The Emergence of the Isthmus of Panama : a Biological Perspective

Total Page:16

File Type:pdf, Size:1020Kb

The Emergence of the Isthmus of Panama : a Biological Perspective Dissertation The Emergence of the Isthmus of Panama – a biological perspective – Carina Marek August, 2015 Dean Prof. Dr. Volker Wissemann Supervisor Prof. Dr. Thomas Wilke Co-supervisor PD Dr. Christoph Schubart Carina Marek: The Emergence of the Isthmus of Panama – a biological perspective – Dissertation zur Erlangung des Doktorgrades der Naturwissenschaftlichen Fachbereiche der Justus-Liebig- Universität Gießen, 2015. Cover: Panama and the transisthmian sister species pair Sesarma curacaoense De Man, 1892 (western Atlantic) and Sesarma rhizophorae Rathbun, 1906 (eastern Pacific). If there is one thing the history of evolution has taught us it's that life will not be contained. Life breaks free, it expands to new territories, and crashes through barriers, painfully, maybe even dangerously, but, uh...well, there it is. Ian Malcolm (Jurassic Park) Table of Contents Part I – Synopsis 1 Summary ................................................................................................................................... 3 2 Zusammenfassung .................................................................................................................... 5 3 Motivation and Research Objectives ........................................................................................ 7 Part II – State of the Art 4 Geological Evolution and Biological Evidences – The Formation of the Isthmus ...................... of Panama and its Closure ...................................................................................................... 11 4.1 What is the Isthmus of Panama?.................................................................................... 11 4.2 Chronology of events – The Miocene model ................................................................. 12 4.3 Chronology of events – The Pliocene model .................................................................. 13 4.4 Discrepancies between the models ............................................................................... 16 4.4.1 Time of collision and Isthmus closure ................................................................... 16 4.4.2 Migration- and divergence times of species ......................................................... 17 4.5 Summary......................................................................................................................... 18 5 Ecological Consequences of the Isthmus Formation .............................................................. 23 5.1 Abiotic changes during the isthmian uplift and patterns today..................................... 23 5.2 Climate and temperature ............................................................................................... 24 5.3 Salinity ............................................................................................................................ 26 5.4 Hydrodynamic forcing .................................................................................................... 28 5.5 Nutrients and productivity ............................................................................................. 29 5.6 Summary......................................................................................................................... 30 5.7 Biotic differences of the two oceans .............................................................................. 31 5.8 Summary......................................................................................................................... 36 6 Transisthmian Sister Species .................................................................................................. 40 6.1 What are transisthmian sister species? ......................................................................... 40 6.2 The evolution of transisthmian sister species ................................................................ 41 6.3 The criteria to be a transisthmian sister species pair..................................................... 42 6.3.1 Geographic isolation drives speciation processes ................................................. 43 6.3.2 The barrier and the consequentially isolated taxa are of the same age ............... 44 6.3.3 TSS distribution ranges are close to the Isthmus .................................................. 45 6.3.4 Morphological similarity between TSS .................................................................. 48 6.3.5 Similar divergence ages between TSS pairs and -complexes ................................ 49 i Contents 6.4 Summary......................................................................................................................... 50 7 The Molecular Clock ............................................................................................................... 51 7.1 The molecular clock — The discovery of the constant ticking ....................................... 51 7.2 The molecular clock — A controversial debate.............................................................. 52 7.3 Calibrating the clock — A difficult endeavor .................................................................. 52 7.4 Biological factors ............................................................................................................ 53 7.5 Set the clock — Calibration points/bounds and external molecular clock rates ........... 54 7.6 Summary......................................................................................................................... 56 Part III — Case Studies – A Critical View at the Transisthmian Sister Species Concepts – 8 Toward an Unified Definition of Transisthmian Sister Species .............................................. 61 8.1 Terminological survey .................................................................................................... 61 8.2 Discussion ....................................................................................................................... 65 8.2.1 Terminology of transisthmian sister species ......................................................... 65 8.2.2 Two special cases focusing on confusing terms .................................................... 66 8.3 Summary......................................................................................................................... 67 9 Criteria of Transisthmian Sister Species Pairs and -Complexes .............................................. 70 9.1 The TSS pair and -complex evaluation ........................................................................... 70 9.1.1 Geographic isolation drives speciation processes ................................................. 70 9.1.2 The barrier and the consequentially isolated taxa are of the same age ............... 70 9.1.3 TSS distribution ranges are close to the Isthmus .................................................. 72 9.1.4 Morphological similarity between TSS .................................................................. 73 9.1.5 Similar divergence ages between TSS pairs and -complexes ................................ 73 9.2 Discussion ....................................................................................................................... 73 9.2.1 Geographic isolation drives speciation processes ................................................. 74 9.2.2 The barrier and the consequentially isolated taxa are of the same age ............... 74 9.2.3 TSS distribution ranges are close to the Isthmus .................................................. 75 9.2.4 Morphological similarity between TSS .................................................................. 75 9.2.5 Similar divergence ages between TSS pairs and -complexes ................................ 76 9.3 Summary......................................................................................................................... 77 9.4 Criteria revised ............................................................................................................... 78 – Divergence Time Estimations of Transisthmian Sister Species – 10 Divergence Time Estimations of Transisthmian Sister Species .............................................. 81 10.1 Studied species ............................................................................................................... 81 ii Contents 10.1.1 Sesarma Say, 1817 ................................................................................................. 81 10.1.2 Panopeus H. Milne Edwards, 1834 / Eurytium Stimpson, 1859 ............................ 83 10.1.3 Pachygrapsus Randall, 1840 .................................................................................. 85 10.2 Phylogenetic analyses and divergence time estimations............................................... 87 10.3 Results ............................................................................................................................ 89 10.3.1 Phylogenetic studies of the genus Sesarma .......................................................... 89 10.3.2 Phylogenetic studies of the family Panopeidae .................................................... 91 10.3.3 Phylogenetic studies of the genus Pachygrapsus .................................................. 97 10.4 Discussion ..................................................................................................................... 100 10.4.1 Problems of divergence time estimations of TSS ................................................ 100 10.4.2 Evidences for the time of Isthmus closure
Recommended publications
  • Hiller & Lessios 2017
    www.nature.com/scientificreports OPEN Phylogeography of Petrolisthes armatus, an invasive species with low dispersal ability Received: 20 February 2017 Alexandra Hiller & Harilaos A. Lessios Accepted: 27 April 2017 Theoretically, species with high population structure are likely to expand their range, because marginal Published: xx xx xxxx populations are free to adapt to local conditions; however, meta-analyses have found a negative relation between structure and invasiveness. The crab Petrolisthes armatus has a wide native range, which has expanded in the last three decades. We sequenced 1718 bp of mitochondrial DNA from native and recently established populations to determine the population structure of the former and the origin of the latter. There was phylogenetic separation between Atlantic and eastern Pacific populations, and between east and west Atlantic ones. Haplotypes on the coast of Florida and newly established populations in Georgia and South Carolina belong to a different clade from those from Yucatán to Brazil, though a few haplotypes are shared. In the Pacific, populations from Colombia and Ecuador are highly divergent from those from Panamá and the Sea of Cortez. In general, populations were separated hundreds to million years ago with little subsequent gene flow. High genetic diversity in the newly established populations shows that they were founded by many individuals. Range expansion appears to have been limited by low dispersal rather than lack of ability of marginal populations to adapt to extreme conditions. The population-genetic constitution of marine invasive species in their native range is increasingly being stud- ied in efforts to determine the source of invasions into new areas (reviews in refs 1–5).
    [Show full text]
  • Revised Stratigraphy of Neogene Strata in the Cocinetas Basin, La Guajira, Colombia
    Swiss J Palaeontol (2015) 134:5–43 DOI 10.1007/s13358-015-0071-4 Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia F. Moreno • A. J. W. Hendy • L. Quiroz • N. Hoyos • D. S. Jones • V. Zapata • S. Zapata • G. A. Ballen • E. Cadena • A. L. Ca´rdenas • J. D. Carrillo-Bricen˜o • J. D. Carrillo • D. Delgado-Sierra • J. Escobar • J. I. Martı´nez • C. Martı´nez • C. Montes • J. Moreno • N. Pe´rez • R. Sa´nchez • C. Sua´rez • M. C. Vallejo-Pareja • C. Jaramillo Received: 25 September 2014 / Accepted: 2 February 2015 / Published online: 4 April 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Cocinetas Basin of Colombia provides a made exhaustive paleontological collections, and per- valuable window into the geological and paleontological formed 87Sr/86Sr geochronology to document the transition history of northern South America during the Neogene. from the fully marine environment of the Jimol Formation Two major findings provide new insights into the Neogene (ca. 17.9–16.7 Ma) to the fluvio-deltaic environment of the history of this Cocinetas Basin: (1) a formal re-description Castilletes (ca. 16.7–14.2 Ma) and Ware (ca. 3.5–2.8 Ma) of the Jimol and Castilletes formations, including a revised formations. We also describe evidence for short-term pe- contact; and (2) the description of a new lithostratigraphic riodic changes in depositional environments in the Jimol unit, the Ware Formation (Late Pliocene). We conducted and Castilletes formations. The marine invertebrate fauna extensive fieldwork to develop a basin-scale stratigraphy, of the Jimol and Castilletes formations are among the richest yet recorded from Colombia during the Neogene.
    [Show full text]
  • Biodiversity of Jamaican Mangrove Areas
    BIODIVERSITY OF JAMAICAN MANGROVE AREAS Volume 7 Mangrove Biotypes VI: Common Fauna BY MONA WEBBER (PH.D) PROJECT FUNDED BY: 2 MANGROVE BIOTYPE VI: COMMON FAUNA CNIDARIA, ANNELIDA, CRUSTACEANS, MOLLUSCS & ECHINODERMS CONTENTS Page Introduction…………………………………………………………………… 4 List of fauna by habitat……………………………………………………….. 4 Cnidaria Aiptasia tagetes………………………………………………………… 6 Cassiopeia xamachana………………………………………………… 8 Annelida Sabellastarte magnifica………………………………………………… 10 Sabella sp………………………………………………………………. 11 Crustacea Calinectes exasperatus…………………………………………………. 12 Calinectes sapidus……………………………………………………… 13 Portunis sp……………………………………………………………… 13 Lupella forcepes………………………………………………………… 14 Persephone sp. …………………………………………………………. 15 Uca spp………………………………………………………………..... 16 Aratus pisoni……………………………………………………………. 17 Penaeus duorarum……………………………………………………… 18 Panulirus argus………………………………………………………… 19 Alphaeus sp…………………………………………………………….. 20 Mantis shrimp………………………………………………………….. 21 Balanus eberneus………………………………………………………. 22 Balanus amphitrite…………………………………………………….. 23 Chthamalus sp………………………………………………………….. 23 Mollusca Brachidontes exustus…………………………………………………… 24 Isognomon alatus………………………………………………………. 25 Crassostrea rhizophorae……………………………………………….. 26 Pinctada radiata………………………………………………………... 26 Plicatula gibosa………………………………………………………… 27 Martesia striata…………………………………………………………. 27 Perna viridis……………………………………………………………. 28 Trachycardium muricatum……………………………………..……… 30 Anadara chemnitzi………………………………………………...……. 30 Diplodonta punctata………………………………………………..…... 32 Dosinia sp…………………………………………………………..….
    [Show full text]
  • Una Aproximación a La Florística Y Faunística De La
    CICIMAR Oceánides 32(1): 39-58 (2017) UNA APROXIMACIÓN A LA FLORÍSTICA Y FAUNÍSTICA DE LA COSTA ROCOSA EL PULPO, CAZONES, VERACRUZ, MÉXICO De la Cruz-Francisco, Vicencio, Rosa Estela Orduña-Medrano, Josefina Esther Paredes- Flores, Rosa Ivette Vázquez-Estrada, Marlene González-González & Liliana Flores-Galicia Facultad de Ciencias Biológicas y Agropecuarias, Campus Tuxpan. Universidad Veracruzana. Carretera Tuxpan- Tampico Km 7.5, 92895, Tuxpan, Veracruz, México. e-mail: [email protected] RESUMEN. El intermareal rocoso de Veracruz, México, es un ecosistema que resguarda una gran biodiversidad. Sin embargo, no se ha reconocido su relevancia como con otros ecosistemas marinos. El objetivo de este estudio fue elaborar las primeras listas florística y faunística del intermareal rocoso de El Pulpo, localizada en el municipio de Cazones, Veracruz. Para ello, desde el 2013 a 2016 se efectuaron muestreos en la franja intermareal rocosa en periodos de marea baja para el registro de la biota marina y la recolecta de material biológico para su identificación taxonómica. Además, se realizó una revisión bibliográfica para complementar las listas de especies. Se registraron 51 especies de macroalgas bentónicas, una especie de fanerógama, 186 especies de invertebrados, y cinco especies de vertebrados para un total de 243 especies marinas. Las Rhodophyta son la ficoflora más representada con 29 es- pecies, mientras que el Phylum Mollusca lo es para la fauna con 139 especies. La mayoría de las especies marinas se registraron en el intermareal medio e inferior; por consiguiente la menor riqueza se registró en el intermareal superior y la constituyen algas filamentosas y foliosas, así como moluscos y crustáceos con hábitos ramoneadores y filtradores.
    [Show full text]
  • Latest Pliocene Northern Hemisphere Glaciation Amplified by Intensified Atlantic Meridional Overturning Circulation
    ARTICLE https://doi.org/10.1038/s43247-020-00023-4 OPEN Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation ✉ Tatsuya Hayashi 1 , Toshiro Yamanaka 2, Yuki Hikasa3, Masahiko Sato4, Yoshihiro Kuwahara1 & Masao Ohno1 1234567890():,; The global climate has been dominated by glacial–interglacial variations since the intensifi- cation of Northern Hemisphere glaciation 2.7 million years ago. Although the Atlantic mer- idional overturning circulation has exerted strong influence on recent climatic changes, there is controversy over its influence on Northern Hemisphere glaciation because its deep limb, North Atlantic Deep Water, was thought to have weakened. Here we show that Northern Hemisphere glaciation was amplified by the intensified Atlantic meridional overturning cir- culation, based on multi-proxy records from the subpolar North Atlantic. We found that the Iceland–Scotland Overflow Water, contributing North Atlantic Deep Water, significantly increased after 2.7 million years ago and was actively maintained even in early stages of individual glacials, in contrast with late stages when it drastically decreased because of iceberg melting. Probably, the active Nordic Seas overturning during the early stages of glacials facilitated the efficient growth of ice sheets and amplified glacial oscillations. 1 Division of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. 2 School of Marine Resources and Environment, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Tokyo 108-8477, Japan. 3 Department of Earth Sciences, Graduate School of Natural Science and Technology, Okayama University, 1-1, Naka 3-chome, Tsushima, Okayama 700-8530, Japan. 4 Department of Earth ✉ and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Raised Marine Features, Radiocarbon Dates, and Sea Level Changes, Eastern Melville Peninsula, Arctic Canada’ L.A
    ARCTIC VOL. 44, NO. 1 (MARCH 1991) R 63-73 Raised Marine Features, Radiocarbon Dates, and Sea Level Changes, Eastern Melville Peninsula, Arctic Canada’ L.A. DREDGE2 (Received 5 April 1990; accepted in revised form 9 October 1990) ABSTRACT. Radiocarbon dates from eastern Melville Peninsula indicatethat deglaciation of western Foxe Basin occurredabout 6900 years ago, although lateice persisted in an area northwest of Hall Lake and on the central plateau. Relative sea level was as high as 144 m above present at that time. ’ho new well-controlled sea level curves depict emergence as an exponential decay function. Marine limit elevations and nested curves indicate a major ice-loading centre in south-central Foxe Basin. Thesedata and archaeological dates suggest a secondary recent rebound centre in the northern part of the basin. Flights of raised beaches, prevalentin the area, are composed of angular limestone fragments and suggest that frost-riving occurs in shallow foreshore environments. The prominentwash line near the marine limit suggests that Foxe Basin had less sea ice cover prior to 6OOO years ago but that coastal processes have been similar to present since that time. Key words: Arctic, coasts, archaeology, radiocarbon dating, glacial history, emergence, sea level, geomorphology RESUMl?. Des datations au carbone radioactif dansla presqu’ile Melville orientale indiquent que la dbglaciation du Foxe bassin s’est produit vers 6900 ans, bien quela glace ait persist6 dans une zone situ& au nord-ouest du Lac etHall sur le plateau central.A cette bpoque, le niveau de la mer s’tlevait A 144 m au-dessus du niveau actuel.
    [Show full text]
  • The Less-Splendid Isolation of the South American Continent
    news and update ISSN 1948-6596 commentary The less-splendid isolation of the South American continent Only few biogeographic scenarios capture the im- lower Central America (Costa Rica) and South agination as much as the closure of the Isthmus of America (northern Colombia), and that some Panama. The establishment of this connection snapping shrimp populations were already split ended the “splendid isolation” of the South Amer- long before the Isthmus had finally closed (most ican continent (Simpson 1980), a continent that between 7–10 mya but some >15 mya). Next to had been unconnected to any other land mass for this, several papers showed that plants also mi- over 50 million years. When the Isthmus rose out grated between North and South America prior to of the water some 3 million years ago (mya) the the closure of the Isthmus (e.g., Erkens et al. 2007, Great American Biotic Interchange started. Since Bacon et al. 2013), although for plants it is difficult terrestrial biotic interchange was no longer to rule out that this happened via long-distance blocked by the Central American Seaway, dispersal. Thus, the new findings of Montes and (asymmetrical) invasion of taxa across this new colleagues fit much better with a wealth of evi- land bridge transformed biodiversity in North as dence from the biological realm that has been well as South America (Leigh et al. 2014). Or so amassed over the last years, than the old model of the story goes. a relatively rapid rise of the Isthmus. A recent paper by Montes et al. (2015) casts If the land-bridge was available much earli- further serious doubt on this scenario from a geo- er to many terrestrial organisms, the question that logical perspective.
    [Show full text]
  • Carlos Fernando De Gracia
    Carlos Fernando De Gracia Institutional Address Department of Paleontology, Faculty of Earth Sciences, Geography and Astronomy University of Vienna Althanstraße 14 / 2A323 1090 Vienna, Austria Phone number Office: +43-1-4277-53530 Personal: +43-677-63736404 e-Mail [email protected] ____________________________________________________________________________ Personal Information ORCID id 0000-0003-0637-3302 Date of birth 2th March, 1986 Place of birth Panama City, Panama Nationality. Panamanian ____________________________________________________________________________ Formal Education 2015 - 2017 Master in Geology, specific field: Geobiology Charles University in Prague, Prague, Czech Republic Thesis: Fossil Istiophorids (Perciformes, Istiophoridae) from the Chagres Formation, Panama Year of degree: 2017 Advisor: Tomás Přikryl Co-advisor: Carlos Alberto Jaramillo Scholarship from: Ministry of Education, Youth and Sports, Czech Republic 2004 - 2010 B. Sc. in Biology, specific field: animal biology Universidad de Panamá, Panama City, Panama Thesis: Structure of benthic communities on the pacific coast of Panama and Costa Rica during the formastion of Central American Ithmus, Year of degree: 2010 Advisors: Aaron O’Dea, Luis D´Croz 2014 - 2015 Improvement Course in Czech Language Charles University in Prague, Prague, Czech Republic Scholarship from: Ministry of Education, Youth and Sports ____________________________________________________________________________ Complementary Education 2011 - 2011 Postgraduate Course in Tropical
    [Show full text]
  • The Age of Exploration (Also Called the Age of Discovery) Began in the 1400S and Continued Through the 1600S. It Was a Period Of
    Activity 1 of 3 for NTI May 18 - 22 - Introduction to Exploration of North America Go to: https://www.ducksters.com/history/renaissance/age_of_exploration_and_discovery.php ​ Click on the link above to read the article. There is a feature at the bottom that will allow you to have the text read to you, if you want. After you read the article, answer the questions below. You can highlight or bold your answers if completing electronically. I have copied the website ​ ​ ​ ​ text below if you need it. The Age of Exploration (also called the Age of Discovery) began in the 1400s and continued through the 1600s. It was a period of time when the European nations began exploring the world. They discovered new routes to India, much of the Far East, and the Americas. The Age of Exploration took place at the same time as the Renaissance. Why explore? Outfitting an expedition could be expensive and risky. Many ships never returned. So why did the Europeans want to explore? The simple answer is money. Although, some individual explorers wanted to gain fame or experience adventure, the main purpose of ​ ​ an expedition was to make money. How did expeditions make money? Expeditions made money primarily by discovering new trade routes for their nations. When the Ottoman Empire captured Constantinople in 1453, many existing trade routes ​ ​ to India and China were shut down. These trade routes were very valuable as they brought in expensive products such as spices and silk. New expeditions tried to discover oceangoing routes to India and the Far East. Some expeditions became rich by discovering gold and silver, such as the expeditions ​ ​ of the Spanish to the Americas.
    [Show full text]
  • How the Isthmus of Panama Put Ice in the Arctic Drifting Continents Open and Close Gateways Between Oceans and Shift Earth’S Climate
    http://oceanusmag.whoi.edu/v42n2/haug.html How the Isthmus of Panama Put Ice in the Arctic Drifting continents open and close gateways between oceans and shift Earth’s climate By Gerald H. Haug, Geoforschungszentrum ly declined (with the anomalous excep- The supercontinent of Gondwana broke Potsdam (GFZ), Germany; Ralf Tiedemann, tion of the last century), and the planet as apart, separating into subsections that Forschungszentrum fur Marine Geowissen- schaften, Germany; and Lloyd D. Keigwin, a whole has steadily cooled. So why didn’t became Africa, India, Australia, South Woods Hole Oceanographic Institution both poles freeze at the same time? America, and Antarctica. Passageways The answer to the paradox lies in the opened between these new continents, he long lag time has always puzzled complex interplay among the continents, allowing oceans to flow between them. Tscientists: Why did Antarctica be- oceans, and atmosphere. Like pieces of a When Antarctica was finally severed come covered by massive ice sheets 34 puzzle, Earth’s moving tectonic plates have from the southern tip of South America million years ago, while the Arctic Ocean rearranged themselves on the surface of to create the Drake Passage, Antarctica acquired its ice cap only about 3 million the globe—shifting the configurations of became completely surrounded by the year ago? intervening oceans, altering ocean circula- Southern Ocean. The powerful Antarctic Since the end of the extremely warm, tion, and causing changes in climate. Circumpolar Current began to sweep all dinosaur-dominated Cretaceous Era 65 The development of ice sheets in the the way around the continent, effective- million years ago, heat-trapping green- Southern Hemisphere around 34 million ly isolating Antarctica from most of the house gases in the atmosphere have steadi- years ago seems fairly straightforward.
    [Show full text]
  • An Eye on Central America U.S
    An Eye on Central America U.S. GOVERNMENTWORLD ™ GEOGRAPHYHISTORY from the Esri GeoInquiries collection for World Geography Target audience – World geography learners Time required – 15 minutes Activity Explore the physical geography and people of Central America. Social studies C3:D2.Geo.5.6-8. Analyze the combinations of cultural and environmental characteris- standards tics that make places both similar to and different from other places. C3:D2.Geo.2.6-8. Use maps, satellite images, photographs, and other representations to explain relationships between the locations of places and regions and the changes in their environmental characteristics. Learning Outcomes • Follow the development and impact of a major hurricane. • Integrate satellite imagery of a hurricane with a plot of the hurricane’s path. Map URL: http://esriurl.com/worldGeoInquiry13 Ask Central America comprises what geographic landform? ʅ Click the link above to launch the map. ʅ With the Details button underlined, click the button, Show Contents.. – There are several definitions of which countries compose Central America. This inquiry considers the seven countries south of Mexico. – An isthmus is a narrow strip of land with sea on either side, forming a link between two larger areas of land. ? Why are Central American countries an isthmus? [They connect the large land mass of Mexico (north) and South America (south), the Caribbean Sea (east), and the Pacific Ocean (west).] Acquire What are the physical characteristics of Central America? ʅ Click the button, Bookmarks. Select Central America. (See the ToolTip on the next page for details.) ? Which countries make up Central America? [Panama, Costa Rica, Nicaragua, Honduras, El Salvador, Guatemala, and Belize] ʅ Check the box left of the layer name, Holocene Volcanoes.
    [Show full text]