Calmodulin and Calmodulin Binding Proteins in Dictyostelium: a Primer
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Keratins and Plakin Family Cytolinker Proteins Control the Length Of
RESEARCH ARTICLE Keratins and plakin family cytolinker proteins control the length of epithelial microridge protrusions Yasuko Inaba*, Vasudha Chauhan, Aaron Paul van Loon, Lamia Saiyara Choudhury, Alvaro Sagasti* Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States Abstract Actin filaments and microtubules create diverse cellular protrusions, but intermediate filaments, the strongest and most stable cytoskeletal elements, are not known to directly participate in the formation of protrusions. Here we show that keratin intermediate filaments directly regulate the morphogenesis of microridges, elongated protrusions arranged in elaborate maze-like patterns on the surface of mucosal epithelial cells. We found that microridges on zebrafish skin cells contained both actin and keratin filaments. Keratin filaments stabilized microridges, and overexpressing keratins lengthened them. Envoplakin and periplakin, plakin family cytolinkers that bind F-actin and keratins, localized to microridges, and were required for their morphogenesis. Strikingly, plakin protein levels directly dictate microridge length. An actin-binding domain of periplakin was required to initiate microridge morphogenesis, whereas periplakin-keratin binding was required to elongate microridges. These findings separate microridge morphogenesis into distinct steps, expand our understanding of intermediate filament functions, and identify microridges as protrusions that integrate actin and intermediate filaments. *For correspondence: [email protected] (YI); Introduction [email protected] (AS) Cytoskeletal filaments are scaffolds for membrane protrusions that create a vast diversity of cell shapes. The three major classes of cytoskeletal elements—microtubules, actin filaments, and inter- Competing interests: The mediate filaments (IFs)—each have distinct mechanical and biochemical properties and associate authors declare that no with different regulatory proteins, suiting them to different functions. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Families and the Structural Relatedness Among Globular Proteins
Protein Science (1993), 2, 884-899. Cambridge University Press. Printed in the USA. Copyright 0 1993 The Protein Society -~~ ~~~~ ~ Families and the structural relatedness among globular proteins DAVID P. YEE AND KEN A. DILL Department of Pharmaceutical Chemistry, University of California, San Francisco, California94143-1204 (RECEIVEDJanuary 6, 1993; REVISEDMANUSCRIPT RECEIVED February 18, 1993) Abstract Protein structures come in families. Are families “closely knit” or “loosely knit” entities? We describe a mea- sure of relatedness among polymer conformations. Based on weighted distance maps, this measure differs from existing measures mainly in two respects: (1) it is computationally fast, and (2) it can compare any two proteins, regardless of their relative chain lengths or degree of similarity. It does not require finding relative alignments. The measure is used here to determine the dissimilarities between all 12,403 possible pairs of 158 diverse protein structures from the Brookhaven Protein Data Bank (PDB). Combined with minimal spanning trees and hier- archical clustering methods,this measure is used to define structural families. It is also useful for rapidly searching a dataset of protein structures for specific substructural motifs.By using an analogy to distributions of Euclid- ean distances, we find that protein families are not tightly knit entities. Keywords: protein family; relatedness; structural comparison; substructure searches Pioneering work over the past 20 years has shown that positions after superposition. RMS is a useful distance proteins fall into families of related structures (Levitt & metric for comparingstructures that arenearly identical: Chothia, 1976; Richardson, 1981; Richardson & Richard- for example, when refining or comparing structures ob- son, 1989; Chothia & Finkelstein, 1990). -
The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila
University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2020-01-15 The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila Hsi-Ju Chen University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Cell Biology Commons, and the Genetics Commons Repository Citation Chen H. (2020). The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila. GSBS Dissertations and Theses. https://doi.org/10.13028/ 0r15-ze63. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/1059 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila A Dissertation Presented by Hsi-Ju Chen Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester In partial fulfilment of the requirement for the requirements for the Degree of Doctor of Philosophy November 19, 2019 TABLE OF CONTENTS ABSTRACT CHAPTER I..................................................................................................... -
The Cardiac-Specific N-Terminal Region of Troponin I Positions the Regulatory Domain of Troponin C
The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C Peter M. Hwanga,b,1, Fangze Caib, Sandra E. Pineda-Sanabriab, David C. Corsonb, and Brian D. Sykesb aDivision of General Internal Medicine, Department of Medicine, and bDepartment of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7 Edited by David Baker, University of Washington, Seattle, WA, and approved August 29, 2014 (received for review June 11, 2014) The cardiac isoform of troponin I (cTnI) has a unique 31-residue phosphorylation levels occur in a number of pathologic states, N-terminal region that binds cardiac troponin C (cTnC) to increase including heart failure with reduced ejection fraction, heart failure the calcium sensitivity of the sarcomere. The interaction can be with preserved ejection fraction, dilated cardiomyopathy, and hy- abolished by cTnI phosphorylation at Ser22 and Ser23, an impor- pertrophic cardiomyopathy (5, 8). Although dephosphorylation tant mechanism for regulating cardiac contractility. cTnC contains is likely a compensatory mechanism in many cases, it may be a two EF–hand domains (the N and C domain of cTnC, cNTnC and disease-driving dysregulation in others. cCTnC) connected by a flexible linker. Calcium binding to either Other regulatory mechanisms are strongly influenced by the domain favors an “open” conformation, exposing a large hydro- phosphorylation state of Ser22/23. The Frank–Starling law of the phobic surface that is stabilized by target binding, cTnI[148–158] heart, also known as length-dependent activation or stretch ac- for cNTnC and cTnI[39–60] for cCTnC. We used multinuclear multi- tivation, is more pronounced when Ser22/23 are phosphorylated – dimensional solution NMR spectroscopy to study cTnI[1 73] in (9, 10). -
CCN3 and Calcium Signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2
Cell Communication and Signaling BioMed Central Review Open Access CCN3 and calcium signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2 Address: 1CNRS UMR 8078, Hôpital Marie Lannelongue, 133, Avenue de la Résistance 92350 Le PLESSIS-ROBINSON, France and 2Laboratoire d'Oncologie Virale et Moléculaire, Tour 54, Case 7048, Université Paris 7-D.Diderot, 2 Place Jussieu 75005 PARIS, France Email: Alain Lombet - [email protected]; Nathalie Planque - [email protected]; Anne-Marie Bleau - [email protected]; Chang Long Li - [email protected]; Bernard Perbal* - [email protected] * Corresponding author Published: 15 August 2003 Received: 26 June 2003 Accepted: 15 August 2003 Cell Communication and Signaling 2003, 1:1 This article is available from: http://www.biosignaling.com/content/1/1/1 © 2003 Lombet et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. -
Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer
cancers Review Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer Nayden G. Naydenov 1, Susana Lechuga 1, Emina H. Huang 2 and Andrei I. Ivanov 1,* 1 Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; [email protected] (N.G.N.); [email protected] (S.L.) 2 Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-445-5620 Simple Summary: Colorectal cancer (CRC) is a deadly disease that may go undiagnosed until it presents at an advanced metastatic stage for which few interventions are available. The develop- ment and metastatic spread of CRC is driven by remodeling of the actin cytoskeleton in cancer cells. Myosins represent a large family of actin motor proteins that play key roles in regulating actin cytoskeleton architecture and dynamics. Different myosins can move and cross-link actin filaments, attach them to the membrane organelles and translocate vesicles along the actin filaments. These diverse activities determine the key roles of myosins in regulating cell proliferation, differ- entiation and motility. Either mutations or the altered expression of different myosins have been well-documented in CRC; however, the roles of these actin motors in colon cancer development remain poorly understood. The present review aims at summarizing the evidence that implicate myosin motors in regulating CRC growth and metastasis and discusses the mechanisms underlying the oncogenic and tumor-suppressing activities of myosins. Abstract: Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. -
Calcium Signaling at the Endoplasmic Reticulum Fine-Tuning Stress
Cell Calcium 70 (2018) 24–31 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Review Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses T ⁎ Amado Carreras-Suredaa,b,c, Philippe Pihána,b,c, Claudio Hetza,b,c,d,e, a Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Chile b Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile c Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile d Buck Institute for Research on Aging, Novato, CA, 94945, USA e Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA ARTICLE INFO ABSTRACT Keywords: Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER homeostasis ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to ER stress operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein Calcium handling mechanisms folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER cal- Calcium homeostasis cium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under Unfolded protein response chronic stress. The global coordination between UPR signaling and energetic demands takes place at mi- Mitochondrial associated membranes Mitochondria biology tochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Calcium Signaling in Aging and Neurodegenerative Diseases 2019
International Journal of Molecular Sciences Meeting Report Calcium Signaling in Aging and Neurodegenerative Diseases 2019 Luísa Cortes 1,2 , João Malva 2,3,4, Ana Cristina Rego 1,2,3 and Cláudia F. Pereira 1,2,3,* 1 Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] (L.C.); [email protected] (A.C.R.) 2 CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] 3 Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal 4 iCRB- Coimbra Institute for Clinical and Biomedical Research; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal * Correspondence: [email protected] Received: 28 December 2019; Accepted: 4 February 2020; Published: 7 February 2020 Abstract: The European Calcium Society (ECS) workshop, which is held every 2 years, is a dedicated meeting of scientists interested in the elucidation of the action of calcium binding, calcium signaling and the study of proteins and organelles, such as mitochondria and endoplasmic reticulum, thereby involved, either in health and disease conditions. The 8th edition of the ECS workshop was organized by a group of researchers from the University of Coimbra, Portugal, in close collaboration with ECS board members. Thanks to the central role of “Calcium Signaling in Aging and Neurodegenerative Disorders”, the ECS 2019 workshop was attended by 62 experts who presented their results in a plenary lecture and five regular symposia, two oral communication sessions and two poster sessions, followed by a hands-on session on calcium imaging. -
Evidence for Rho Kinase Pathway
Oncogene (2001) 20, 2112 ± 2121 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Cytoskeletal organization in tropomyosin-mediated reversion of ras-transformation: Evidence for Rho kinase pathway Vanya Shah3, Shantaram Bharadwaj1,2, Kozo Kaibuchi4 and GL Prasad*,1,2 1Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, NC 27157, USA; 2Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, NC 27157, USA; 3Wistar Institute of Anatomy and Cell Biology, Philadelphia, Pennsylvania, USA; 4Nara Institute of Science and Technology Ikoma, Japan Tropomyosin (TM) family of cytoskeletal proteins is and tropomyosins (TMs) are suppressed to varying implicated in stabilizing actin micro®laments. Many TM degrees in many transformed cells (Ben-Ze'ev, 1997). isoforms, including tropomyosin-1 (TM1), are down- Furthermore, restoration of these proteins inhibits the regulated in transformed cells. Previously we demon- malignant phenotype of many dierent experimentally strated that TM1 is a suppressor of the malignant transformed cell lines, underscoring the pivotal role of transformation, and that TM1 reorganizes micro®la- cytoskeletal organization in maintaining a normal ments in the transformed cells. To investigate how TM1 phenotype (Ayscough, 1998; Janmey and Chaponnier, induces micro®lament organization in transformed cells, 1995). Our laboratory has been interested in under- we utilized ras-transformed NIH3T3 (DT) cells, and standing the role of cytoskeletal proteins, in particular those transduced to express TM1, and/or TM2. that of tropomyosins, in malignant transformation. Enhanced expression of TM1 alone, but not TM2, Tropomyosin (TM) family comprises of 5 ± 7 results in re-emergence of micro®laments; TM1, together dierent closely related isoforms, whose expression is with TM2 remarkably improves micro®lament architec- altered in many transformed cells (Lin et al., 1997; ture. -
Myosin 1E Interacts with Synaptojanin-1 and Dynamin and Is Involved in Endocytosis
FEBS Letters 581 (2007) 644–650 Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis Mira Krendela,*, Emily K. Osterweila, Mark S. Moosekera,b,c a Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA b Department of Cell Biology, Yale University, New Haven, CT 06511, USA c Department of Pathology, Yale University, New Haven, CT 06511, USA Received 21 November 2006; revised 8 January 2007; accepted 11 January 2007 Available online 18 January 2007 Edited by Felix Wieland Myo1 isoforms (Myo3p and Myo5p) leads to defects in endo- Abstract Myosin 1E is one of two ‘‘long-tailed’’ human Class I myosins that contain an SH3 domain within the tail region. SH3 cytosis [3].InAcanthamoeba, various Myo1 isoforms are domains of yeast and amoeboid myosins I interact with activa- found in association with intracellular vesicles [10].InDictyos- tors of the Arp2/3 complex, an important regulator of actin poly- telium, long-tailed Myo1s (myo B, C, and D) are required for merization. No binding partners for the SH3 domains of myosins fluid-phase endocytosis [11]. I have been identified in higher eukaryotes. In the current study, Myo1e, the mouse homolog of the human long-tailed myo- we show that two proteins with prominent functions in endocyto- sin, Myo1E (formerly referred to as Myo1C under the old myo- sis, synaptojanin-1 and dynamin, bind to the SH3 domain of sin nomenclature [12]), has been previously localized to human Myo1E. Myosin 1E co-localizes with clathrin- and dyn- phagocytic structures [13]. In this study, we report that Myo1E amin-containing puncta at the plasma membrane and this co- binds to two proline-rich proteins, synaptojanin-1 and dyn- localization requires an intact SH3 domain.