Rodent Outbreaks: Ecology and Impacts

Total Page:16

File Type:pdf, Size:1020Kb

Rodent Outbreaks: Ecology and Impacts Rodent Outbreaks: Ecology and Impacts Edited by Grant Singleton, Steve Belmain, Peter Brown, and Bill Hardy 2010 Contents i 00a-Title page.indd i 2010-10-22 17:26 ii Contents 00a-Title page.indd ii 2010-10-22 17:27 The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today, IRRI is one of the 15 nonprofi t international research centers supported in part by more than 40 donors: members of the Consultative Group on International Agricultural Research (CGIAR – www.cgiar.org), other government funding agencies, foundations, the private sector, and nongovernment organizations. The responsibility for this publication rests with the International Rice Research Insti- tute. Copyright International Rice Research Institute 2010 This publication is copyrighted by the International Rice Research Institute (IRRI) and is licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (Unported). Unless otherwise noted, users are free to copy, duplicate, or reproduce, and distribute, display, or transmit any of the articles or portions of the articles, and to make translations, adaptations, or other derivative works under the following conditions: Attribution: The work must be attributed, but not in any way that suggests endorsement by IRRI or the author(s). NonCommercial: This work may not be used for commercial purposes. ShareAlike: If this work is altered, transformed, or built upon, the resulting work must be distributed only under the same or similar license to this one. For any reuse or distribution, the license terms of this work must be made clear to others. Any of the above conditions can be waived if permission is obtained from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. Fair dealing and other rights are in no way affected by the above. To view the full text of this license, visit http://creativecommons.org/licenses/by-nc- sa/3.0/ Mailing address: IRRI, DAPO Box 7777, Metro Manila, Philippines Phone: +63 (2) 580-5600 Fax: +63 (2) 580-5699 Email: [email protected] Web: www.irri.org. Rice Knowledge Bank: www.knowledgebank.irri.org Courier address: Suite 1009, Security Bank Center 6776 Ayala Avenue, Makati City, Philippines Tel. +63 (2) 891-1236, 891-1174, 891-1258, 891-1303 Suggested citation: Grant R. Singleton, Steve R. Belmain, Peter R. Brown, and Bill Har- dy, editors. 2010. Rodent outbreaks: ecology and impacts. Los Baños (Philippines): Inter- national Rice Research Institute. 289 p. Cover design: Juan Lazaro IV Page makeup and composition: Emmanuel Panisales and Grant Leceta Figures and illustrations: Emmanuel Panisales and Grant Leceta ISBNii Contents 978-971-22-0257-5 00a-citation-phil.indd ii 2010-10-22 16:40 Contents Foreword 1 v Foreword 2 vi Acknowledgments vii Rodent outbreaks: an age-old issue with a modern appraisal 1 G.R. Singleton, S.R. Belmain, and P.R. Brown SECTION 1: RODENT OUTBREAKS AND BAMBOO FLOWERING IN ASIA 11 Chronicle and impacts of the 2005-09 mautam in Mizoram 13 K.P. Aplin and J. Lalsiamliana The Chittagong story: studies on the ecology of rat floods and bamboo masting 49 S.R. Belmain, N. Chakma, N.J. Sarker, S.U. Sarker, S.K. Sarker, and N.Q. Kamal The Chittagong story: a regional damage assessment during a rodent population 65 outbreak S.K.M. Ahaduzzaman and S.K. Sarker Rodent population outbreaks associated with bamboo flowering in Chin State, 79 Myanmar N.M. Htwe, G.R. Singleton, A.M. Thwe, and Y.Y. Lwin Rodent outbreaks in the uplands of Lao PDR 99 B. Douangboupha, G.R. Singleton, P.R. Brown, and K. Khamphoukeo SECTION 2: RODENT IMPACTS IN LOWLAND INTENSIVE RICE SYSTEMS 113 IN SOUTHEAST AND SOUTH ASIA Rodent impacts in lowland irrigated intensive rice systems in West Java, Indonesia 115 Sudarmaji, G.R. Singleton, P.R. Brown, J. Jacob, and N. Herawati Rodent outbreaks in South Sulawesi, Indonesia: the importance 129 of understanding cultural norms D. Baco, R. Nasruddin, and H. Juddawi Foreword iii 00bcontents.indd iii 2010-10-22 17:29 Rodent impacts in lowland irrigated intensive rice systems in Vietnam 139 H.N. Huan, V.T.Q. Nga, P.R. Brown, M.T.M. Phung, and G.R. Singleton Socio-cultural factors influencing adoption of ecologically based rodent pest 153 management F.G. Palis, G.R. Singleton, P.R. Brown, N.H. Huan, and N.T.D. Nga Response options to rodent outbreaks following extreme 171 weather events: cyclone Nargis, a case study G.R. Singleton, N.M. Htwe, L.A. Hinds, and W. Soe Analysis of communication pathways and impacts of the Boo! Boo! Rat! 191 campaign R.J.B. Flor and G.R. Singleton SECTION 3: RODENT OUTBREAKS IN OTHER REGIONS: 205 A SEARCH FOR GENERALITIES Rodent outbreaks in Europe: dynamics and damage 207 J. Jacob and E. Tkadlec Rodent outbreaks in Australia: mouse plagues in cereal crops 225 P.R. Brown, G.R. Singleton, R.P. Pech, L.A. Hinds, and C.J. Krebs Rodent outbreaks in New Zealand 239 W.A. Ruscoe and R.P. Pech Rodent outbreaks in North America 253 G. Witmer and G. Proulx Rodent outbreaks in sub-Saharan Africa 269 H. Leirs, V. Sluydts, and R. Makundi Appendix Recipes for rodent culinary delights 281 Compiled by Grant Singleton iv Contents 00bcontents.indd Sec1:iv 2010-10-22 17:29 Foreword 1 Rats have long been the scourge of smallholder farmers in many rice-growing regions in Asia and throughout the world. In 1990, the International Rice Research Institute held an international workshop simply called “Rats in Rice,” which assembled rodent experts from around the globe. Unfortunately, at that time, most of the experts were retired or about to retire. The senior editor of this book, Grant Singleton, attended that workshop for his fi rst rat meeting and it must have had an impact on him because, within 4 years, he was back in the Philippines, and over the next decade he ventured into Indonesia, Laos, Vietnam, and Myanmar, researching the ecology and manage- ment of rodent pests. I am pleased that some 20 years later he organized a second international rodent conference hosted by IRRI, “Impacts of Rodent Outbreaks on Food Security in Asia,” held on 26-28 October 2009. The conference generated much international interest, including an article in Science in February 2010 as part of a special issue on “food security.” I am particularly pleased that the deliberations of the conference have now been captured in this book. This book is timely because, in recent years, population outbreaks of rodents in the rice-cropping systems of Asia have escalated. There has been precious little formal documentation of the factors that lead to rodent population outbreaks, their impacts, and the successes and failures of management actions, particularly in de- veloping countries. The authors bring together in this publication a more complete picture of rodent outbreaks and their implications. The book examines case studies of the recent rodent outbreaks in Asia with a view to drawing generalities. However, an added strength of the book is that it goes beyond the rice ecosystems of Asia and ventures into other ecosystems in Australia, New Zealand, East Africa, Europe, and North America, to allow readers to compare the factors that generate outbreaks of rodent populations on fi ve continents. I am pleased that our Institute in recent years has been able to take a lead role in Asia for research on rodent biology and management, with a focus on smallholder rice farmers. A book of this stature on rodent outbreaks is long overdue. I also note that there are some recipes for rodent culinary delights in the Appendix. I can honestly say that I have partaken of such a gastronomic experience, and, yes, it tastes like chicken! I strongly endorse this timely book, which literally provides food for thought. Enjoy! Dr. Robert S. Zeigler Director General International Rice Research Institute Foreword v 00-foreword.indd v 2010-10-22 17:24 Foreword 2 In 1934, Hans Zinsser published Rats, Lice, and History, detailing in a rambling but iconic manner the history of typhus fever and its impact on civilization. This was the fi rst of several books to deal with how rats and the diseases they spread have affected the course of history. The elephant missing from the room was of course the role of rats as agricultural pests, a problem that has been less visible to agricultural scientists and too often treated as an insoluble problem designed by the gods to test human resilience. The elephant is now fi rmly in the room, as this book attests. In particular, concerns about food security dominate the early 21st century, and this has focused attention on agricultural pests that take food from hungry mouths as well as spread disease. Rodents have been the favorite study animal for graduate students in developed countries because of their rapid life cycle and convenient size. Medical science with- out rats and mice would be in the Stone Age. Population dynamics without rodents would be in its infancy. Much progress has been made in understanding the ecologi- cal factors that limit rodent populations in temperate climates, and only recently has this knowledge been focused on rodents in tropical and subtropical countries, where agricultural pest problems are most serious. All of this has been achieved by the advent of ecologically based rodent management (EBRM), which has stimulated the progress summarized in this book. But, EBRM has gone beyond the purely ecological dynam- ics of rodent populations to integrate this knowledge with the social sciences that are so crucial to implementing management practices that minimize rodent damage to crops and maximize the productivity of farms and the well-being of farmers.
Recommended publications
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Biodiversity – Economy Or Ecology? Long-Term Study of Changes in the Biodiversity of Aphids Living in Steppe-Like Grasslands in Central Europe
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 140–146, 2017 http://www.eje.cz doi: 10.14411/eje.2017.019 ORIGINAL ARTICLE Biodiversity – economy or ecology? Long-term study of changes in the biodiversity of aphids living in steppe-like grasslands in Central Europe BARBARA OSIADACZ 1, ROMAN HAŁAJ 2 and DAMIAN CHMURA3 1 Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego St. 159, PL 60-594 Poznań, Poland; e-mail: [email protected] 2 The Upper Silesian Nature Society, Huberta St. 35, PL 40-543 Katowice, Poland; e-mail: [email protected] 3 Institute of Environmental Protection and Engineering, University of Bielsko-Biała, Willowa 2, PL 43-309 Bielsko-Biała, Poland; e-mail: [email protected] Key words. Hemiptera, Aphidoidea, bio-ecological groups, community structure, protected habitats, loss of biodiversity, human impact, NMDS methods, regional hotspots Abstract. This paper examines the changes in the species composition of aphids living in dry calcareous grasslands in Central Europe over a 25-year period. To the best of our knowledge, this is the fi rst analysis of this type in the world that takes into account both previous and current data on species richness as well as groups of aphids that are distinguishable on the basis of biological and ecological criteria such as host-alternation and feeding types, life cycle, ecological niche, symbiosis with ants and their eco- logical functional groups. Over the period of more than 25 years, there has been a signifi cant decrease in aphid α-diversity, from 171 to 105 species.
    [Show full text]
  • Bryophyte Ecology Table of Contents
    Glime, J. M. 2020. Table of Contents. Bryophyte Ecology. Ebook sponsored by Michigan Technological University 1 and the International Association of Bryologists. Last updated 15 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. This file will contain all the volumes, chapters, and headings within chapters to help you find what you want in the book. Once you enter a chapter, there will be a table of contents with clickable page numbers. To search the list, check the upper screen of your pdf reader for a search window or magnifying glass. If there is none, try Ctrl G to open one. TABLE OF CONTENTS BRYOPHYTE ECOLOGY VOLUME 1: PHYSIOLOGICAL ECOLOGY Chapter in Volume 1 1 INTRODUCTION Thinking on a New Scale Adaptations to Land Minimum Size Do Bryophytes Lack Diversity? The "Moss" What's in a Name? Phyla/Divisions Role of Bryology 2 LIFE CYCLES AND MORPHOLOGY 2-1: Meet the Bryophytes Definition of Bryophyte Nomenclature What Makes Bryophytes Unique Who are the Relatives? Two Branches Limitations of Scale Limited by Scale – and No Lignin Limited by Scale – Forced to Be Simple Limited by Scale – Needing to Swim Limited by Scale – and Housing an Embryo Higher Classifications and New Meanings New Meanings for the Term Bryophyte Differences within Bryobiotina 2-2: Life Cycles: Surviving Change The General Bryobiotina Life Cycle Dominant Generation The Life Cycle Life Cycle Controls Generation Time Importance Longevity and Totipotency 2-3: Marchantiophyta Distinguishing Marchantiophyta Elaters Leafy or Thallose? Class
    [Show full text]
  • Bridging Livelihoods and Forest Conservation in Protected Areas: Exploring the Role and Scope of Non-Timber Forest Products
    Bridging Livelihoods and Forest Conservation in Protected Areas: Exploring the role and scope of non-timber forest products Field experience from Satchari National Park, Habiganj, Bangladesh A dissertation paper submitted for the partial fulfillment of B.Sc. (Honors) in Forestry Submitted by Sharif Ahmed Mukul Registration no: 2001631031 Bridging Livelihoods and Forest Conservation in Protected Areas: Exploring the role and scope of non-timber forest products Field experience from Satchari National Park, Habiganj, Bangladesh Research Paper Prepared and Submitted by Sharif Ahmed Mukul Registration no. 2001631031 Department of Forestry School of Agriculture and Mineral Sciences Shahjalal University of Science and Technology May, 2007 ii Certification This is to certify that this paper entitled, ‘Bridging Livelihoods and Forest Conservation in Protected Areas: Exploring the role and scope for non-timber forest products’ is an original paper prepared by Registration no. 2001631031 (Session 2001- 02) based on his field study at Satchari National Park, Habiganj, Bangladesh for the partial fulfillment of his B.Sc. (Hons.) in Forestry degree at Shahjalal University of Science and Technology, Sylhet, Bangladesh. He has completed the work under my supervision and I do hereby approve the style and contents of this paper. A.Z.M. Manzoor Rashid Assistant Professor Department of Forestry iii Declaration This is to declare that, it is an original paper prepared by myself based on my one year field investigations at Satchari National Park, Habiganj, Bangladesh; to submit as a requirement for the partial fulfillment of B. Sc. (Hons.) degree in the Department of Forestry at School of Agriculture and Mineral Sciences of Shahjalal University of Science and Technology, Sylhet, Bangladesh.
    [Show full text]
  • Pulp and Papermaking Properties of Bamboo Species Melocanna Baccifera
    CELLULOSE CHEMISTRY AND TECHNOLOGY PULP AND PAPERMAKING PROPERTIES OF BAMBOO SPECIES MELOCANNA BACCIFERA SANDEEP KUMAR TRIPATHI, OM PRAKASH MISHRA, NISHI KANT BHARDWAJ and RAGHAVAN VARADHAN Avantha Centre for Industrial Research and Development, BILT Paper Mill Campus, Yamuna Nagar, Haryana, India ✉Corresponding author: S. Kumar Tripathi, [email protected] Received August, 17, 2016 Pulp and paper making properties of bamboo species Melocanna baccifera were studied with a focus on the physical properties and chemical composition of bamboo chips, on pulping behavior, bleaching response, fiber morphology, refining behavior and strength properties of the bleached pulp. Melocanna baccifera species was found to have 52.8% cellulose, 21.1% hemicelluloses and 25.2% lignin, i.e. similar to hardwood. The produced pulp could be bleached to 89 ± 1% ISO brightness. The bleached pulp refined to 25 °SR had 54.6 Nm/g tensile index, 10.7 mN.m 2/g tear index, 4.95 kN.m 2/g burst index and 328 double folds. Also, the bleached pulp had an average fiber length of 1.68 mm, which is higher than that of hardwood pulp (0.88-1.1 mm), but lower than that of softwood pulp (2.2-3.5 mm). Meanwhile, the pulp had an average fiber width of 17.1 µm, which is similar to that of hardwood fiber (16-20 µm), but lower than that of softwood fiber (28-35 µm). Keywords : bamboo, bleaching, extractives, papermaking properties, pulping INTRODUCTION dimensions has been reported among the species, Bamboo is one of the most versatile plants in but no significant differences in the chemical the world.
    [Show full text]
  • HONEYBEE VISITS MULI BAMBOO, MELOCANNA BACCIFERA (ROXB.) KURZ (BAMBUSOIDEAE: POACEAE) *Arun T
    Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2015 Vol. 4 (4) October-December, pp. 49-52/Ram Research Article HONEYBEE VISITS MULI BAMBOO, MELOCANNA BACCIFERA (ROXB.) KURZ (BAMBUSOIDEAE: POACEAE) *Arun T. Ram Department of Botany, Plant Diversity Division, University of Calicut, Malappuram, Kerala- 673 635, India *Author for Correspondence ABSTRACT The present investigation is concerned with some important aspects of honeybee (Apis dorsata Fabricius) visits Muli bamboo, Melocanna baccifera about which information was scanty and meagre. Hymenopteran members were playing an important role in pollination especially in bamboos. Further studies to be carried out on the role of insects in the pollination biology of Melocanna baccifera. Keywords: Melocanna Baccifera, Poaceae, Hymenoptera INTRODUCTION Melocanna baccifera (Roxb.) Kurz, is one of the most valuable Indian bamboos, growing to about 10-20 m height. This genus is native to India, Bangladesh, Myanmar (Burma) and Nepal (Watson and Dallowitz, 1992; Ohrnberger, 1999). Past record of the flowering periodicity of the species is expected to be 48 years interval (Shibata, 2009); they flower once in their lifetime and die (Janzen, 1976). The floral morphology consists of the large compound panicle, spikelets were acuminate fasciculate and one sided. There are two types of flowers observed, one in fertile stage and sterile stage; fertile flowers were at the lower nodes and sterile were at the upper nodes of the culms; several sterile and fertile flowers arising from the same nodes and were hanging down from the nodes. Very little studies have been conducted on the pollination biology of bamboos as the major subject by Jackson (1981), Koshy et al., (2001) and Huang et al., (2002).
    [Show full text]
  • Bamboo Bamboo
    BAMBOOBAMBOO TheThe AmazingAmazing GrassGrass AA GuideGuide toto THETHE DIVERSITYDIVERSITY ANDAND STUDYSTUDY OFOF BAMBOOSBAMBOOS ININ SOUTHEASTSOUTHEAST ASIAASIA KMKM WongWong BAMBOO The Amazing Grass BAMBOO The Amazing Grass A Guide to THE DIVERSITY AND STUDY OF BAMBOOS IN SOUTHEAST ASIA KM Wong Rimba Ilmu Botanic Garden, Institute of Biological Sciences, Faculty of Science, University of Malaya International Plant Genetic Resources Institute (IPGRI) and University of Malaya 2004 Text copyright © International Plant Genetic Resources Institute (IPGRI), Regional Office for Asia, the Pacific and Oceania P.O. Box 236, UPM Post Office, Serdang, 43400 Selangor Darul Ehsan, Malaysia and University of Malaya, 50603 Kuala Lumpur, Malaysia Photographs copyright © as credited. First published 2004 Layout by Cheng Jen Wai Printed and bound in Malaysia Front cover: Unfinished bamboo basket in a village in Nami, Kedah, Peninsular Malaysia, its maker pensive. Back cover: Clump division and rhizome offsets of Gigantochloa latifolia, near Alor Setar, Kedah, Peninsular Malaysia, being taken for establishment in the Bambusetum of the Rimba Ilmu Botanic Garden, University of Malaya, an IPGRI-supported project. IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) iv Contents Foreword ..................................................................................................... vii Preface ........................................................................................................
    [Show full text]
  • Internode Morphometrics and Allometry of Tonkin Cane Pseudosasa Amabilis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Received: 1 July 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3483 ORIGINAL RESEARCH Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis Liang Cheng1 | Cang Hui2 | Gadi V. P. Reddy3 | Yu-Long Ding1 | Pei-Jian Shi1 1Department of New Energy Science and Technology, Bamboo Research Institute, Abstract Nanjing Forestry University, Nanjing, Jiangsu, Pseudosasa amabilis (McClure) (Poales: Gramineae) is a typical bamboo species natu- China rally distributed in large area of south China and famous for its culm strength. Although 2Centre for Invasion Biology, Department of Mathematical Sciences, African Institute bamboos were found to share the same development rule, the detailed internode mor- for Mathematical Sciences, Stellenbosch phology of bamboo culm was actually not fully expressed. We explored internode University, Matieland, South Africa morphology of P. amabilis using 11 different physical parameters in different dimen- 3Western Triangle Agricultural Research Centre, Montana State University, Conrad, sions (1–4). As Taylor’s power law (TPL) is generally applicable to describe relationship MT, USA between mean and variance of population density, here we used TPL to evaluate the Correspondence differences between internodes, and further, the relationship between dimension and Pei-Jian Shi, Department of New Energy TPL. Results showed that length (L), hollow radius (HR), hollow area (HA), hollow Science and Technology, Bamboo Research Institute, Nanjing Forestry University, Nanjing, cylinder volume (HCV), total cylinder volume (TCV), density (De), and weight (W) Jiangsu, China. all presented positive skewed distribution in varying degrees.
    [Show full text]
  • Reconstructing the Phylogeny of Aphids
    Molecular Phylogenetics and Evolution 68 (2013) 42–54 Contents lists available at SciVerse ScienceDirect Molecul ar Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola ⇑ Eva Nováková a,b, , Václav Hypša a, Joanne Klein b, Robert G. Foottit c, Carol D. von Dohlen d, Nancy A. Moran b a Faculty of Science, University of South Bohemia, and Institute of Parasitology, Biology Centre, ASCR, v.v.i., Branisovka 31, 37005 Ceske Budejovice, Czech Republic b Department of Ecology and Evolutionary Biology, Yale University, 300 Heffernan Dr., West Haven, CT 06516-4150, USA c Agriculture & Agri-Food Canada, Canadian National Collection of Insects, K.W. Neatby Bldg., 960 Carling Ave. Ottawa, Ontario, Canada K1A 0C6 d Department of Biology, Utah State University, UMC 5305, Logan, UT 84322-5305, USA article info abstract Article history: Reliable phylogene tic reconstruction, as a framework for evolutionary inference, may be difficult to Received 21 August 2012 achieve in some groups of organisms. Particularly for lineages that experienced rapid diversification, lack Revised 7 March 2013 of sufficient information may lead to inconsistent and unstable results and a low degree of resolution. Accepted 13 March 2013 Coincident ally, such rapidly diversifying taxa are often among the biologically most interesting groups. Available online 29 March 2013 Aphids provide such an example. Due to rapid adaptive diversification, they feature variability in many interesting biological traits, but consequently they are also a challenging group in which to resolve phy- Keywords: logeny. Particularly within the family Aphididae, many interesting evolutionary questions remain unan- Aphid swered due to phylogene tic uncertainties.In this study, we show that molecular data derived from the Evolution Buchnera symbiotic bacteria of the genus Buchnera can provide a more powerful tool than the aphid-derived Phylogeny sequences.
    [Show full text]
  • Various Species)
    Specialty Crops for Pacific Island Agroforestry (http://agroforestry.net/scps) Farm and Forestry Production and Marketing Profile for Bamboo (various species) By Andrew Benton, Lex Thomson, Peter Berg, and Susan Ruskin USES AND PRODUCTS are usually shaped by hand or machine to ensure all four Bamboos produce woody culms that may be used whole as sides are straight, and then pressed together with glues into timber, or split for a multitude of wood products. The young laminated boards, which themselves can be shaped into shoots of some species can be eaten. The major usable mate- panels, parquet flooring, door and window frames, and so rials produced by bamboos are described below. on. These are widely produced in China, Japan, and India. Whole poles Splits Whole poles are widely used for construction, for scaffold- Splits are thin strips that are flexible enough to be woven. ing, frameworks, and other structural components of build- Broad, thin splits are often woveni nto mats, which can be ings (after proper preservation treatments). Pole sections pressed together into mat board. Narrower splits are fre- are also for round-pole furniture, handicrafts, and irrigation quently used in weaving handicrafts, furniture, and panels. systems. Bambusa vulgaris poles are widely used for tem- Splits of Schizostachyum glaucifolium are commonly used in porary building structures and rafts. The most promising Fiji for weaving into mats and interior panels. construction bamboos introduced into the Pacific islands Sticks include B. oldhamii, Dendrocalamus asper, D. giganteus and Sticks are produced by splitting laths, or thick splits, de- D. latiflorus, and Guadua angustifolia.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi in Melocanna Baccifera from Disturbed and Undisturbed Sites in Mizoram, India Lalnunthari, John Zothanzama*, Saizamrengi
    Volume 19, issue 2, pages 24–29 30 June 2019 DOI: https://doi.org/10.33493/scivis.19.02.05 ORIGINAL ARTICLE Arbuscular mycorrhizal fungi in Melocanna baccifera from disturbed and undisturbed sites in Mizoram, India Lalnunthari, John Zothanzama*, Saizamrengi Department of Environmental Science, Mizoram University, Aizawl 796004, India Melocanna baccifera is a well-known native bamboo species of India belonging to Received 13 March 2019 Accepted 6 May 2019 the grass family Poaceae. A study on the presence of arbuscular mycorrhizal fungi (AMF) association with M. baccifera was conducted from a disturbed and *For correspondence: Zothanzama undisturbed bamboo forest sites within Mizoram University, Mizoram, India. Soil [email protected] from the rhizosphere region as well as physico-chemical properties of the soil were taken to study AMF diversity. The roots were observed for percentage colonization Contact us: by AMF. It was found that undisturbed site had higher colonization percentage [email protected] (56%) than the disturbed site (46%). The Shannon’s diversity index showed that undisturbed site (1.46) had more diversity than the disturbed site (1.59) while disturbed site showed lower index of dominance (3.34) which indicates higher shared dominance of AMF species than undisturbed site (4.66). Keywords: Arbuscular mycorrhizal fungi, colonization, rhizosphere, spore number. 3 Introduction family Poaceae. It has prime economical as well as ecological significance. It spreads aggressively and 3,4 A mycorrhiza is a symbiotic (generally mutualistic, dominates over other vegetation in a short time. M. but occasionally weakly pathogenic) association baccifera is an aggressive bamboo, easily occupying between a fungus and the roots of a vascular plant.
    [Show full text]
  • VOLUME 5 Biology and Taxonomy
    VOLUME 5 Biology and Taxonomy Table of Contents Preface 1 Cyanogenic Glycosides in Bamboo Plants Grown in Manipur, India................................................................ 2 The First Report of Flowering and Fruiting Phenomenon of Melocanna baccifera in Nepal........................ 13 Species Relationships in Dendrocalamus Inferred from AFLP Fingerprints .................................................. 27 Flowering gene expression in the life history of two mass-flowered bamboos, Phyllostachys meyeri and Shibataea chinensis (Poaceae: Bambusoideae)............................................................................... 41 Relationships between Phuphanochloa (Bambuseae, Bambusoideae, Poaceae) and its related genera ......... 55 Evaluation of the Polymorphic of Microsatellites Markers in Guadua angustifolia (Poaceae: Bambusoideae) ......................................................................................................................................... 64 Occurrence of filamentous fungi on Brazilian giant bamboo............................................................................. 80 Consideration of the flowering periodicity of Melocanna baccifera through past records and recent flowering with a 48-year interval........................................................................................................... 90 Gregarious flowering of Melocanna baccifera around north east India Extraction of the flowering event by using satellite image data ......................................................................................................
    [Show full text]