Brocade X6 Directors Datasheet

Total Page:16

File Type:pdf, Size:1020Kb

Brocade X6 Directors Datasheet DATA SHEET Brocade X6 Directors Network Innovation for the Virtualized, All-Flash Data Center Digital transformation is pushing mission-critical storage environments to the limit, with users expecting data to be accessible from anywhere, at HIGHLIGHTS any time, on any device. Faced with exponential data growth, the network • Enhances operational stability, must evolve to enable businesses to thrive in this new era. To meet maximizes application performance, and increases business agility with these dynamic and growing business demands, organizations need to enterprise-class Gen 6 directors deploy infrastructure that can deliver greater consistency, predictability, • Accelerates application response time and performance. Legacy infrastructure, however, was not designed by up to 71 percent across 32 Gbps to support the performance requirements of evolving workloads and links flash-based storage technology. In fact, an aging network will impede • Consolidates infrastructure with the performance of an all-flash data center. A new approach to storage 128 Gbps Brocade UltraScale ICL connectivity for simpler, flatter, low- networking is needed to enable databases, virtual servers, desktops, and latency fabrics critical applications, and to unlock the full capabilities of flash. By treating • Simplifies end-to-end management the network as a strategic part of a storage environment, organizations of large-scale environments can maximize their productivity and efficiency even as they rapidly scale by automating monitoring and diagnostics their environments. • Automatically detects degraded application or device performance The Brocade® X6 Director with Brocade and insight to quickly identify problems through integrated network sensors Fabric Vision™ technology combines and achieve critical Service Level • Extends replication over distance with innovative hardware, software, and Agreements (SLAs). Breakthrough a highly scalable extension solution for integrated network sensors to ensure 32 Gbps performance accelerates Fibre Channel, IP, and FICON the industry’s highest level of operational application response time by up to • Simplifies configuration automation stability and redefine application 71 percent, eliminating IO bottlenecks, and enables integrated advanced performance. It provides a modular and unleashes the full performance of services across the Fabric with standard REST APIs building block for increased scalability flash and next-generation Non-Volatile to accommodate growth for large-scale Memory Express (NVMe)-based storage. • Seamlessly integrates next-generation NVMe over Fabrics with Gen 6 Fibre enterprise infrastructures. And with diverse deployment options, organizations can seamlessly adapt and Channel networks without a disruptive Fabric Vision technology enhances rip and replace optimize their businesses to meet next- visibility into the health of storage generation storage requirements. • Mitigates risk with backward- environments, delivering greater control compatibility while further protecting future investments with Gen 7-ready support Fibre Channel device port blade provides thresholds and generates alerts. Integrated GEN 6 FIBRE CHANNEL 48 32 Gbps Fibre Channel ports. To application- and device-level IO latency Brocade Gen 6 Fibre Channel is the support disaster recovery and data and IOPS monitoring provides the ability purpose-built network infrastructure protection storage solutions over long to baseline application performance and for mission-critical storage, delivering distances, the Brocade SX6 Extension detect degraded performance. Integrated operational stability, breakthrough Blade provides 16 32 Gbps Fibre network sensors provide IO performance performance, and increased business Channel ports, 16 1/10 Gigabit Ethernet management that is designed to avoid agility to accelerate data access, adapt to evolving requirements, and drive always- (GbE) ports, and 2 40 GbE ports for Fibre dependence on invasive and disruptive on business operations. The Brocade Channel and IP replication traffic. physical taps. X6 Director with Gen 6 Fibre Channel, Brocade directors build upon years Innovative Fabric Vision monitoring, Brocade Fabric Vision technology, and IO Insight delivers unmatched of innovation and leverage the core management, and diagnostic capabilities 32 Gbps performance, data center-proven technology of Brocade systems to enable administrators to avoid problems availability, and seamless scalability to consistently deliver five-nines availability in before they impact operations. Additional ensure greater consistency, predictability, the world’s most demanding data centers. Fabric Vision capabilities include: and performance. And with non-disruptive, hot-pluggable • Monitoring and Alerting Policy components and a no-single-point-of- Suite (MAPS): Simplifies fabric-wide failure design, the Brocade X6 is truly threshold configuration, monitoring, the enterprise-class director for today’s Purpose-Built for Enterprise and alerting with prebuilt, rule-/policy- storage infrastructure. Deployments based templates. Administrators can Designed to meet relentless growth and Enhanced Operational configure the entire fabric (or multiple mission-critical application demands, Stability for Always-on fabrics) at one time using common Brocade X6 Directors are the right Business Operations rules and policies, or customize policies platform for large enterprise environments for specific ports or switch elements. The Brocade X6 Director with Fabric that require increased capacity, greater In addition, administrators can include Vision technology provides a breakthrough throughput, and higher levels of resiliency. IO Insight metrics in MAPS policies to hardware and software solution that helps understand the IO profile as well as to The Brocade X6 Director is available in simplify monitoring, increase operational be notified of storage IO performance two modular form factors. This modular stability, and dramatically reduce costs. degradation. chassis design increases business agility Fabric Vision technology now includes IO with seamless storage connectivity Insight, which provides organizations with • Fabric Performance Impact (FPI) and flexible deployment offerings. Built deeper visibility into the performance of Monitoring: Leverages predefined for large enterprise networks, the 14U their environments. This enhanced visibility MAPS policies to automatically detect Brocade X6-8 has eight vertical blade enables quick identification of degraded and alert administrators to different slots to provide up to 384 32 Gbps Fibre application performance at host and latency severity levels, and to identify Channel device ports and 32 additional storage tiers, reducing time to resolution. slow drain devices that could impact 128 Gbps Brocade UltraScale Inter- network performance. This feature IO Insight proactively monitors IO Chassis Link (ICL) ports. Built for midsize identifies various latency severity levels, performance and behavior through networks, the 8U Brocade X6-4 has four pinpointing exactly which devices integrated network sensors, providing horizontal blade slots to provide up to 192 are causing or are impacted by a deep insight into problems and helping to 32 Gbps Fibre Channel device ports and bottlenecked port, and quarantines slow ensure service levels. This capability non- 16 additional 128 Gbps UltraScale ICL drain devices automatically to prevent disruptively and non-intrusively gathers ports. Each blade slot can be populated buffer credit starvation. IO statistics from any device port, which with two optional blades. For device feeds a monitoring policy that measures connectivity, the Brocade FC32-48 2 • Dashboards: Provides integrated at- to a specific target/LUN, or across a a-glance views that display an overall specific ISL or IFL. Additionally, they BROCADE FABRIC VISION SAN health view, along with details can perform LUN-level monitoring TECHNOLOGY on out-of-range conditions, to help of specific frame types to identify Brocade Fabric Vision technology with administrators easily identify trends and resource contention or congestion that IO Insight, an extension of Gen 6 Fibre quickly pinpoint issues occurring on a is impacting application performance. Channel, provides unprecedented insight and visibility across the storage network switch or in a fabric. – Flow Learning: Enables administrators with powerful integrated monitoring, • Configuration and Operational to non-disruptively discover all flows management, and diagnostic tools that Monitoring Policy Automation that go to or come from a specific enable organizations to: Services Suite (COMPASS): Simplifies host port or a storage port, or traverse Simplify monitoring: deployment, safeguards consistency, ISLs/IFLs or FCIP tunnels to monitor • Deploy more than 20 years of storage and increases operational efficiencies fabric-wide application performance. networking best practices with a single of larger environments with automated In addition, administrators can discover click switch and fabric configuration services. top and bottom bandwidth-consuming • Leverage visibility into storage IO health Administrators can configure a template devices and manage capacity and performance with key latency and or adopt an existing configuration to planning. performance metrics to maintain SLA compliance seamlessly deploy a configuration – Flow Generator: Provides a built-in across the fabric. In addition, they can • Gain comprehensive visibility into
Recommended publications
  • SAS Enters the Mainstream Although Adoption of Serial Attached SCSI
    SAS enters the mainstream By the InfoStor staff http://www.infostor.com/articles/article_display.cfm?Section=ARTCL&C=Newst&ARTICLE_ID=295373&KEYWORDS=Adaptec&p=23 Although adoption of Serial Attached SCSI (SAS) is still in the infancy stages, the next 12 months bode well for proponents of the relatively new disk drive/array interface. For example, in a recent InfoStor QuickVote reader poll, 27% of the respondents said SAS will account for the majority of their disk drive purchases over the next year, although Serial ATA (SATA) topped the list with 37% of the respondents, followed by Fibre Channel with 32%. Only 4% of the poll respondents cited the aging parallel SCSI interface (see figure). However, surveys of InfoStor’s readers are skewed by the fact that almost half of our readers are in the channel (primarily VARs and systems/storage integrators), and the channel moves faster than end users in terms of adopting (or at least kicking the tires on) new technologies such as serial interfaces. Click here to enlarge image To get a more accurate view of the pace of adoption of serial interfaces such as SAS, consider market research predictions from firms such as Gartner and International Data Corp. (IDC). Yet even in those firms’ predictions, SAS is coming on surprisingly strong, mostly at the expense of its parallel SCSI predecessor. For example, Gartner predicts SAS disk drives will account for 16.4% of all multi-user drive shipments this year and will garner almost 45% of the overall market in 2009 (see figure on p. 18).
    [Show full text]
  • Gen 6 Fibre Channel Technology
    WHITE PAPER Better Performance, Better Insight for Your Mainframe Storage Network with Brocade Gen 6 TABLE OF CONTENTS Brocade and the IBM z Systems IO product team share a unique Overview .............................................................. 1 history of technical development, which has produced the world’s most Technology Highlights .................................. 2 advanced mainframe computing and storage systems. Brocade’s Gen 6 Fibre Channel Technology technical heritage can be traced to the late 1980s, with the creation of Benefits for z Systems and Flash channel extension technologies to extend data centers beyond the “glass- Storage ................................................................ 7 house.” IBM revolutionized the classic “computer room” with the invention Summary ............................................................. 9 of the original ESCON Storage Area Network (SAN) of the 1990s, and, in the 2000s, it facilitated geographically dispersed FICON® storage systems. Today, the most compelling innovations in mainframe storage networking technology are the product of this nearly 30-year partnership between Brocade and IBM z Systems. As the flash era of the 2010s disrupts between the business teams allows both the traditional mainframe storage organizations to guide the introduction networking mindset, Brocade and of key technologies to the market place, IBM have released a series of features while the integration between the system that address the demands of the data test and qualification teams ensures the center. These technologies leverage the integrity of those products. Driving these fundamental capabilities of Gen 5 and efforts are the deep technical relationships Gen 6 Fibre Channel, and extend them to between the Brocade and IBM z Systems the applications driving the world’s most IO architecture and development teams, critical systems.
    [Show full text]
  • FICON Native Implementation and Reference Guide
    Front cover FICON Native Implementation and Reference Guide Architecture, terminology, and topology concepts Planning, implemention, and migration guidance Realistic examples and scenarios Bill White JongHak Kim Manfred Lindenau Ken Trowell ibm.com/redbooks International Technical Support Organization FICON Native Implementation and Reference Guide October 2002 SG24-6266-01 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. Second Edition (October 2002) This edition applies to FICON channel adaptors installed and running in FICON native (FC) mode in the IBM zSeries procressors (at hardware driver level 3G) and the IBM 9672 Generation 5 and Generation 6 processors (at hardware driver level 26). © Copyright International Business Machines Corporation 2001, 2002. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. ix Become a published author . .x Comments welcome. .x Chapter 1. Overview . 1 1.1 How to use this redbook . 2 1.2 Introduction to FICON . 2 1.3 zSeries and S/390 9672 G5/G6 I/O connectivity. 3 1.4 zSeries and S/390 FICON channel benefits . 5 Chapter 2. FICON topology and terminology . 9 2.1 Basic Fibre Channel terminology . 10 2.2 FICON channel topology. 12 2.2.1 Point-to-point configuration . 14 2.2.2 Switched point-to-point configuration . 15 2.2.3 Cascaded FICON Directors configuration. 16 2.3 Access control. 18 2.4 Fibre Channel and FICON terminology.
    [Show full text]
  • Serial Attached SCSI (SAS)
    Storage A New Technology Hits the Enterprise Market: Serial Attached SCSI (SAS) A New Interface Technology Addresses New Requirements Enterprise data access and transfer demands are no longer driven by advances in CPU processing power alone. Beyond the sheer volume of data, information routinely consists of rich content that increases the need for capacity. High-speed networks have increased the velocity of data center activity. Networked applications have increased the rate of transactions. Serial Attached SCSI (SAS) addresses the technical requirements for performance and availability in these more I/O-intensive, mission-critical environments. Still, IT managers are pressed on the other side by cost constraints and the need White paper for flexibility and scalability in their systems. While application requirements are the first measure of a storage technology, systems based on SAS deliver on this second front as well. Because SAS is software compatible with Parallel SCSI and is interoperable with Serial ATA (SATA), SAS technology offers the ability to manage costs by staging deployment and fine-tuning a data center’s storage configuration on an ongoing basis. When presented in a small form factor (SFF) 2.5” hard disk drive, SAS even addresses the increasingly important facility considerations of space, heat, and power consumption in the data center. The backplanes, enclosures and cabling are less cumbersome than before. Connectors are smaller, cables are thinner and easier to route impeding less airflow, and both SAS and SATA HDDs can share a common backplane. White paper Getting this new technology to the market in a workable, compatible fashion takes various companies coming together.
    [Show full text]
  • EMC’S Perspective: a Look Forward
    The Performance Impact of NVM Express and NVM Express over Fabrics PRESENTATION TITLE GOES HERE Live: November 13, 2014 Presented by experts from Cisco, EMC and Intel Webcast Presenters J Metz, R&D Engineer for the Office of the CTO, Cisco Amber Huffman, Senior Principal Engineer, Intel Steve Sardella , Distinguished Engineer, EMC Dave Minturn, Storage Architect, Intel SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies and individual members may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced in their entirety without modification The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney. The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. 3 What This Presentation Is A discussion of a new way of talking to Non-Volatile
    [Show full text]
  • Cisco MDS 9250I Multiservice Fabric Switch for IBM an Optimized Solution for Departmental and Branch-Office Sans As Well As Large-Scale Sans
    IBM Systems Data Sheet Cisco MDS 9250i Multiservice Fabric Switch for IBM An optimized solution for departmental and branch-office SANs as well as large-scale SANs Cisco MDS 9250i Multiservice Fabric Switch for IBM® System Highlights Storage® is an optimized platform for deploying high-performance SAN extension solutions, distributed intelligent fabric services and ●● ●●Provide 16 Gbps connectivity in a cost-effective multiprotocol connectivity for both open systems and high-densit y Fibre Channel switch mainframe environments. With a compact form factor and advanced ●● ●●Enable storage area network (SAN) con- capabilities normally available only on director-class switches, solidation with integrated multiprotocol MDS 9250i is an ideal solution for departmental and remote branch- support office SANs as well as large-scale SANs in conjunction with the ●● ●●Deliver high-p erformance Fibre Channel Cisco MDS 9710 Multilayer Director. over IP (FCIP) and fast disaster recovery ●● ●●Support hardware-bas ed virtual fabric MDS 9250i offers up to 40 16 Gbps Fibre Channel ports, two isolation with virtual SANs (VSANs) and 10 Gigabit Ethernet IP storage services ports and eight 10 Gigabit Fibre Channel routing with Inter-V SAN routing (IVR) Ethernet Fibre Channel over Ethernet (FCoE) ports in a fixed, two- rack-unit (2RU) form factor. MDS 9250i connects to existing native Fibre ●● ●●Enable cost- effective, high- performing Channel networks, protecting current investments in storage networks. Fibre Channel and FCIP connectivity for open systems and mainframe environments Main features and benefits ●● ●●Cisco Data Mobility Manager (DMM) as a MDS 9250i provides unique multiservice and multiprotocol functions in distributed fabric service a compact 2RU form factor.
    [Show full text]
  • IBM System Z9 Enterprise Class
    The server built to help optimize your resources throughout the enterprise IBM System z9 Enterprise Class A “classic” might just be the best Today’s market finds that business needs are changing, and having a com­ petitive advantage isn’t always about having more or being bigger, but more about being smarter and responding faster to change and to your clients. Often, being reactive to change has led to infrastructures with mixed technolo­ gies, spread across an enterprise, that are complex and difficult to control and costly to manage. Integration of appli­ cations and data is limited and difficult. Using internal information to make insightful decisions for the company Highlights can be difficult because knowing you are using the “best” data—that which is ■ Strengthening the role of the ■ Continued improvement in most current and complete—may not mainframe as the data hub of IBM FICON® performance and be possible. the enterprise throughput In many situations, investments have ■ New versatile capacity settings ■ On demand innovative tech­ been made in disparate technologies designed to optimize capacity nologies to help meet ever- that may fall short of meeting their and cost changing business demands goals. Merging information from one branch to another may not be possible ■ IBM System z9™ Integrated and so company direction is set with Information Processor (IBM zIIP) is designed to improve resource optimization and lower the cost of eligible work only a portion of the data at hand, and help achieve advanced I/O function and But data management can be a big in a global economy that can really hurt.
    [Show full text]
  • Comparing Fibre Channel, Serial Attached SCSI (SAS) and Serial ATA (SATA)
    Comparing Fibre Channel, Serial Attached SCSI (SAS) and Serial ATA (SATA) by Allen Hin Wing Lam Bachelor ofElectrical Engineering Carleton University 1996 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING In the School ofEngineering Science © Allen Hin Wing Lam 2009 SIMON FRASER UNIVERSITY Fall 2009 All rights reserved. However, in accordance with the Copyright Act ofCanada, this work may be reproduced, without authorization, under the conditions for Fair Dealing. Therefore, limited reproduction ofthis work for the purposes ofprivate study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly ifcited appropriately. Approval Name: Allen Hin Wing Lam Degree: Master ofEngineering Title ofProject: Comparing Fibre Channel, Serial Attached SCSI (SAS) and Serial ATA (SATA) Examining Committee: Chair: Dr. Daniel Lee Chair ofCommittee Associate Professor, School ofEngineering Science Simon Fraser University Dr. Stephen Hardy Senior Supervisor Professor, School ofEngineering Science Simon Fraser University Jim Younger Manager, Product Engineering PMC- Sierra, Inc. Date ofDefence/Approval r 11 SIMON FRASER UNIVERSITY LIBRARY Declaration of Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response
    [Show full text]
  • Brocade G620 Switch Datasheet
    DATA SHEET Brocade G620 Switch Ultra-dense, Highly Scalable, Easy-to-Use Enterprise-Class Storage Networking Switch HIGHLIGHTS Today’s mission-critical storage environments require greater • Provides high scalability in an ultra- consistency, predictability, and performance to keep pace with growing dense, 1U, 64-port switch to support business demands. Faced with explosive data growth, data centers high-density server virtualization, need more IO capacity to accommodate the massive amounts of data, cloud architectures, and flash-based applications, and workloads. In addition to this surge in data, collective storage environments expectations for availability continue to rise. Users expect applications to • Increases performance for demanding workloads across 32 Gbps links and be available and accessible from anywhere, at any time, on any device. shatters application performance barriers with up to 100 million IOPS To meet these dynamic and growing The Brocade® G620 Switch meets the • Enables “pay-as-you-grow” business demands, organizations need to demands of hyper-scale virtualization, scalability—with 24 to 64 ports—for deploy and scale up applications quickly. larger cloud infrastructures, and growing on-demand flexibility As a result, many are moving to higher flash-based storage environments by • Provides proactive, non-intrusive, Virtual Machine (VM) densities to enable delivering market-leading Gen 6 Fibre real-time monitoring and alerting of rapid deployment of new applications Channel technology and capabilities. It storage IO health and performance and deploying flash storage to help those provides a high-density building block for with IO Insight, the industry’s first applications scale to support thousands increased scalability, designed to support integrated network sensors of users.
    [Show full text]
  • Untangled: Improve Efficiency with Modern Cable Choices PRESENTATION TITLE GOES HERE Dennis Martin President, Demartek Agenda
    Untangled: Improve Efficiency with Modern Cable Choices PRESENTATION TITLE GOES HERE Dennis Martin President, Demartek Agenda About Demartek Why Discuss Cables and Connectors? Cables Copper Fiber-Optic Connectors Demartek Free Resources 2015 Data Storage Innovation Conference. © Demartek All Rights Reserved. 2 Demartek Video Click to view this one minute video (available in 720p and 1080p) Demartek YouTube Channel: http://www.youtube.com/user/Demartek/videos http://www.demartek.com/Demartek_Video_Library.html 2015 Data Storage Innovation Conference. © Demartek All Rights Reserved. 3 About Demartek Industry Analysis and ISO 17025 accredited test lab Lab includes servers, networking & storage Ethernet: 1, 10 & 40 Gbps: NFS, SMB (CIFS), iSCSI, FCoE and SR-IOV Fibre Channel: 4, 8 & 16 Gbps Servers: 8+ cores, large RAM Virtualization: VMware, Hyper-V, Xen, KVM We prefer to run real-world applications to test servers and storage solutions (databases, Hadoop, etc.) Website: www.demartek.com/TestLab 2015 Data Storage Innovation Conference. © Demartek All Rights Reserved. 4 Why Discuss Cables and Connectors? Cabling is not as well known among IT staff Some jurisdictions have cable-related ordinances Often related to fire prevention How long do you keep the following in service? Servers Storage systems Network switches Network cables Many examples in this presentation show Ethernet but can be and often are applied to other interfaces 2015 Data Storage Innovation Conference. © Demartek All Rights Reserved. 5 Cable Life Laying of network cables can be labor-intensive Cable trays, inside walls, etc. Fiber optic cabling service life: 15 – 20 years Cable choices must meet existing needs and future technology needs What speeds of Ethernet, Fibre Channel, Infiniband, SAS/SCSI & USB were you running 5, 10, 15 years ago? 2015 Data Storage Innovation Conference.
    [Show full text]
  • Fibre Channel Solution Guide
    Fibre Channel Solutions Guide 2019 fibrechannel.org FIBRE CHANNEL Powering the next generation private, public, and hybrid cloud storage networks ABOUT THE FCIA The Fibre Channel Industry Association (FCIA) is a non-profit international organization whose sole purpose is to be the independent technology and marketing voice of the Fibre Channel industry. We are committed to helping member organizations promote and position Fibre Channel, and to providing a focal point for Fibre Channel information, standards advocacy, and education. CONTACT THE FCIA For more information: www.fibrechannel.org • [email protected] TABLE OF CONTENTS Foreword .........................................................................................3 FCIA President Introduction.............................................................4 The State of Fibre Channel by Storage Switzerland .......................6 Fibre Channel New Technologies: FC-NVMe-2 ............................... 7 The 2019 Fibre Channel Roadmap ................................................. 8 Fibre Channel’s Future is Bright in Media and Entertainment ......10 Securing Fibre Channel SANs with End-to-End Encryption ..........12 FOREWORD By Rupin Mohan, FCIA Marketing Chairman; Director R&D and CTO, Hewlett-Packard Enterprise It’s 2019, and Fibre Channel continues to remain the premier storage fabric connectivity protocol in today’s data centers. Fibre Channel is deployed by thousands of customers in their data centers around the world and 80–90% of all All-Flash storage arrays are connected to servers via Fibre Channel. Customers have recently made a considerable investment in Gen 6 (32GFC), and given the 4-5-year depreciation cycle, this equipment will continue to run critical business applications requiring reliable, fast and scalable storage infrastructure. The NVMe over Fibre Channel (FC-NVMe) standard is published, and we see products being announced and released in the market across the board.
    [Show full text]
  • Nvme Over Fibre Channel) Qlogic® Enhanced 16GFC / 32GFC Hbas Concurrent FCP (FC-SCSI) and FC-Nvme (Nvme/FC)
    White Paper FC-NVMe (NVMe over Fibre Channel) QLogic® Enhanced 16GFC / 32GFC HBAs Concurrent FCP (FC-SCSI) and FC-NVMe (NVMe/FC) August 2021 Background and Summary Back in 1956, the world’s first hard disk drive (HDD) shipped, setting a path for subsequent generations of drives with faster spinning media and increasing SAS speeds. Then in the early 1990s, various manufacturers introduced storage devices known today as flash- based or dynamic random access memory (DRAM)-based solid state disks (SSDs). The SSDs had no moving (mechanical) components, which allowed them to deliver lower latency and significantly faster access times. HDDs and SSDs have evolved, along with new and faster bus architectures such as PCI Express (PCIe) which have helped to further improve access speeds and reduce latency in conjunc- tion with the Non Volatile Memory Express (NVMe) standard and the ensuing products. Fibre Channel (FC) is a high-speed network technology primarily used to connect enterprise servers to HDD- or SSD-based data storage. 8GFC, 16GFC and 32GFC are the dominant speeds today (with a strong roadmap to 64GFC and beyond). Fibre Channel is standardized in the T11 Technical Committee of the International Committee for Information Technology Standards (INCITS) and has remained the dominant protocol to access shared storage for many decades. Fibre Channel Protocol (FCP) is a transport protocol that predominantly transports SCSI commands over Fibre Channel networks. With the advent of NVMe, FC has transformed to natively transport NVMe and this technological capability is called FC-NVMe. The Evolution of Disk and Fabric 32GFC & FC-NVMe 16GFC & FC-NVMe FC “NVMe” Over Fibre Channel “SCSI” Over Fibre Channel Performance Non-Volatile Memory “Spinning” Drive SAS/SATA “Flash” “Express” (NVMe) Today Time Figure 1: Evolution of Disk and Fibre Channel Fabric SCSI and NVMe Differences While the SCSI/AHCI interface comes with the benefit of wide software compatibility, it cannot deliver optimal performance when used with SSDs connected via the PCIe bus.
    [Show full text]