the late 1980s with our creation of channel extension technologies to broaden data centers beyond the “glass house.” Then we revolutionized the classical “computer room” with the invention of the original ESCON SAN of the 1990s, which was leveraged in the 2000s as we facilitated geographically dispersed FICON storage systems. Today, the most compelling innovations to be found in mainframe storage networking technology are the product of the nearly 30-year-long partnership between Brocade and the IBM Z Systems team. Broadcom Mainframe-FICON-WP100 March 27, 2020 Mainframe White Paper Unlock the Full Value of Mainframe Technology with a Switched-FICON Architecture As the flash era of this decade disrupts the traditional mainframe storage networking mind-set, Brocade and IBM have released a series of features and functions that are specifically designed and integrated to address the needs and demands of the data center. These technologies leverage the fundamental capabilities of Brocade switching to enhance the world’s most reliable and crucial systems. Recommendations Direct-attached FICON storage might appear to be an inexpensive way to take advantage of mainframe technology. However, a closer examination will show why a switched-FICON architecture is a better, more robust design for enterprise data centers than direct-attached FICON. There are six key technical reasons for connecting storage control units using switched-FICON: To replace the I/O Operations (I/O Ops) component of System Automation for z/OS, widely known as ESCON Manager, that has been removed and is out of service as of September 2019. To overcome buffer credit limitations on FICON Express 16Gb/s and 8Gb/s channels. To build fan-in, fan-out architecture designs for maximizing resource utilization. To localize failures for improved availability. To increase scalability and enable flexible connectivity for continued growth. To leverage new FICON technologies that are available only when switched-FICON is implemented, such as N_Port ID Virtualization (NPIV), Dynamic Channel Path Management (DCM), and FICON CUP Diagnostics. I/O enhancements to IBM mainframes, such as Dynamic Channel Path Management and IBM Z Discovery and Configuration (zDAC), require a networked storage architecture (utilizing FICON directors) if the end user wishes to take advantage of them. IBM Z offers unprecedented performance, scalability, and innovative features. To take full advantage of IBM Z, the end user must have an equally capable storage array and FICON director platform for connectivity. Our OEM storage partners combined with Brocade Gen 6 are the ideal combination with IBM Z mainframes, whether it is for a traditional z/OS, Linux, Protocol Intermix Mode (PIM), or private cloud environment. You can be assured that Brocade has the experience and that Gen 6 is the best FICON I/O infrastructure in the industry for mainframe data centers. Mainframe users should utilize switched-FICON to provide for the proper deployment of I/O in every IBM Z data center that they operate. It is the only way in which they can derive the full value from their FICON I/O investments. Switched-FICON is an industry best practice, and it is in your best interests to deploy it. Observations Remember that the last System Automation product version to support I/O Operations (SA z/OS z/OS 3.5) went out of service in September 2019. This means that the System Automation for z/OS (SA z/OS) used by administrators to manage the FICON I/O switch configuration, to make configuration changes, and to display status information has been removed. With the removal of SA z/OS I/O Operations, a new way to provide the management, configuration, and alerting functions is now required. The IBM Z team and Brocade have developed, over the years, new functions, built upon industry standards, to completely replace the I/O Operations component in switched-FICON implementations. Broadcom Mainframe-FICON-WP100 2 Mainframe White Paper Unlock the Full Value of Mainframe Technology with a Switched-FICON Architecture Emerging and evolving enterprise critical workloads and higher density virtualization are continuing to push the limits of SAN infrastructures. The Brocade Gen 6 family features industry-leading 32Gb/s performance and an impressive 12.2Tb/s chassis bandwidth to address these next-generation I/O and bandwidth-intensive application requirements. In addition, the Brocade Gen 6 provides unmatched slot-to-slot and port performance, with 1.54Tb/s of bandwidth per slot (port card/blade). And this performance comes in the most energy-efficient FICON director in the industry, using an average of less than 1 watt per Gb/s, which is 15 times more efficient than competitive offerings. The Brocade Gen 6 family enables high-speed replication and backup solutions over metro or WAN links with native Fibre Channel (10, 16, or 32Gb/s) and optional FCIP (1, 10, and 40GbE) extension support. This is done by integrating this technology via a FICON director blade (SX6) or by deploying a standalone switch (Brocade 7840). Finally, this is all accomplished with unsurpassed levels of reliability, availability, and serviceability (RAS), based upon more than three decades of Brocade experience in the mainframe space. This experience includes originally defining the FICON standards and authoring or co-authoring many of the FICON patents. Detailed Investigation IBM Z delivered High Performance FICON (zHPF) in 2008 on the z10 EC platform and has been strategically investing in this technology ever since the initial delivery. The raw bandwidth of a z15’s FICON Express16SA channel with zHPF is 5.2 times greater than a FICON Express16SA channel using “native” FICON capabilities. The raw I/O per second (IOPS) capacity of a z15’s FICON Express16SA that utilizes zHPF is 300,000 IOPS, which is 13 times greater than a FICON Express16SA channel that utilizes “native” command mode FICON capabilities. With these improved capabilities, organizations need to transition to zHPF to reap the full benefits of the z15. Within native command mode FICON, the number of open exchanges is limited by the FICON Express feature. FICON Express16SA, FICON Express16S+, FICON Express16S, FICON Express8S, and FICON Express8 allow up to 64 open exchanges. One open exchange (an exchange pair, actually) in command mode is the same as one I/O operation in progress. Within enhanced zHPF FICON transport mode, one exchange is sent from the channel to the control unit (CU). Then, the same exchange ID is sent back from the control unit to the channel to complete the I/O operation. The maximum number of simultaneous exchanges that a channel can have open with the CU is 750 exchanges on the z15 processor family. The CU sets the maximum number of exchanges in the status area of the transport mode response information unit (IU). The default number is 64, which can be increased or decreased. It is only when a director or switch is used between the host and the storage device that the true performance potential inherent in these channel bandwidth and I/O processing gains can be fully exploited. Switched-FICON Is a Best Practice In this section, we will explore the details behind each of our switched-FICON recommendations. Replacing the I/O Operations Component of System Automation for z/OS Prior to release 4.1, IBM System Automation for z/OS (SA z/OS) contained the I/O Operations (IOOPs) component to manage ESCON and FICON I/O switch configuration, make configuration changes, and display status information.
Recommended publications
  • FICON Native Implementation and Reference Guide
    Front cover FICON Native Implementation and Reference Guide Architecture, terminology, and topology concepts Planning, implemention, and migration guidance Realistic examples and scenarios Bill White JongHak Kim Manfred Lindenau Ken Trowell ibm.com/redbooks International Technical Support Organization FICON Native Implementation and Reference Guide October 2002 SG24-6266-01 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. Second Edition (October 2002) This edition applies to FICON channel adaptors installed and running in FICON native (FC) mode in the IBM zSeries procressors (at hardware driver level 3G) and the IBM 9672 Generation 5 and Generation 6 processors (at hardware driver level 26). © Copyright International Business Machines Corporation 2001, 2002. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. ix Become a published author . .x Comments welcome. .x Chapter 1. Overview . 1 1.1 How to use this redbook . 2 1.2 Introduction to FICON . 2 1.3 zSeries and S/390 9672 G5/G6 I/O connectivity. 3 1.4 zSeries and S/390 FICON channel benefits . 5 Chapter 2. FICON topology and terminology . 9 2.1 Basic Fibre Channel terminology . 10 2.2 FICON channel topology. 12 2.2.1 Point-to-point configuration . 14 2.2.2 Switched point-to-point configuration . 15 2.2.3 Cascaded FICON Directors configuration. 16 2.3 Access control. 18 2.4 Fibre Channel and FICON terminology.
    [Show full text]
  • Cisco MDS 9250I Multiservice Fabric Switch for IBM an Optimized Solution for Departmental and Branch-Office Sans As Well As Large-Scale Sans
    IBM Systems Data Sheet Cisco MDS 9250i Multiservice Fabric Switch for IBM An optimized solution for departmental and branch-office SANs as well as large-scale SANs Cisco MDS 9250i Multiservice Fabric Switch for IBM® System Highlights Storage® is an optimized platform for deploying high-performance SAN extension solutions, distributed intelligent fabric services and ●● ●●Provide 16 Gbps connectivity in a cost-effective multiprotocol connectivity for both open systems and high-densit y Fibre Channel switch mainframe environments. With a compact form factor and advanced ●● ●●Enable storage area network (SAN) con- capabilities normally available only on director-class switches, solidation with integrated multiprotocol MDS 9250i is an ideal solution for departmental and remote branch- support office SANs as well as large-scale SANs in conjunction with the ●● ●●Deliver high-p erformance Fibre Channel Cisco MDS 9710 Multilayer Director. over IP (FCIP) and fast disaster recovery ●● ●●Support hardware-bas ed virtual fabric MDS 9250i offers up to 40 16 Gbps Fibre Channel ports, two isolation with virtual SANs (VSANs) and 10 Gigabit Ethernet IP storage services ports and eight 10 Gigabit Fibre Channel routing with Inter-V SAN routing (IVR) Ethernet Fibre Channel over Ethernet (FCoE) ports in a fixed, two- rack-unit (2RU) form factor. MDS 9250i connects to existing native Fibre ●● ●●Enable cost- effective, high- performing Channel networks, protecting current investments in storage networks. Fibre Channel and FCIP connectivity for open systems and mainframe environments Main features and benefits ●● ●●Cisco Data Mobility Manager (DMM) as a MDS 9250i provides unique multiservice and multiprotocol functions in distributed fabric service a compact 2RU form factor.
    [Show full text]
  • IBM System Z9 Enterprise Class
    The server built to help optimize your resources throughout the enterprise IBM System z9 Enterprise Class A “classic” might just be the best Today’s market finds that business needs are changing, and having a com­ petitive advantage isn’t always about having more or being bigger, but more about being smarter and responding faster to change and to your clients. Often, being reactive to change has led to infrastructures with mixed technolo­ gies, spread across an enterprise, that are complex and difficult to control and costly to manage. Integration of appli­ cations and data is limited and difficult. Using internal information to make insightful decisions for the company Highlights can be difficult because knowing you are using the “best” data—that which is ■ Strengthening the role of the ■ Continued improvement in most current and complete—may not mainframe as the data hub of IBM FICON® performance and be possible. the enterprise throughput In many situations, investments have ■ New versatile capacity settings ■ On demand innovative tech­ been made in disparate technologies designed to optimize capacity nologies to help meet ever- that may fall short of meeting their and cost changing business demands goals. Merging information from one branch to another may not be possible ■ IBM System z9™ Integrated and so company direction is set with Information Processor (IBM zIIP) is designed to improve resource optimization and lower the cost of eligible work only a portion of the data at hand, and help achieve advanced I/O function and But data management can be a big in a global economy that can really hurt.
    [Show full text]
  • Troubleshooting FICON
    Send documentation comments to [email protected] CHAPTER 16 Troubleshooting FICON Fibre Connection (FICON) interface capabilities enhance the Cisco MDS 9000 Family by supporting both open systems and mainframe storage network environments. Inclusion of Control Unit Port (CUP) support further enhances the MDS offering by allowing in-band management of the switch from FICON processors. This chapter includes the following sections: • FICON Overview, page 16-1 • FICON Configuration Requirements, page 16-6 • Initial Troubleshooting Checklist, page 16-7 • FICON Issues, page 16-9 FICON Overview The Cisco MDS 9000 Family supports the Fibre Channel, FICON, iSCSI, and FCIP capabilities within a single, high-availability platform. Fibre Channel and FICON are different FC4 protocols and their traffic are independent of each other. If required, devices using these protocols can be isolated using VSANs. The Cisco SAN-OS FICON feature supports high-availability, scalability, and SAN extension technologies including VSANs, IVR, FCIP, and PortChannels. Tip When you create a mixed environment, place all FICON devices in one VSAN (other than the default VSAN) and segregate the FCP switch ports in a separate VSAN (other than the default VSAN). This isolation ensures proper communication for all connected devices. You can implement FICON on the following switches: • Any switch in the Cisco MDS 9500 Series. • Any switch in the Cisco MDS 9200 Series (including the Cisco MDS 9222i Multiservice Modular Switch). • Cisco MDS 9134 Multilayer Fabric Switch. • MDS 9000 Family 18/4-Port Multiservice Module. Cisco MDS 9000 Family Troubleshooting Guide, Release 3.x OL-9285-05 16-1 Chapter 16 Troubleshooting FICON FICON Overview Send documentation comments to [email protected] Note The FICON feature is not supported on Cisco MDS 9120, 9124 or 9140 switches, the 32-port Fibre Channel switching module, Cisco Fabric Switch for HP c-Class BladeSystem or Cisco Fabric Switch for IBM BladeCenter.
    [Show full text]
  • IBM Z Connectivity Handbook
    Front cover IBM Z Connectivity Handbook Octavian Lascu John Troy Anna Shugol Frank Packheiser Kazuhiro Nakajima Paul Schouten Hervey Kamga Jannie Houlbjerg Bo XU Redbooks IBM Redbooks IBM Z Connectivity Handbook August 2020 SG24-5444-20 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. Twentyfirst Edition (August 2020) This edition applies to connectivity options available on the IBM z15 (M/T 8561), IBM z15 (M/T 8562), IBM z14 (M/T 3906), IBM z14 Model ZR1 (M/T 3907), IBM z13, and IBM z13s. © Copyright International Business Machines Corporation 2020. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . xi Comments welcome. xi Stay connected to IBM Redbooks . xi Chapter 1. Introduction. 1 1.1 I/O channel overview. 2 1.1.1 I/O hardware infrastructure . 2 1.1.2 I/O connectivity features . 3 1.2 FICON Express . 4 1.3 zHyperLink Express . 5 1.4 Open Systems Adapter-Express. 6 1.5 HiperSockets. 7 1.6 Parallel Sysplex and coupling links . 8 1.7 Shared Memory Communications. 9 1.8 I/O feature support . 10 1.9 Special-purpose feature support . 12 1.9.1 Crypto Express features . 12 1.9.2 Flash Express feature . 12 1.9.3 zEDC Express feature . 13 Chapter 2. Channel subsystem overview . 15 2.1 CSS description . 16 2.1.1 CSS elements .
    [Show full text]
  • IBM System Z9 109 Technical Introduction
    Front cover IBM System z9 109 Technical Introduction Hardware description Software support Key functions Bill Ogden Jose Fadel Bill White ibm.com/redbooks International Technical Support Organization IBM System z9 109 Technical Introduction July 2005 SG24-6669-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (July 2005) This edition applies to the initial announcement of the IBM System z9 109. © Copyright International Business Machines Corporation 2005. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The authors . ix Become a published author . ix Comments welcome. .x Chapter 1. Introduction. 1 1.1 Evolution . 2 1.2 z9-109 server highlights . 3 1.3 zSeries comparisons. 4 1.4 z9-109 server models and processor units . 6 1.5 Upgrades. 6 1.6 Considerations . 7 Chapter 2. Hardware overview . 9 2.1 System frames . 10 2.2 Books . 10 2.3 MCM . 12 2.4 Processor units . 13 2.4.1 PU characterizations. 14 2.5 Memory . 14 2.6 I/O interfaces. 15 2.7 I/O cages and features . 16 2.7.1 Physical I/O connections. 18 2.7.2 Coupling connections . 20 2.7.3 Cryptographic functions . 20 2.8 Time functions. 21 2.8.1 Sysplex Timer . 21 2.8.2 Server Time Protocol (STP) . 22 2.9 Hardware Storage Area . 22 2.10 System control . 22 2.11 HMC and SE .
    [Show full text]
  • TCP/IP and SNA Over FICON SCSI & Ficonover FC FICON Over FC 19
    USOO7702762B1 (12) United States Patent (10) Patent No.: US 7,702,762 B1 Jagana (45) Date of Patent: Apr. 20, 2010 (54) SYSTEM FOR HOST TO-HOST 6,493.825 B1* 12/2002 Blumenau et al. ........... T13,168 CONNECTIVITY USING FICON PROTOCOL 6,499,058 B1* 12/2002 Hozumi ............... ... TO9,225 OVER A STORAGE AREANETWORK 6,636,529 B1 * 10/2003 Goodman et al. ... 370/469 6,654,830 B1 * 1 1/2003 Taylor et al. .................. 71 Of 74 (75)75 Inventor: Venkata R. Jagana, Portland, OR (US) 6,665,7146,658,540 B1* 12/2003 SicolaBlumenau et al. et al....... ........... ... 709/222711,162 (73) Assignee: states insists 6,714,9526,684,209 B2*B1 3/20041/2004 Ito(Shane et al. ........................ at O'707:01 707/9 s s 6,718,347 B1 * 4/2004 Wilson .......... ... TO7,201 c - 6,728,803 B1 * 4/2004 Nelson et al. ................. T10/60 (*) Notice: Subject to any disclaimer, the term of this 6,769,021 B1* 7/2004 Bradley ......... ... TO9.220 patent is extended or adjusted under 35 2003/0236945 A1 12/2003 Nahum ....................... 711 114 U.S.C. 154(b) by 2415 days. OTHER PUBLICATIONS (21) Appl. No.: 09/686,049 Computer Desktop Encyclopedia entry for "SAN” (copyright 1981 (22) Filed1C Oct.cl. 11,1 2000 2004), version 174, 4th Quarter 2004. * cited by examiner (51) Int. Cl. G06F 5/73 (2006.01) E. Early line Pich (52) U.S. Cl. ....................... 709:23.700,246.700,249 (74) Attorney, Agent, or Firm Jason O. Piche 37Of 466 57 ABSTRACT (58) Field of Classification Search ................
    [Show full text]
  • Brocade Fabric OS FICON Administrator's Guide
    53-1003517-04 09 February 2016 Brocade Fabric OS FICON Administrator's Guide Supporting Fabric OS v7.4.0, Fabric OS 7.4.1 © 2016, Brocade Communications Systems, Inc. All Rights Reserved. Brocade, Brocade Assurance, the B-wing symbol, ClearLink, DCX, Fabric OS, HyperEdge, ICX, MLX, MyBrocade, OpenScript, VCS, VDX, Vplane, and Vyatta are registered trademarks, and Fabric Vision is a trademark of Brocade Communications Systems, Inc., in the United States and/or in other countries. Other brands, products, or service names mentioned may be trademarks of others. Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment, equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to this document at any time, without notice, and assumes no responsibility for its use. This informational document describes features that may not be currently available. Contact a Brocade sales office for information on feature and product availability. Export of technical data contained in this document may require an export license from the United States government. The authors and Brocade Communications Systems, Inc. assume no liability or responsibility to any person or entity with respect to the accuracy of this document or any loss, cost, liability, or damages arising from the information contained herein or the computer programs that accompany it. The product described by this document may contain open source software covered by the GNU General Public License or other open source license agreements. To find out which open source software is included in Brocade products, view the licensing terms applicable to the open source software, and obtain a copy of the programming source code, please visit http://www.brocade.com/support/oscd.
    [Show full text]
  • Z9 BC System Overview Level 04A, April 2009
    System z9 Business Class System Overview SA22-1083-04 Level 04a, April 2009 System z9 Business Class System Overview SA22-1083-04 Level 04a, April 2009 Level 04a, April 2009 Note Before using this information and the product it supports, read the information in “Safety” on page | xiii, Appendix D, “Notices,” on page D-1, and IBM Systems Environmental Notices and User Guide, Z125-5823. Fifth Edition (April 2009) | This edition, SA22-1083-04, applies to the IBM® System z9® Business Class (z9® BC) server. This replaces | SA22-1083-03. Technical changes to the text are indicated by a vertical bar (|) to the left of the change. There may be a newer version of this document in a PDF file available on Resource Link™.Goto http://www.ibm.com/servers/resourcelink and click on Library on the navigation bar. A newer version is indicated by a lowercase, alphabetic letter following the form number suffix (for example: 00a, 00b, 01a, 01b). © Copyright International Business Machines Corporation 2006, 2009. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Level 04a, April 2009 Contents Figures............................ix Tables ............................xi Safety ............................xiii Safety Notices .........................xiii World Trade Safety Information ..................xiii Laser Safety Information .....................xiii Laser Compliance.......................xiii About this Publication .....................xv What is Included in this Publication .................xv
    [Show full text]
  • Oracle's Storage Augments Mainframe Renaissance
    Oracle’s Storage Augments Mainframe Renaissance Mainframe Storage Solutions Remain Best in Class September 2010 Report by Fred Moore, President of Horison Information Strategies, Delivering Continuing Innovations in Mainframe Storage Th Early Mainframes - 1964 System/360 was announced by IBM in April 1964 and is generally considered the first mainframe computer. More than any other computer development effort, the System/360 family of processors enabled companies to affordably integrate all of their data processing applications into a single management information system. The term “360” was actually chosen to show the versatile nature of the computer, which could cover a “360-degree radius” of business applications. At the time, it defined the mainframe as a system that could perform multiple tasks at the same time on one machine and it was now possible to perform one million instructions per second (1 MIPS). The System/360 was also designed to be compatible through all models so that work performed o any model in the 360 series could be ported to any other model. The System/360 could process online, batch and databases at the same time in a multi-programming mode so that the system was literally tailored to the specific customer's jobs. Until the introduction of the System/360 architecture, which introduced many of today’s storage management concepts, accessing large amounts of data had been very time consuming. System/360 greatly improved data storage and retrieval capabilities while providing management with real-time decision-making capabilities for the first time. 1 Mainframes in Transition – 1980s The mainframe was the predominant computing platform from its introduction in the mid-1960s until the mid 1980s.
    [Show full text]
  • Configuring FICON
    Send documentation comments to [email protected] CHAPTER 28 Configuring FICON Fibre Connection (FICON) interface capabilities enhance the Cisco MDS 9000 Family by supporting both open systems and mainframe storage network environments. Inclusion of Control Unit Port (CUP) support further enhances the MDS offering by allowing in-band management of the switch from FICON processors. The fabric binding feature helps prevent unauthorized switches from joining the fabric or disrupting current fabric operations (see Chapter 38, “Configuring Fabric Binding”). The Registered Link Incident Report (RLIR) application provides a method for a switch port to send an LIR to a registered Nx port. This chapter includes the following sections: • About FICON, page 28-1 • FICON Port Numbering, page 28-7 • Configuring FICON, page 28-14 • Configuring FICON Ports, page 28-23 • FICON Configuration Files, page 28-32 • Port Swapping, page 28-36 • FICON Tape Acceleration, page 28-38 • Moving a FICON VSAN to an Offline State, page 28-40 • CUP In-Band Management, page 28-40 • Displaying FICON Information, page 28-42 • Default Settings, page 28-49 About FICON The FICON feature is not supported on: • Cisco MDS 9120 switches • Cisco MDS 9124 switches • Cisco MDS 9140 switches • The 32-port Fibre Channel switching module • Cisco Fabric Switch for HP c-Class BladeSystem • Cisco Fabric Switch for IBM BladeSystem Cisco MDS 9000 Family CLI Configuration Guide OL-16184-01, Cisco MDS SAN-OS Release 3.x 28-1 Chapter 28 Configuring FICON About FICON Send documentation comments to [email protected] The Cisco MDS 9000 Family supports the Fibre Channel Protocol (FCP), FICON, iSCSI, and FCIP capabilities within a single, high availability platform.
    [Show full text]
  • Brocade Fabric OS FICON Configuration Guide, 8.1.0
    CONFIGURATION GUIDE Brocade Fabric OS FICON Configuration Guide, 8.1.0 Supporting Fabric OS 8.1.0 53-1004394-02 23 July 2018 Copyright © 2018 Brocade Communications Systems LLC. All Rights Reserved. Brocade and the stylized B logo are among the trademarks of Brocade Communications Systems LLC. Broadcom, the pulse logo, and Connecting everything are among the trademarks of Broadcom. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. Brocade, a Broadcom Inc. Company, reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Brocade is believed to be accurate and reliable. However, Brocade does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. The product described by this document may contain open source software covered by the GNU General Public License or other open source license agreements. To find out which open source software is included in Brocade products, view the licensing terms applicable to the open source software, and obtain a copy of the programming source code, please visit https://www.broadcom.com/support/fibre-channel-networking/tools/oscd. Brocade Fabric OS FICON Configuration Guide, 8.1.0 2 53-1004394-02 Contents Preface...................................................................................................................................................................................................................................7
    [Show full text]