Z80 CPU User Manual Ii

Total Page:16

File Type:pdf, Size:1020Kb

Z80 CPU User Manual Ii Z80 Microprocessors Z80 CPU User Manual UM008011-0816 Copyright ©2016 Zilog, Inc. All rights reserved. www.zilog.com Z80 CPU User Manual ii Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS. LIFE SUPPORT POLICY ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION. As used herein Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti- cal component is any component in a life support device or system whose failure to perform can be reason- ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Document Disclaimer ©2016 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering. Z80, Z180, Z380 and Z80382 are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners. UM008011-0816 Z80 CPU User Manual iii Revision History Each instance in the following revision history table reflects a change to this document from its previous version. For more details, refer to the corresponding pages provided in the table. Revision Date Level Description Page Aug 11 Made formatting changes for better readability. 39, 40, 41 2016 Aug 10 Added Instruction Notation Summary; corrected typos and 39, 42, 123, 126, 136, 2016 errors 242, May 09 Corrected typos and errors. 126, 132, 133, 136, 141, 2016 192, 317 Jan 08 Corrected typos and errors. 46, 77, 103, 112, 122, 2016 130, 132, 138, 161, 207,221, 224, 227, 233, 253, 255, 263, 296 Jul 07 Corrected typos in POP qq description. 119 2015 Jul 06 Updated to Zilog style and to incorporate customer 65, 126 2014 suggestions, including a correction to the Z80 Status Indicator Flags table, bit 4, and a correction to the EXX instruction at bit 0. Feb 05 Corrected the hex code for the RLCA instruction; 55, 205 2005 corrected illustration for the Rotate and Shift Group RLCA instruction. Dec 04 Corrected discrepancies in the bit patterns for IM 0, IM 1 184, 185, 186 2004 and IM 2 instructions. UM008011-0816 Revision History Z80 CPU User Manual iv Revision History UM008011-0816 Z80 CPU User Manual v Table of Contents Revision History. .iii Table of Contents . v List of Figures. .xi List of Tables . .xiii Architectural Overview . 1 CPU Register . 2 Special-Purpose Registers . 2 General Purpose Registers . 3 Arithmetic Logic Unit . 4 Instruction Register and CPU Control . 4 Pin Functions . 5 Timing . 7 Instruction Fetch . 8 Memory Read Or Write . 9 Input or Output Cycles . 10 Bus Request/Acknowledge Cycle . 11 Interrupt Request/Acknowledge Cycle . 12 Nonmaskable Interrupt Response . 13 HALT Exit . 14 Power-Down Acknowledge Cycle . 15 Power-Down Release Cycle . 16 Interrupt Response . 17 Interrupt Enable/Disable . 17 CPU Response . 19 Hardware and Software Implementation . 21 Minimum System Hardware . 21 Adding RAM . 22 Memory Speed Control . 23 Interfacing Dynamic Memories . 25 Software Implementation Examples . 26 Specific Z80 Instruction Examples . 27 Programming Task Examples . 29 Z80 CPU Instructions. 32 Instruction Types . 32 UM008011-0816 Table of Contents Z80 CPU User Manual vi Addressing Modes . 34 Immediate Addressing . 34 Immediate Extended Addressing . 34 Modified Page Zero Addressing . 35 Relative Addressing . 35 Extended Addressing . 36 Indexed Addressing . 36 Register Addressing . 37 Implied Addressing . 37 Register Indirect Addressing . 37 Bit Addressing . 38 Addressing Mode Combinations . 38 Instruction Notation Summary . 39 Instruction Op Codes . 40 Load and Exchange . 41 Block Transfer and Search . 47 Arithmetic and Logical . 49 Rotate and Shift . 53 Bit Manipulation . 55 Jump, Call, and Return . 58 Input/Output . 61 CPU Control Group . 63 Z80 Instruction Set . 65 Z80 Assembly Language . 65 Z80 Status Indicator Flags . 65 Carry Flag . 66 Add/Subtract Flag . 66 Decimal Adjust Accumulator Flag . 67 Parity/Overflow Flag . 67 Half Carry Flag . ..
Recommended publications
  • Package 'Slurmr'
    Package ‘slurmR’ September 3, 2021 Title A Lightweight Wrapper for 'Slurm' Version 0.5-1 Description 'Slurm', Simple Linux Utility for Resource Management <https://slurm.schedmd.com/>, is a popular 'Linux' based software used to schedule jobs in 'HPC' (High Performance Computing) clusters. This R package provides a specialized lightweight wrapper of 'Slurm' with a syntax similar to that found in the 'parallel' R package. The package also includes a method for creating socket cluster objects spanning multiple nodes that can be used with the 'parallel' package. Depends R (>= 3.3.0), parallel License MIT + file LICENSE BugReports https://github.com/USCbiostats/slurmR/issues URL https://github.com/USCbiostats/slurmR, https://slurm.schedmd.com/ Encoding UTF-8 RoxygenNote 7.1.1 Suggests knitr, rmarkdown, covr, tinytest Imports utils VignetteBuilder knitr Language en-US NeedsCompilation no Author George Vega Yon [aut, cre] (<https://orcid.org/0000-0002-3171-0844>), Paul Marjoram [ctb, ths] (<https://orcid.org/0000-0003-0824-7449>), National Cancer Institute (NCI) [fnd] (Grant Number 5P01CA196569-02), Michael Schubert [rev] (JOSS reviewer, <https://orcid.org/0000-0002-6862-5221>), Michel Lang [rev] (JOSS reviewer, <https://orcid.org/0000-0001-9754-0393>) Maintainer George Vega Yon <[email protected]> Repository CRAN Date/Publication 2021-09-03 04:20:02 UTC 1 2 expand_array_indexes R topics documented: expand_array_indexes . .2 JOB_STATE_CODES . .3 makeSlurmCluster . .4 new_rscript . .6 opts_slurmR . .7 parse_flags . .9 random_job_name . .9 read_sbatch . 10 slurmR . 11 slurmr_docker . 11 slurm_available . 12 Slurm_clean . 15 Slurm_collect . 16 Slurm_env . 17 Slurm_EvalQ . 18 slurm_job . 19 Slurm_log . 21 Slurm_Map . 22 snames . 25 sourceSlurm . 25 status . 28 the_plan .
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • TEE Internal Core API Specification V1.1.2.50
    GlobalPlatform Technology TEE Internal Core API Specification Version 1.1.2.50 (Target v1.2) Public Review June 2018 Document Reference: GPD_SPE_010 Copyright 2011-2018 GlobalPlatform, Inc. All Rights Reserved. Recipients of this document are invited to submit, with their comments, notification of any relevant patents or other intellectual property rights (collectively, “IPR”) of which they may be aware which might be necessarily infringed by the implementation of the specification or other work product set forth in this document, and to provide supporting documentation. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. This documentation is currently in draft form and is being reviewed and enhanced by the Committees and Working Groups of GlobalPlatform. Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited. TEE Internal Core API Specification – Public Review v1.1.2.50 (Target v1.2) THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT. Copyright 2011-2018 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
    [Show full text]
  • Powerview Command Reference
    PowerView Command Reference TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents ...................................................................................................................... PowerView User Interface ............................................................................................................ PowerView Command Reference .............................................................................................1 History ...................................................................................................................................... 12 ABORT ...................................................................................................................................... 13 ABORT Abort driver program 13 AREA ........................................................................................................................................ 14 AREA Message windows 14 AREA.CLEAR Clear area 15 AREA.CLOSE Close output file 15 AREA.Create Create or modify message area 16 AREA.Delete Delete message area 17 AREA.List Display a detailed list off all message areas 18 AREA.OPEN Open output file 20 AREA.PIPE Redirect area to stdout 21 AREA.RESet Reset areas 21 AREA.SAVE Save AREA window contents to file 21 AREA.Select Select area 22 AREA.STDERR Redirect area to stderr 23 AREA.STDOUT Redirect area to stdout 23 AREA.view Display message area in AREA window 24 AutoSTOre ..............................................................................................................................
    [Show full text]
  • Xshell 6 User Guide Secure Terminal Emualtor
    Xshell 6 User Guide Secure Terminal Emualtor NetSarang Computer, Inc. Copyright © 2018 NetSarang Computer, Inc. All rights reserved. Xshell Manual This software and various documents have been produced by NetSarang Computer, Inc. and are protected by the Copyright Act. Consent from the copyright holder must be obtained when duplicating, distributing or citing all or part of this software and related data. This software and manual are subject to change without prior notice for product functions improvement. Xlpd and Xftp are trademarks of NetSarang Computer, Inc. Xmanager and Xshell are registered trademarks of NetSarang Computer, Inc. Microsoft Windows is a registered trademark of Microsoft. UNIX is a registered trademark of AT&T Bell Laboratories. SSH is a registered trademark of SSH Communications Security. Secure Shell is a trademark of SSH Communications Security. This software includes software products developed through the OpenSSL Project and used in OpenSSL Toolkit. NetSarang Computer, Inc. 4701 Patrick Henry Dr. BLDG 22 Suite 137 Santa Clara, CA 95054 http://www.netsarang.com/ Contents About Xshell ............................................................................................................................................... 1 Key Functions ........................................................................................................... 1 Minimum System Requirements .................................................................................. 3 Install and Uninstall ..................................................................................................
    [Show full text]
  • Programmable Digital Microcircuits - a Survey with Examples of Use
    - 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention.
    [Show full text]
  • Lock-Free Programming
    Lock-Free Programming Geoff Langdale L31_Lockfree 1 Desynchronization ● This is an interesting topic ● This will (may?) become even more relevant with near ubiquitous multi-processing ● Still: please don’t rewrite any Project 3s! L31_Lockfree 2 Synchronization ● We received notification via the web form that one group has passed the P3/P4 test suite. Congratulations! ● We will be releasing a version of the fork-wait bomb which doesn't make as many assumptions about task id's. – Please look for it today and let us know right away if it causes any trouble for you. ● Personal and group disk quotas have been grown in order to reduce the number of people running out over the weekend – if you try hard enough you'll still be able to do it. L31_Lockfree 3 Outline ● Problems with locking ● Definition of Lock-free programming ● Examples of Lock-free programming ● Linux OS uses of Lock-free data structures ● Miscellanea (higher-level constructs, ‘wait-freedom’) ● Conclusion L31_Lockfree 4 Problems with Locking ● This list is more or less contentious, not equally relevant to all locking situations: – Deadlock – Priority Inversion – Convoying – “Async-signal-safety” – Kill-tolerant availability – Pre-emption tolerance – Overall performance L31_Lockfree 5 Problems with Locking 2 ● Deadlock – Processes that cannot proceed because they are waiting for resources that are held by processes that are waiting for… ● Priority inversion – Low-priority processes hold a lock required by a higher- priority process – Priority inheritance a possible solution L31_Lockfree
    [Show full text]
  • Introduction to Cpu
    microprocessors and microcontrollers - sadri 1 INTRODUCTION TO CPU Mohammad Sadegh Sadri Session 2 Microprocessor Course Isfahan University of Technology Sep., Oct., 2010 microprocessors and microcontrollers - sadri 2 Agenda • Review of the first session • A tour of silicon world! • Basic definition of CPU • Von Neumann Architecture • Example: Basic ARM7 Architecture • A brief detailed explanation of ARM7 Architecture • Hardvard Architecture • Example: TMS320C25 DSP microprocessors and microcontrollers - sadri 3 Agenda (2) • History of CPUs • 4004 • TMS1000 • 8080 • Z80 • Am2901 • 8051 • PIC16 microprocessors and microcontrollers - sadri 4 Von Neumann Architecture • Same Memory • Program • Data • Single Bus microprocessors and microcontrollers - sadri 5 Sample : ARM7T CPU microprocessors and microcontrollers - sadri 6 Harvard Architecture • Separate memories for program and data microprocessors and microcontrollers - sadri 7 TMS320C25 DSP microprocessors and microcontrollers - sadri 8 Silicon Market Revenue Rank Rank Country of 2009/2008 Company (million Market share 2009 2008 origin changes $ USD) Intel 11 USA 32 410 -4.0% 14.1% Corporation Samsung 22 South Korea 17 496 +3.5% 7.6% Electronics Toshiba 33Semiconduc Japan 10 319 -6.9% 4.5% tors Texas 44 USA 9 617 -12.6% 4.2% Instruments STMicroelec 55 FranceItaly 8 510 -17.6% 3.7% tronics 68Qualcomm USA 6 409 -1.1% 2.8% 79Hynix South Korea 6 246 +3.7% 2.7% 812AMD USA 5 207 -4.6% 2.3% Renesas 96 Japan 5 153 -26.6% 2.2% Technology 10 7 Sony Japan 4 468 -35.7% 1.9% microprocessors and microcontrollers
    [Show full text]
  • Waste Transfer Stations: a Manual for Decision-Making Acknowledgments
    Waste Transfer Stations: A Manual for Decision-Making Acknowledgments he Office of Solid Waste (OSW) would like to acknowledge and thank the members of the Solid Waste Association of North America Focus Group and the National Environmental Justice Advisory Council Waste Transfer Station Working Group for reviewing and providing comments on this draft document. We would also like to thank Keith Gordon of Weaver Boos & Gordon, Inc., for providing a technical Treview and donating several of the photographs included in this document. Acknowledgements i Contents Acknowledgments. i Introduction . 1 What Are Waste Transfer Stations?. 1 Why Are Waste Transfer Stations Needed?. 2 Why Use Waste Transfer Stations? . 3 Is a Transfer Station Right for Your Community? . 4 Planning and Siting a Transfer Station. 7 Types of Waste Accepted . 7 Unacceptable Wastes . 7 Public Versus Commercial Use . 8 Determining Transfer Station Size and Capacity . 8 Number and Sizing of Transfer Stations . 10 Future Expansion . 11 Site Selection . 11 Environmental Justice Considerations . 11 The Siting Process and Public Involvement . 11 Siting Criteria. 14 Exclusionary Siting Criteria . 14 Technical Siting Criteria. 15 Developing Community-Specific Criteria . 17 Applying the Committee’s Criteria . 18 Host Community Agreements. 18 Transfer Station Design and Operation . 21 Transfer Station Design . 21 How Will the Transfer Station Be Used? . 21 Site Design Plan . 21 Main Transfer Area Design. 22 Types of Vehicles That Use a Transfer Station . 23 Transfer Technology . 25 Transfer Station Operations. 27 Operations and Maintenance Plans. 27 Facility Operating Hours . 32 Interacting With the Public . 33 Waste Screening . 33 Emergency Situations . 34 Recordkeeping. 35 Environmental Issues.
    [Show full text]
  • How to Make Ez80 Code Execute Faster with Copy To
    Application Note How to Make eZ80® Code Execute Faster with Copy To RAM AN015103-1208 Abstract Two popular versions of the eZ80 offered by Zilog® are the eZ80 General-Purpose MPU This Application Note discusses how Zilog’s (eZ80L92) and the eZ80Acclaim! Family of Flash eZ80® code can execute faster by executing from MCUs, which includes the eZ80F91, eZ80F92, and RAM instead of Flash Memory, and be able to eZ80F93 devices. store the eZ80 code in Flash. With Zilog Develop- ment Studio II (ZDS II) code development tools, a eZ80L92 Features few simple changes to the project settings and the project link file are required for speedy code exe- The key features of eZ80L92 include: cution. The leddemo project that is included with the eZ80L92 device, which uses the ZDS II toolset • Single-cycle instruction fetch, high-performance, for eZ80 microprocessor unit (MPU), is used in pipelined eZ80 CPU core this Application Note as an example. However, the • Low power features including SLEEP mode, information in this document is also applicable to HALT mode, and selective peripheral power- the ZDS II toolset for eZ80Acclaim!® microcon- down control trollers unit (MCU). • Two Universal Asynchronous Receiver/Trans- Note: The source code file associated with mitters (UART) with independent baud rate gen- this application note, AN0151- erators SC01.zip is available for down- • Serial Peripheral Interface (SPI) with indepen- load at www.zilog.com. dent clock rate generator • Inter-Integrated Circuit (I2C) with independent eZ80 Overview clock rate generator eZ80 has revolutionized the communication indus- • Infrared Data Association (IrDA)-compliant try. It executes Zilog’s Z80® code four times faster infrared encoder/decoder at the same clock speed of traditional Z80s and can • New DMA-like eZ80 instructions for efficient operate at frequencies up to 50 MHz.
    [Show full text]
  • System Calls & Signals
    CS345 OPERATING SYSTEMS System calls & Signals Panagiotis Papadopoulos [email protected] 1 SYSTEM CALL When a program invokes a system call, it is interrupted and the system switches to Kernel space. The Kernel then saves the process execution context (so that it can resume the program later) and determines what is being requested. The Kernel carefully checks that the request is valid and that the process invoking the system call has enough privilege. For instance some system calls can only be called by a user with superuser privilege (often referred to as root). If everything is good, the Kernel processes the request in Kernel Mode and can access the device drivers in charge of controlling the hardware (e.g. reading a character inputted from the keyboard). The Kernel can read and modify the data of the calling process as it has access to memory in User Space (e.g. it can copy the keyboard character into a buffer that the calling process has access to) When the Kernel is done processing the request, it restores the process execution context that was saved when the system call was invoked, and control returns to the calling program which continues executing. 2 SYSTEM CALLS FORK() 3 THE FORK() SYSTEM CALL (1/2) • A process calling fork()spawns a child process. • The child is almost an identical clone of the parent: • Program Text (segment .text) • Stack (ss) • PCB (eg. registers) • Data (segment .data) #include <sys/types.h> #include <unistd.h> pid_t fork(void); 4 THE FORK() SYSTEM CALL (2/2) • The fork()is one of the those system calls, which is called once, but returns twice! Consider a piece of program • After fork()both the parent and the child are ..
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]