Thioesterase Superfamily Member 1 Undergoes Stimulus-Coupled Conformational Reorganization to Regulate Metabolism in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Thioesterase Superfamily Member 1 Undergoes Stimulus-Coupled Conformational Reorganization to Regulate Metabolism in Mice ARTICLE https://doi.org/10.1038/s41467-021-23595-x OPEN Thioesterase superfamily member 1 undergoes stimulus-coupled conformational reorganization to regulate metabolism in mice Yue Li 1,2, Norihiro Imai3, Hayley T. Nicholls 3, Blaine R. Roberts 4, Samaksh Goyal 1,2, Tibor I. Krisko 3, Lay-Hong Ang 1,2, Matthew C. Tillman4, Anne M. Roberts4, Mahnoor Baqai 1,2, Eric A. Ortlund 4, ✉ ✉ David E. Cohen 3 & Susan J. Hagen 1,2 1234567890():,; In brown adipose tissue, thermogenesis is suppressed by thioesterase superfamily member 1 (Them1), a long chain fatty acyl-CoA thioesterase. Them1 is highly upregulated by cold ambient temperature, where it reduces fatty acid availability and limits thermogenesis. Here, we show that Them1 regulates metabolism by undergoing conformational changes in response to β-adrenergic stimulation that alter Them1 intracellular distribution. Them1 forms metabolically active puncta near lipid droplets and mitochondria. Upon stimulation, Them1 is phosphorylated at the N-terminus, inhibiting puncta formation and activity and resulting in a diffuse intracellular localization. We show by correlative light and electron microscopy that Them1 puncta are biomolecular condensates that are inhibited by phosphorylation. Thus, Them1 forms intracellular biomolecular condensates that limit fatty acid oxidation and sup- press thermogenesis. During a period of energy demand, the condensates are disrupted by phosphorylation to allow for maximal thermogenesis. The stimulus-coupled reorganization of Them1 provides fine-tuning of thermogenesis and energy expenditure. 1 Division of General Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA. 2 Department of Surgery, Harvard Medical School, Boston, MA, USA. 3 Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA. ✉ 4 Department of Biochemistry, Emory University, Atlanta, GA, USA. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:3493 | https://doi.org/10.1038/s41467-021-23595-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23595-x ntracellular triglycerides are stored within lipid droplets (LD) Them1 is comprised of tandem N-terminal thioesterase Ithat are juxtaposed to mitochondria in the cytoplasm1. This domains and a C-terminal lipid-binding steroidogenic acute close relationship facilitates the rapid transfer of fatty acids to regulatory-related lipid transfer (START) domain. Proteomics mitochondria, which are generated by lipolysis in response to has revealed that there are a number of BAT-selective phos- cellular energy demands2. One such demand is non-shivering phorylation sites near the N-terminus of Them1 in vivo, most thermogenesis, which is mediated by brown adipose tissue (BAT) notable are serine residues at (S) 15, 18, and 2512. Here, we show in response to cold exposure to generate heat3. This occurs, at experimentally that Them1 is phosphorylated at the N-terminus least in part, when mitochondrial β-oxidation is uncoupled from after stimulation in vitro and exists in two different oxidative phosphorylation via uncoupling protein 1. The hydro- phosphorylation-dependent conformational states: punctate and lysis of LD-derived triglycerides is initiated following the release diffuse. Punctate refers to small, highly concentrated aggregations of norepinephrine from neurons, which binds to β3 adrenergic of Them1 that localize to regions of the cytoplasm that interface receptors on brown adipocytes to stimulate a cell signaling cas- with LD and mitochondria, whereas diffuse refers to homo- cade that activates adenylyl cyclase to generate cAMP and activate geneously distributed Them1 across the cell cytoplasm and protein kinase A (PKA)4. In brown adipocytes, the generation of nucleus. We demonstrate that β-adrenergic stimulation with NE, fatty acids for mitochondrial oxidation requires PKA to phos- which is used to mimic cold exposure, activates a signaling cas- phorylate/activate perilipin, a regulatory membrane-bound pro- cade that results in Them1 phosphorylation and a diffuse loca- tein that encircles LD. The function of perilipin is to protect lization. A functional analysis revealed that Them1 in punctate triglycerides within the LD from lipolysis, and its phosphoryla- form suppresses fatty acid oxidation, whereas this suppression is tion by PKA allows access of cytoplasmic adipose triglyceride abrogated when it is diffusely distributed in the cell cytoplasm. lipase (ATGL), hormone-sensitive lipase (HSL), and mono- Overall, these findings highlight the importance of Them1 acylglycerol lipase (MAGL), to generate free fatty acids through phosphorylation in the regulation of thermogenesis in BAT and sequential lipolytic steps5. Once fatty acids are free in the cyto- lend support for targeting Them1 for the management of obesity- plasm, they are esterified with coenzyme A (CoA) by long-chain related disorders. acyl-CoA synthetase 1 (ACSL1) to form fatty acyl-CoAs, which are transported into mitochondria via carnitine palmitoyl trans- Results ferase 1 and metabolized to produce heat6. Fatty acyl-CoA N-terminal serine phosphorylation of Them1. To assess the molecules can also be hydrolyzed to fatty acids in the cytoplasm BAT-selective phosphorylation of Them1, we consulted the by acyl-CoA thioesterase (Acot) isoforms7,8. The fatty acids phosphomouse database12, which revealed phosphopeptides generated can be utilized to make additional fatty acyl-CoAs that containing phosphorylation events at serine (S) 15, 18, and 25 in are transported into mitochondria or can be returned to the LD the N-terminus of Them1 in vivo within BAT, which are highly for storage. conserved (Supplementary Fig. 1). Thioesterase superfamily member 1 (Them1), which is also To explore the role of Them1 S-phosphorylation in regulating known as brown fat inducible thioesterase or steroidogenic acute metabolism, cultured immortalized brown adipose cells (iBAs) regulatory protein-related lipid transfer (START) domain 14 from mouse BAT were used as an in vitro model. Because iBAs (StarD14)/Acot11, plays an important role in energy did not express Them1 mRNA or protein, as was the case for homeostasis9,10. Mice with the genetic deletion of Them1 exhibit primary cultured brown adipocytes11, Them1 expression required increased energy expenditure, which results in reduced weight plasmid or adenoviral transfection (Supplementary Fig. 2a–c) to gain when challenged with a high fat diet despite high food study its biochemical and physiological characteristics in vitro. To consumption10. This is attributable to increased mitochondrial examine whether Them1 is S-phosphorylated after stimulation, fatty acid oxidation, and mechanistic studies have demonstrated we determined the aggregate abundance of phosphopeptides that Them1 functions to suppress energy expenditure by limiting in the N-terminus of Them1 by mass spectrometry after stimulation triglyceride hydrolysis in BAT, thus inhibiting the mitochondrial with phorbol 12-myristate 13-acetate (PMA; Fig. 1a, b) normalized oxidation of LD-derived fatty acids10,11. to hormone-sensitive lipase as a housekeeping phosphopeptide Fig. 1 Regulation of Them1 phosphorylation and its subcellular localization in iBAs. a LC-MS/MS data for iBAs expressing Ad-Them1-EGFP stimulated with PMA for 0–4 h. The data are presented as normalized aggregate abundance of N-terminal phosphopeptides using hormore sensitive lipase as a reference for normalization, which does not change after PMA stimulation (see Supplementary Fig. 3). Regression line indicates a positive and significant correlation between phosphorylation events at the N-terminus and time after stimulation. Data are means ± SE for n = 3 different experiments/timepoint. Statistical significance was determined by ANOVA on the regression line, where P < 0.001. Normality test passed (P = 0.759) and constant variance test, via Spearman Rank Correlation, passed (P = 0.460). b Schematic diagram of the experimental design in a. c N-terminal amino acid sequence of Them1 showing specific phosphorylation events at S25, S27, and S31 in the Them1 sequence (blue asterisks) as determined by LC-MS/MS. Phosphorylation events in vivo at S15, S18, and S25 are represented by red font. 2 NATURE COMMUNICATIONS | (2021) 12:3493 | https://doi.org/10.1038/s41467-021-23595-x | www.nature.com/naturecommunications NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23595-x ARTICLE that does not change with PMA stimulation (Supplementary not attributable to the synthesis of new Them1-EGFP protein, Fig. 3). This resulted in a linear increase in phosphorylation because inhibition of protein synthesis using cycloheximide events over time after stimulation (Fig. 1a), with serine during the 4 h period of stimulation had no effect on Them1 phosphorylation events that could be measured at S25, S27, localization or protein concentration (Supplementary Fig. 7). and S31 (Fig. 1c). Taken together, these in vivo and in vitro The canonical PKC binding sequence, R/K-X-S-X-R/K where results suggested that stimulus-mediated S-phosphorylation Xat+1 is a hydrophobic residue, is not present within the N- within the N-terminus could control Them1 metabolic activity terminal Them1 sequence (Fig. 1c). However, our pathway in BAT. suggested that PKC was involved in the dissolution of puncta. To examine this experimentally, we used an antibody specific for the canonical PKC binding
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • The Role of the Mtor Pathway in Developmental Reprogramming Of
    THE ROLE OF THE MTOR PATHWAY IN DEVELOPMENTAL REPROGRAMMING OF HEPATIC LIPID METABOLISM AND THE HEPATIC TRANSCRIPTOME AFTER EXPOSURE TO 2,2',4,4'- TETRABROMODIPHENYL ETHER (BDE-47) An Honors Thesis Presented By JOSEPH PAUL MCGAUNN Approved as to style and content by: ________________________________________________________** Alexander Suvorov 05/18/20 10:40 ** Chair ________________________________________________________** Laura V Danai 05/18/20 10:51 ** Committee Member ________________________________________________________** Scott C Garman 05/18/20 10:57 ** Honors Program Director ABSTRACT An emerging hypothesis links the epidemic of metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD) and diabetes with chemical exposures during development. Evidence from our lab and others suggests that developmental exposure to environmentally prevalent flame-retardant BDE47 may permanently reprogram hepatic lipid metabolism, resulting in an NAFLD-like phenotype. Additionally, we have demonstrated that BDE-47 alters the activity of both mTOR complexes (mTORC1 and 2) in hepatocytes. The mTOR pathway integrates environmental information from different signaling pathways, and regulates key cellular functions such as lipid metabolism, innate immunity, and ribosome biogenesis. Thus, we hypothesized that the developmental effects of BDE-47 on liver lipid metabolism are mTOR-dependent. To assess this, we generated mice with liver-specific deletions of mTORC1 or mTORC2 and exposed these mice and their respective controls perinatally to
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Human ACOT11 Antibody Catalog Number: AFA0903
    Human ACOT11 antibody Catalog Number: AFA0903 PRODUCT INPORMATION Catalog number AFA0903 Clone No. J4B2 Product type Monoclonal Antibody UnitProt No. Q8WXI4 NCBI Accession No. NP_671517 Alternative Names thioesterase, adipose associated isoform BFIT2, acyl-CoA thioesterase 11, thioesterase, adipose associated, STARD14, BFIT, KIAA0707, BFIT1, THEM1, StAR-related lipid transfer (START) domain containing 14 PRODUCT SPECIFICATION Antibody Host Mouse Reacts With Human Concentration 1mg/ml (determined by BCA assay) Formulation Liquid in. Phosphate-Buffered Saline (pH 7.4) with 0.02% Sodium Azide, 10% glycerol Immunogen Recombinant human ACOT11 (19-250aa) purified from E. coli Isotype IgG2b kappa Purification Note By protein-G affinity chromatography Application ELISA,WB,IHC Usage The antibody has been tested by ELISA, Western blot and IHC analysis to assure specificity and reactivity. Since application varies, however, each investigation should be titrated by the reagent to obtain optimal results. 1 Human ACOT11 antibody Catalog Number: AFA0903 Storage Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description ACOT11 (Acyl-CoA thioesterase11), also known as BFIT, is a protein with acyl-CoA thioesterase activity towards medium (C12) and long-chain (C18) fatty acyl-CoA substrates. Expression of this protein in mouse has been associated with obesity and alternative splicing results in two transcript variants encoding different isoforms. General References S. H. Adams, et al: (2001) Biochem. J. 360, 135-142. DATA Western blot analysis (WB) The cell lysates of LNCap, Hep3B (30ug) were resolved by SDS-PAGE, transferred to NC membrane and probed with anti-human ACOT11 (1:1000).
    [Show full text]
  • Adipose Tissue NAPE-PLD Controls Fat Mass Development by Altering the Browning Process and Gut Microbiota
    ARTICLE Received 11 Jul 2014 | Accepted 4 Feb 2015 | Published 11 Mar 2015 DOI: 10.1038/ncomms7495 OPEN Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota Lucie Geurts1, Amandine Everard1,*, Matthias Van Hul1,*, Ahmed Essaghir2, Thibaut Duparc1, Se´bastien Matamoros1, Hubert Plovier1, Julien Castel3, Raphael G.P. Denis3, Marie Bergiers1, Ce´line Druart1, Mireille Alhouayek4, Nathalie M. Delzenne1, Giulio G. Muccioli4, Jean-Baptiste Demoulin2, Serge Luquet3 & Patrice D. Cani1 Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. 1 Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Universite´ catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium. 2 de Duve Institute, Universite´ catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • By Submitted in Partial Satisfaction of the Requirements for Degree of in In
    BCL6 maintains thermogenic capacity of brown adipose tissue during dormancy by Vassily Kutyavin DISSERTATION Submitted in partial satisfaction of the requirements for degree of DOCTOR OF PHILOSOPHY in Biomedical Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Approved: ______________________________________________________________________________Eric Verdin Chair ______________________________________________________________________________Ajay Chawla ______________________________________________________________________________Ethan Weiss ______________________________________________________________________________ ______________________________________________________________________________ Committee Members Copyright 2019 by Vassily Kutyavin ii Dedicated to everyone who has supported me during my scientific education iii Acknowledgements I'm very grateful to my thesis adviser, Ajay Chawla, for his mentorship and support during my dissertation work over the past five years. Throughout my time in his lab, I was always able to rely on his guidance, and his enthusiasm for science was a great source of motivation. Even when he was traveling, he could easily be reached for advice by phone or e- mail. I am particularly grateful for his help with writing the manuscript, which was probably the most challenging aspect of graduate school for me. I am also very grateful to him for helping me find a postdoctoral fellowship position. Ajay's inquisitive and fearless approach to science have been a great inspiration to me. In contrast to the majority of scientists who focus narrowly on a specific topic, Ajay pursued fundamental questions across a broad range of topics and was able to make tremendous contributions. My experience in his lab instilled in me a deep appreciation for thinking about the entire organism from an evolutionary perspective and focusing on the key questions that escape the attention of the larger scientific community. As I move forward in my scientific career, there is no doubt that I will rely on him as a role model.
    [Show full text]
  • Inflammatory Stimuli Induce Acyl-Coa Thioesterase 7 and Remodeling of Phospholipids Containing Unsaturated Long (C20)-Acyl Chains in Macrophages
    Supplemental Material can be found at: http://www.jlr.org/content/suppl/2017/04/17/jlr.M076489.DC1 .html Inflammatory stimuli induce acyl-CoA thioesterase 7 and remodeling of phospholipids containing unsaturated long (C20)-acyl chains in macrophages Valerie Z. Wall,*,† Shelley Barnhart,* Farah Kramer,* Jenny E. Kanter,* Anuradha Vivekanandan-Giri,§ Subramaniam Pennathur,§ Chiara Bolego,** Jessica M. Ellis,§§,*** Miguel A. Gijón,††† Michael J. Wolfgang,*** and Karin E. Bornfeldt1,*,† Department of Medicine,* Division of Metabolism, Endocrinology and Nutrition, and Department of Pathology,† UW Medicine Diabetes Institute, University of Washington, Seattle, WA; Department of Internal Medicine,§ University of Michigan, Ann Arbor, MI; Department of Pharmaceutical and Pharmacological Sciences,** University of Padova, Padova, Italy; Department of Nutrition Science,§§ Purdue University, West Lafayette, IN; Department of Biological Chemistry,*** Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Pharmacology,††† University of Downloaded from Colorado Denver, Aurora, CO Abstract Acyl-CoA thioesterase 7 (ACOT7) is an intracel- containing unsaturated long (C20)-acyl chains in macro- lular enzyme that converts acyl-CoAs to FFAs. ACOT7 is in- phages, and, although ACOT7 has preferential thioesterase duced by lipopolysaccharide (LPS); thus, we investigated activity toward these lipid species, loss of ACOT7 has no ma- www.jlr.org downstream effects of LPS-induced induction of ACOT7 jor detrimental effect on macrophage inflammatory pheno- and its role in inflammatory settings in myeloid cells. Enzy- types.—Wall, V. Z., S. Barnhart, F. Kramer, J. E. Kanter, matic thioesterase activity assays in WT and ACOT7-deficient A. Vivekanandan-Giri, S. Pennathur, C. Bolego, J. M. Ellis, macrophage lysates indicated that endogenous ACOT7 con- M.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • DIAGNOSIS and THERAPIES for MUCOPOLYSACCHARIDOSES by Francyne Kubaski a Dissertation Submitted to the Faculty of the University
    DIAGNOSIS AND THERAPIES FOR MUCOPOLYSACCHARIDOSES by Francyne Kubaski A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences Spring 2017 © 2017 Francyne Kubaski All Rights Reserved DIAGNOSIS AND THERAPIES FOR MUCOPOLYSACCHARIDOSES by Francyne Kubaski Approved: __________________________________________________________ Robin W. Morgan, Ph.D. Chair of the Department of Biological Sciences Approved: __________________________________________________________ George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: __________________________________________________________ Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Erica M. Selva, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Shunji Tomatsu, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Robert W. Mason, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member 2 in Skeletal Muscle Promotes Hepatic Steatosis and Insulin Resistance Norihiro Imai1, Hayley T. Nicholls1, Michele Alves-Bezerra1, Yingxia Li1, Anna A. Ivanova2, Eric A. Ortlund2, and David E. Cohen1 1Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA 2Department of Biochemistry, Emory University, Atlanta, GA 30322 USA Current addresses: Norihiro Imai - Department of Gastroenterology and Hepatology, Nagoya University School of Medicine, Aichi 4668560 Japan Michele Alves-Bezerra - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Figure number: 8 Supplemental figure number: 10 Supplemental table number: 2 References: 48 Keywords: Hepatic steatosis, obesity, acyl-CoA thioesterase, fatty acid oxidation, insulin resistance Conflict of interest: The authors have declared that no conflict of interest exists. Author contributions: N.I.: designed research studies, conducted experiments, acquired data, analyzed data and wrote manuscript. H.T.N.: conducted experiments and analyzed data, M.A.B.: designed research studies and conducted experiments, Y.L.: acquired data, A.A.I.: conducted experiments and analyzed data, E.A.O.: analyzed data, D.E.C.: designed research studies, analyzed data and wrote manuscript.
    [Show full text]