Y-Chromosome Diversity Characterizes the Gulf of Oman
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tectonics of the Musandam Peninsula and Northern Oman Mountains: from Ophiolite Obduction to Continental Collision
GeoArabia, 2014, v. 19, no. 2, p. 135-174 Gulf PetroLink, Bahrain Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision Michael P. Searle, Alan G. Cherry, Mohammed Y. Ali and David J.W. Cooper ABSTRACT The tectonics of the Musandam Peninsula in northern Oman shows a transition between the Late Cretaceous ophiolite emplacement related tectonics recorded along the Oman Mountains and Dibba Zone to the SE and the Late Cenozoic continent-continent collision tectonics along the Zagros Mountains in Iran to the northwest. Three stages in the continental collision process have been recognized. Stage one involves the emplacement of the Semail Ophiolite from NE to SW onto the Mid-Permian–Mesozoic passive continental margin of Arabia. The Semail Ophiolite shows a lower ocean ridge axis suite of gabbros, tonalites, trondhjemites and lavas (Geotimes V1 unit) dated by U-Pb zircon between 96.4–95.4 Ma overlain by a post-ridge suite including island-arc related volcanics including boninites formed between 95.4–94.7 Ma (Lasail, V2 unit). The ophiolite obduction process began at 96 Ma with subduction of Triassic–Jurassic oceanic crust to depths of > 40 km to form the amphibolite/granulite facies metamorphic sole along an ENE- dipping subduction zone. U-Pb ages of partial melts in the sole amphibolites (95.6– 94.5 Ma) overlap precisely in age with the ophiolite crustal sequence, implying that subduction was occurring at the same time as the ophiolite was forming. The ophiolite, together with the underlying Haybi and Hawasina thrust sheets, were thrust southwest on top of the Permian–Mesozoic shelf carbonate sequence during the Late Cenomanian–Campanian. -
Oman: Politics, Security, and U.S
Oman: Politics, Security, and U.S. Policy Updated May 19, 2021 Congressional Research Service https://crsreports.congress.gov RS21534 SUMMARY RS21534 Oman: Politics, Security, and U.S. Policy May 19, 2021 The Sultanate of Oman has been a strategic partner of the United States since 1980, when it became the first Persian Gulf state to sign a formal accord permitting the U.S. military to use its Kenneth Katzman facilities. Oman has hosted U.S. forces during every U.S. military operation in the region since Specialist in Middle then, and it is a partner in U.S. efforts to counter terrorist groups and other regional threats. In Eastern Affairs January 2020, Oman’s longtime leader, Sultan Qaboos bin Sa’id Al Said, passed away and was succeeded by Haythim bin Tariq Al Said, a cousin selected by Oman’s royal family immediately upon Qaboos’s death. Sultan Haythim espouses policies similar to those of Qaboos and has not altered U.S.-Oman ties or Oman’s regional policies. During Qaboos’s reign (1970-2020), Oman generally avoided joining other countries in the Gulf Cooperation Council (GCC: Saudi Arabia, Kuwait, United Arab Emirates , Bahrain, Qatar, and Oman) in regional military interventions, instead seeking to mediate their resolution. Oman joined but did not contribute forces to the U.S.-led coalition against the Islamic State organization, nor did it arm groups fighting Syrian President Bashar Al Asad’s regime. It opposed the June 2017 Saudi/UAE- led isolation of Qatar and had urged resolution of that rift before its resolution in January 2021. -
FMFRP 0-54 the Persian Gulf Region, a Climatological Study
FMFRP 0-54 The Persian Gulf Region, AClimatological Study U.S. MtrineCorps PCN1LiIJ0005LFII 111) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited DEPARTMENT OF THE NAVY Headquarters United States Marine Corps Washington, DC 20380—0001 19 October 1990 FOREWORD 1. PURPOSE Fleet Marine Force Reference Publication 0-54, The Persian Gulf Region. A Climatological Study, provides information on the climate in the Persian Gulf region. 2. SCOPE While some of the technical information in this manual is of use mainly to meteorologists, much of the information is invaluable to anyone who wishes to predict the consequences of changes in the season or weather on military operations. 3. BACKGROUND a. Desert operations have much in common with operations in the other parts of the world. The unique aspects of desert operations stem primarily from deserts' heat and lack of moisture. While these two factors have significant consequences, most of the doctrine, tactics, techniques, and procedures used in operations in other parts of the world apply to desert operations. The challenge of desert operations is to adapt to a new environment. b. FMFRP 0-54 was originally published by the USAF Environmental Technical Applications Center in 1988. In August 1990, the manual was published as Operational Handbook 0-54. 4. SUPERSESSION Operational Handbook 0-54 The Persian Gulf. A Climatological Study; however, the texts of FMFRP 0—54 and OH 0-54 are identical and OH 0-54 will continue to be used until the stock is exhausted. 5. RECOMMENDATIONS This manual will not be revised. However, comments on the manual are welcomed and will be used in revising other manuals on desert warfare. -
Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO
An Atlas of Oceanic Internal Solitary Waves (February 2004) Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Arabian Sea and the Gulf of Oman Overview The Arabian Sea is located in the northwest Indian Ocean. It is bounded by India (to the east), Iran (to the north) and the Arabian Peninsula (in the west)(Figure 1). The Gulf of Oman is located in the northwest corner of the Arabian Sea. The continental shelf in the region is widest off the northwest coast of India, which also experiences wind-induced upwelling. [LME, 2004]. The circulation in the Arabian Sea is affected by the Northeast (March-April) and Southwest (September -October) Monsoon seasons [Tomczak et al. 2003]. Figure 1. Bathymetry of Arabian Sea [Smith and Sandwell, 1997]. 501 An Atlas of Oceanic Internal Solitary Waves (February 2004) Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Observations There has been some scientific study of internal waves in the Arabian Sea and Gulf of Oman through the use of satellite imagery [Zheng et al., 1998; Small and Martin, 2002]. The imagery shows evidence of fine scale internal wave signatures along the continental shelf around the entire region. Table 1 shows the months of the year when internal wave observations have been made. Table 1 - Months when internal waves have been observed in the Arabian Sea and Gulf of Oman (Numbers indicate unique dates in that month when waves have been noted) Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 2 552 1251 Small and Martin [2002] reported on internal wave signatures observed in ERS SAR images of the Gulf of Oman. -
On the Nature of Transitions: the Middle to Upper Palaeolithic and the Neolithic Revolution
On the Nature of Transitions: the Middle to Upper Palaeolithic and the Neolithic Revolution The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bar-Yosef, Ofer. 1998. “On the Nature of Transitions: The Middle to Upper Palaeolithic and the Neolithic Revolution.” Cam. Arch. Jnl 8 (02) (October): 141. Published Version doi:10.1017/S0959774300000986 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12211496 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Cambridge Archaeological Journal 8:2 (1998), 141-63 On the Nature of Transitions: the Middle to Upper Palaeolithic and the Neolithic Revolution Ofer Bar-Yosef This article discusses two major revolutions in the history of humankind, namely, the Neolithic and the Middle to Upper Palaeolithic revolutions. The course of the first one is used as a general analogy to study the second, and the older one. This approach puts aside the issue of biological differences among the human fossils, and concentrates solely on the cultural and technological innovations. It also demonstrates that issues that are common- place to the study of the trajisition from foraging to cultivation and animal husbandry can be employed as an overarching model for the study of the transition from the Middle to the Upper Palaeolithic. The advantage of this approach is that it focuses on the core areas where each of these revolutions began, the ensuing dispersals and their geographic contexts. -
RSIS COMMENTARIES RSIS Commentaries Are Intended to Provide Timely And, Where Appropriate, Policy Relevant Background and Analysis of Contemporary Developments
RSIS COMMENTARIES RSIS Commentaries are intended to provide timely and, where appropriate, policy relevant background and analysis of contemporary developments. The views of the authors are their own and do not represent the official position of the S.Rajaratnam School of International Studies, NTU. These commentaries may be reproduced electronically or in print with prior permission from RSIS. Due recognition must be given to the author or authors and RSIS. Please email: [email protected] or call (+65) 6790 6982 to speak to the Editor RSIS Commentaries, Yang Razali Kassim. __________________________________________________________________________________________________ No. 81/2011 dated 18 May 2011 Indian Ocean Region: Critical Sea Lanes for Energy Security By Joshua Ho Synopsis The Indian Ocean region is home to three critical sea lanes used for global energy transportation. The disruption of these sea lanes, even temporarily, can lead to substantial increases in energy costs. What actions are required to keep these sea lanes safe? Commentary CHOKEPOINTS are narrow channels along widely used global sea routes. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits. The Strait of Hormuz, leading out of the Persian Gulf, and the Strait of Malacca linking the Indian and the Pacific Oceans are two of the world’s most strategic chokepoints. They lie in the Indian Ocean region. Another important passage in the Indian Ocean region is the Bab el-Mandab, which connects the Arabian Sea and the Red Sea which leads to the Suez Canal. As the international energy market is dependent on reliable transport, the blockage of a chokepoint, even temporarily, can lead to substantial increases in total energy costs. -
The Fertile Crescent and the Neolithic Expansion 9500 BC – 5800 BC
The Fertile Crescent and the Neolithic Expansion 9500 BC – 5800 BC The Last Hunter Gatherers in the Iberian Peninsula The dramatic effects of the oscillations and general improvement of the climate after the Younger Dryas (about 9500 BC) can be seen in the wider Mediterranean, which is where we now go to look at a development that would change the way of life of the whole of Europe. Whilst the human populations of Andalucia wobbled around a non-sustainable level, populations elsewhere were burgeoning to such an extent that they flowed over and out of the land they originally occupied. First a quick tour of the Mediterranean to look at what was afoot elsewhere. In the Levant, to which we will return shortly, rainfall increased to about 20% above current levels. More importantly the rains fell evenly throughout the year, raising water tables, bringing springs to life and feeding streams and rivers. In the northern Mediterranean and temperate Europe, a chaotic succession of plants, trees and attendant animals eventually settled down in many areas to large tracts of mixed oak forest with conifers in the mountains and open scrub on the thinner, poorer, limestone soils. In the drier parts of the Aegean and, as we have seen, the Iberian Peninsula, tree cover was patchier. There were large areas of prickly scrub and tracts of savannah dotted with almond, pistachio and terebinth. In climatic enclaves the shrubs we consider typically Mediterranean, the woody, fragrant herbs, together with olives and other, evergreen, trees kept their heads down and survived. In southern Anatolia and parts of the Levant, the woodland was, uncharacteristically, slow to advance, compared to areas at similar latitudes that were settled with a stable ecological system. -
Arabian Peninsula from Wikipedia, the Free Encyclopedia Jump to Navigationjump to Search "Arabia" and "Arabian" Redirect Here
Arabian Peninsula From Wikipedia, the free encyclopedia Jump to navigationJump to search "Arabia" and "Arabian" redirect here. For other uses, see Arabia (disambiguation) and Arabian (disambiguation). Arabian Peninsula Area 3.2 million km2 (1.25 million mi²) Population 77,983,936 Demonym Arabian Countries Saudi Arabia Yemen Oman United Arab Emirates Kuwait Qatar Bahrain -shibhu l-jazīrati l ِش ْبهُ ا ْل َج ِزي َرةِ ا ْلعَ َربِيَّة :The Arabian Peninsula, or simply Arabia[1] (/əˈreɪbiə/; Arabic jazīratu l-ʿarab, 'Island of the Arabs'),[2] is َج ِزي َرةُ ا ْلعَ َرب ʿarabiyyah, 'Arabian peninsula' or a peninsula of Western Asia situated northeast of Africa on the Arabian plate. From a geographical perspective, it is considered a subcontinent of Asia.[3] It is the largest peninsula in the world, at 3,237,500 km2 (1,250,000 sq mi).[4][5][6][7][8] The peninsula consists of the countries Yemen, Oman, Qatar, Bahrain, Kuwait, Saudi Arabia and the United Arab Emirates.[9] The peninsula formed as a result of the rifting of the Red Sea between 56 and 23 million years ago, and is bordered by the Red Sea to the west and southwest, the Persian Gulf to the northeast, the Levant to the north and the Indian Ocean to the southeast. The peninsula plays a critical geopolitical role in the Arab world due to its vast reserves of oil and natural gas. The most populous cities on the Arabian Peninsula are Riyadh, Dubai, Jeddah, Abu Dhabi, Doha, Kuwait City, Sanaʽa, and Mecca. Before the modern era, it was divided into four distinct regions: Red Sea Coast (Tihamah), Central Plateau (Al-Yamama), Indian Ocean Coast (Hadhramaut) and Persian Gulf Coast (Al-Bahrain). -
A Comparative Analysis of Strategic Competition in the Middle East And
ense ef Ma f D n o a l g a e m Roudgar, J Def Manag 2017, 7:2 n r e u n o t J Journal of Defense Management DOI: 10.4172/2167-0374.1000164 ISSN: 2167-0374 ReviewResearch Article Article Open Access A Comparative Analysis of Strategic Competition in the Middle East and Asia-Pacific Iraj Roudgar* Department of Policy Studies, Universiti Teknologi Malaysia (UTM), Malaysia Abstract This study aimed to identify specific policies issues that contribute to the strategic competition in the Middle East and Asia-Pacific regions. It comprised the grand strategies of Iran, China, and North Korea -as pivotal regional actors- reactions in response to the USA military presence in the Persian Gulf, South China Sea, and Korean Peninsula. The conflicting security between the American global interests and regional powers’ interests has brought a sustainable competition in the world. The strategic competition has resulted in conflicting security and conflicts of policy objectives at the regional and global levels. The results also indicated that geopolitical dominance and an ability to launch nuclear weapons are the principal reasons for the strategic competition. Keywords: Alliances; Foreign policy; Grand strategy; Distribution of geographic choke point and main artery for the transport of oil from power; Strategic interests the Middle East. The USA imports are relativity little of the oil from the Strait of Hormuz, but two Americans alliances in Asia-Pacific such Introduction South Korea and Japan depended on the imports of crude oil. Thus, The conflicting security due to different kinds of regional and the stability of the Persian Gulf will remain an important focus of strategic interests and policy objectives at the regional and global levels Western strategy for many years to come. -
ARCL0028: the Prehistoric Mediterranean
UCL Institute of Archaeology ARCL0028: The Prehistoric Mediterranean 2019-2020 Year 2-3 option, 15 credits Deadlines for coursework: 18th November 2019, 13th January 2020 Dr. Borja Legarra Herrero: [email protected] Office 106; tel: +44 (0)20 7679 1539 Please see the last page of this document for important information about submission and marking procedures, or links to the relevant webpages. 1. OVERVIEW Course content: This course introduces students to the archaeology of the Greek world from the Bronze Age to the Hellenistic and Roman periods. The lectures are divided in sections, the first offering a set of frameworks for Greek archaeology; the following sections deal, respectively, with the development of cities and settlements through time, religion and cult, and cultural, social and economic practices. Course summary: (Term 1) Room B13, Tuesdays 14:00-16:00 1st October 1. Introduction, Defining the Mediterranean (BLH) 2. Hyper connectivity and the sea (BLH) 8th October 3. Making archaeology in the Mediterranean: Excavation, survey, Science, Text (BLH) 4: SEMINAR: Cultural Heritage and Tourism (BLH) 15th October 5: The First Modern Humans in the Mediterranean (ca. 35.000 – 9600 BCE) (BLH) 6: SEMINAR: The Changing Med project: A taste of the future of research (BLH) 22th October 7: Neolithisation: a truly Mediterranean phenomenon (9600 - 5500 BC) (BLH) 8: Case studies: Is the Neolithic inevitable? (BLH) 29th November 9: The End of the Neolithic and the Beginning of Metallurgy (5500-3500 BC) (BLH) 10: Chalcolithic Case Studies: -
Original Research Paper the Origins of Nomadic Pastoralism in the Eastern Jordanian Steppe
Manuscript Click here to access/download;Manuscript;Miller et al The Origins of Nomadic Pastoralism.docx Original Research Paper The origins of nomadic pastoralism in the eastern Jordanian steppe: a combined stable isotope and chipped stone assessment Holly Miller1, Douglas Baird2, Jessica Pearson2, Angela L. Lamb3, Matt Grove2, Louise Martin4 and Andrew Garrard4. The circumstances in which domestic animals were first introduced to the arid regions of the Southern Levant and the origins of nomadic pastoralism, have been the subject of considerable debate. Nomadic pastoralism was a novel herd management practice with implications for the economic, social and cultural development of Neolithic communities inhabiting steppe and early village environs. Combining faunal stable isotope and chipped stone analysis from the Eastern Jordanian Neolithic steppic sites of Wadi Jilat 13 and 25, and ‘Ain Ghazal in the Mediterranean agricultural zone of the Levantine Corridor, we provide a unique picture of the groups exploiting the arid areas. Key words Neolithic; stable isotopes; nomadic pastoralism; lithic analysis; fauna. Introduction Some of the earliest evidence for domestic sheep and goats herds in the Eastern Jordanian steppe has been recovered from the sites of Wadi Jilat 13 and 25 at the beginning of the seventh millennium cal. BC (Garrard 1998; Garrard et al. 1994b; Martin 1999; Martin and Edwards 2013), although the possibility of their introduction in the Late Pre-Pottery Neolithic B (henceforth LPPNB) 1 Holly Miller (corresponding author) Department of Classics and Archaeology, University of Nottingham, Nottingham, UK. email: [email protected], telephone: +44 (0)115 951 4813, ORCHiD: 0000-0002- 0394-9444 2 Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK. -
The Spread of Neolithic Plant Economies from the Near East to Northwest Europe: a Phylogenetic Analysis
Journal of Archaeological Science 35 (2008) 42e56 http://www.elsevier.com/locate/jas The spread of Neolithic plant economies from the Near East to northwest Europe: a phylogenetic analysis Fiona Coward a, Stephen Shennan b,c,*, Sue Colledge b, James Conolly b,d, Mark Collard c,e a Department of Geography, Royal Holloway University London, Egham, Surrey TW20 0EX, UK b Institute of Archaeology, University College London, 31e34 Gordon Square, London WC1H 0PY, UK c AHRC Centre for the Evolution of Cultural Diversity, University College London, 31e34 Gordon Square, London WC1H 0PY, UK d Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada K9J 7B8 e Department of Anthropology, University of British Columbia, 6303 NW Marine Drive, Vancouver, British Columbia, Canada V6T 1Z1 Received 20 October 2006; received in revised form 9 February 2007; accepted 25 February 2007 Abstract Phylogenetic techniques are used to analyse the spread of Neolithic plant economies from the Near East to northwest Europe as a branching process from a founding ancestor. The analyses are based on a database of c. 7500 records of plant taxa from 250 sites dated to the early Neo- lithic of the region in which they occur, aggregated into a number of regional groups. The analysis demonstrates that a phylogenetic signal exists in the data but it is complicated by the fact that in comparison with the changes that occurred when the crop agriculture complex expanded out of the Near East, once it arrived in Europe it underwent only limited further changes. On the basis of the analysis it has been possible to identify the species losses and gains that occurred as the complex of crops and associated weeds spread and to show the influence of geographical location and cultural affinity on the pattern of losses and gains.