<<

UltraVioletImagingTelescope(UVIT)onASTROSAT AmitKumar 1,S.K.Ghosh 2,J.Hutchings 3,P.U.Kamath 1,S.Kathiravan 1,P.K.Mahesh 1,J.Murthy 1, Nagbhushana.S 1,A.K.Pati 1,M.N.Rao 1,N.K.Rao 1,S.Sriram 1,andS.N.Tandon 1,4 1. IndianInstituteof, 2. NationalCentreforRadioAstrophysics,TIFR, 3. NRCHerzbergInstituteofAstrophysics,Canada 4. InterUniversityCentreforAstronomyandAstrophysics,Pune

ABSTRACT

UltraVioletImagingTelescopeonASTROSATSatellitemissionisasuiteofFarUltraViolet(FUV;130–180nm), NearUltraViolet(NUV;200–300nm)andVisibleband(VIS;320–550nm)imagers.ASTROSATisthefirstmulti wavelength mission of . UVIT will image the selected regions of the sky simultaneously in three channels & observeyoungstars,galaxies,brightUVSources.FOVineachofthe3channelsis~28arcminute.Targetedangular resolutionintheresultingUVimagesisbetterthan1.8arcsecond(betterthan2.0arcsecondforthevisiblechannel). Twoidenticalcoalignedtelescopes(T1,T2)ofRitcheyChretienconfiguration(Primarymirrorof~375mmdiameter) collectcelestialradiationandfeedtothedetectorsystemviaaselectablefilteronafilterwheelmechanism;gratingsare availableinfilterwheelsofFUVandNUVchannelsforslitlesslowresolution.Thedetectorsystemfor eachofthe3channelsisgenericallyidentical.OneofthetelescopesimagesintheFUVchannel,whiletheotherimages inNUVandVISchannels.ImagesfromVISchannelarealsousedformeasuringdriftforreconstructionofimageson groundthroughshiftandaddalgorithm,andtoreconstructabsoluteaspectoftheimages.Adequatebafflinghasbeen provided for reducing scattered background from the Sun, earth albedo and other bright objects. One time openable mechanicalcover oneach telescope also worksasa Sunshieldafterdeployment. Weare presenting herethe overall (mechanical,opticalandelectrical)designofthepayload. Keywords: UV,Telescope,ASTROSAT,Detector,CMOSSTAR250

1. INTRODUCTION ASTROSAT mission of Indian Space Research Organisation (ISRO) is planned for multiwavelength astronomical observationscoveringtherangefromthevisiblebandtohardXrays,andisexpectedtobelaunchedbyISROlaunch vehiclePSLVinthe year2013.TherearefourindependentinstrumentsforobservingintheXraybandsandaUltra Violet Imaging Telescope (UVIT) for observing in visible and bands. UVIT is primarily an imaging instrumentwhichmakesimageswithFWHM<1.8”(forcomparisionimagesfromGALEX 1haveFWHMof4 to5”) overafieldof~28’simultaneouslyinthreechannels,namelyVIS(320550nm),NUV(200300nm),andFUV(130 180nm).(ForanearlyconceptofUVITpleaserefertoreference2) After a brief presentation of the scientific objectives, we present details of the design of the payload and its implementation,aswellastheexpectedperformanceasinferredfromthetestsonground.

2. SCIENTIFICGOALSANDOBJECTIVES OneofthekeyobjectivesofUVITistoobservetimevariations,inthevisibleandultravioletbands,ofXraysources simultaneously with the Xray telescopes on ASTROSAT. In addition a large variety of other sources would be observed.Someoftheexamplesare:globularclusters,planetarynebulae,highresolutionstudiesofgalaxymorphology intheUV,starformationininteractinggalaxies,starformationhistoryoftheuniverse,anddeepUVsurveyofselected partsofthesky(moredetails,seereference3). *[email protected] ;phone918022541253;fax918025534043;iiap.res.in

3. INSTRUMENTATION 3.1 General Thepayload(UVIT)isconfiguredasatwintelescope:oneofthesemakesimagesinFUVandtheothermakesimagesin NUVandVIS;theradiationisdivided between NUVandVISchannels byadichroicbeamsplitter.Eachofthetwo telescopes is a RC configuration, with an aperture of ~375mm and a length of ~ 4750 mm, see Figure 1. The imagesfromVISchannelarealsousedtofindaspectofUVITaboutoncepersecond.Forselectionofabandwithin eachofthethreechannelsasetoffiltersismountedonawheel;thiswheelalsocarriesablindtoblockradiation.See section3.2fordetailsoftheopticallayout.ThewheelsforNUVandFUVchannelsalsocarrygratingstoprovidelow resolution(~100)slitlessspectroscopy.Photoncountingimaging detectorsareusedin allthethreechannelstogeta resolutionof~1.8”FWHM.Thedetectorscanalsobeusedwithalowgain(calledintegrationmode),butinthiscase individualphotonsarenotdetectedandthespatialresolutionis~3”.Asthesatelliteisnotstabilizedtobetterthan10”,it isalsorequiredthatshortexposuresaretakenandareintegratedthroughashiftandaddalgorithmonground:theshiftis found by comparing successive images from VIS channel taken every second or so. The success of this algorithm dependsontheabsenceofanyjitter>0.3”rmsinattitudeofthesatellite(eitherduetosomeinternalmotionsofanyP/L etc.orotherwise),andadriftfreerelativeaspectofthethreechannelsoverperiodsof~1000s:adurationwhichislarge enoughtocollectsenoughphotonsfromsourcesintheUVimages.

ThosepartsofthetelescopeswhichdefinelocationsoftheopticalelementsaremostlymadeofInvar36,andtheother partsaremadeofAluminiumalloy.ThetwotelescopesaremountedonaconelikestructuremadeofTitanium,whichis attachedtocentralcylinder ofthespacecraft. Active thermal control is used to keep temperature of the optical tube within ±3oC. In order to carry out ‘decontamination' of the important optical components, an independent set of dedicatedheatershavebeenprovidedwhichcanbeturnedONifrequiredforadesiredduration. Acylindricalbaffleextendsovereachofthetelescopesforattenuatingtheradiationfromoffaxissources.Withthese baffleslightreachingthedetectorfromsourcesat45 0fromtheaxisisattenuatedbyafactor10 9;withsuchattenuation lightreachingthedetectorfromfullMoonat45 0fromtheaxisislessthantheaverageskybackground.Inadditionto thesebaffles,thedoorsactassunshadesaslongasSunisat>45 0fromtheaxis.Inordertoavoidcontaminationofthe optics due to ultraviolet assisted reactions, bright earthlimbiskeptawayfromtheaxisby>12 0 and the sun is kept behindthesunshieldatalltimesevenifUVITisnotobserving.Thegeocoronallinesareverystrongindaytime,anda significantamountofradiationcouldbescatteredbytheotherinstrumentsintothebaffles.Therefore,thenominal observationperiodisrestrictedtothenighttime(Inspecialcases,observationsindaytimecouldbeconsidered). Asultravioletopticsisverysensitivetomolecularcontaminations,anelaborateplanhasbeenimplementedtoavoidany suchcontaminationduringtheassemblyandtestingphases.

DEPRESSURISATIONPORT PORTSVIEWING/ WITNESSSAMPLES UVITDOOR/SUN RADIAL SHIELD PURGING SUPPORTfor PORT PRIMARY BAFFLE

TELTUBE3

MAINBAFFLE (Al.alloy)910 mm

SEC.MIRROR ASSEMBLY BEAM SPLITTER 3100MM SEC.BAFFLE

OPTICALTUBE PRIMARY (MADEofINVAR) BAFFLE 1500mm S/C ADAPTER SIDE S/CINTERFACE BRACKETS

475MM

PRIMARY FOCALVOLUME(600 MIRROR mm) SEPERATIONPLANEOFS/C

FOCALPLANE THERMALCOVER RODS(INVAR)

FILTERWHEEL

DETECTORS HIGH Figure1:UVITConfiguration VOLTAGEUNIT

TheoverallspecificationsofthepayloadarepresentedinTable1,anddetailsofthesubsystemsarepresentedinthe followingsubsections. Table1SpecificationsofUltraVioletImagingTelescope

FUV NUV VIS Detector Intensified CMOS Photon Intensified CMOS Intensified CMOS Counting/Integration Photon Counting/ Photon Counting/ Integration Integration CMOSchip Fillfactory/Cypr essSTAR250,512x512,25mpixels TelescopeOptics RitcheyChertian RitcheyChertian RitcheyChertian 2mirrorSystem 2mirrorSystem 2mirrorSystem Bandwidth 130 180nm 200 300nm 320 550nm GeometricArea(cm 2) ~880 ~880 ~880 EffectiveArea(cm 2) >~15atpeak >~50atpeak >~50atpeak FieldofView ~28’ ~28’ ~28’ SpectralResolution <1000 A (depends on Choice <1000 A (depends on <1000 A (depends on ofFilters) ChoiceofFilters) ChoiceofFilters) SpatialResolution <1.8arcsecond <1.8arcsecond <1.8arcsecond TimeResolution <10ms(forPartialfield) <10ms(forPartialfield) <10 ms (for Partial field) Typical Observation 30min 30min 30min timepertarget Sensitivity(obs.time) >20 th Magnitude(5σ)in200s PhotometryAccuracy 10% TotalMass(Kg) 230Kg TotalPower(watts) 85watts(peak117watts) Sunavoidanceangle 45deg 3.2 OpticalDesign EachoftheUVITtelescopeisbasedonRitcheyChretienconfigurationwithanapertureof~375mmandafocallength of~4750mm.Figure2andfigure3showstheopticallayoutoftheFUVandNUVVIStelescoperespectively.

Figure2OpticsofFUVTelescope;thepositionmarked‘filter’carriesafilterwheelwithselectionof5filters,2gratings&ablock.

Figure3OpticsofNUVVIStelescope;thepositionmarkedas‘filter’carryafilterwheel;inNUVchannelwheelhasaselectionof6 filtersandagratingandablock,whileinVISchannelwheelhasaselectionof5filtersandablock.

In both telescopes, primary mirror is a solid mirror with diameter of 375mm and a central hole of 155mm. Mirror material usediszerodur withthesurfaceerror ofbetterthatλ/50rmsand microroughnessbetterthat 15Årms. The surfaceofprimaryisconcaveonaxishyperboloidwithradiusofcurvature3541mmandconic1.129.Primarymirroris mountedintelescopebysidemounts;i.e3bipods@120 oapartandthemountsaregluedtomirrorandmountstobe fixedonaring. SecondarymirrorforboththetelescopesisalsoasolidmirrormadeofZerodurmaterial.Surfaceofsecondarymirroris convex onaxis hyperboloid with radius of curvature 1867mm and conic 6.3565. Its diameter is ~140mm and it is mountedusing3bladecellmountandmountisgluedtothemirrorcylinderrim.Surfaceerrorandmicroroughnessof secondarymirrorarealsosameasfortheprimarymirror.

Averagereflectivity ofboththemirrorsis maintained identical; i.ebetterthan 60%forthe wavelengthband of FUV (130nm180nm), better than 70% for the wavelength band of NUV (180nm200nm) and better than 80% for VIS (200nm600nm). Appropriatebafflingisprovidedatnecessaryplacesintheopticaldesign.Toavoidanycosmicandbrightlighthitting thedetector,ineachtelescopethereare2mainbafflesabovetelescopetubes,oneprimarybafflenearprimarymirrorand onesecondarybafflenearsecondarymirrorasshowninfigure1. Filtersforeachchannelaremountedonawheel.FUVchannelhas5filters,2gratingsand1block,totaling8slotson wheel.NUVchannelhas6filters,1gratingand1blocktotaling8slotsonwheelwhereasVIShas5filtersand1block totaling6slotsonthewheel.Table2liststhenameoffilterusedforeachchannel. Table2ListofFilers&gratingsusedinUVIT

FUVCHANNEL S.No. FilterType FilterThickness Passband Material 1. BlockwithAluminium 2. CalciumFluoride1 2.50mm >125nm 3. BariumFluoride 2.40mm >135nm 4. SapphireWindow 2.00mm >142nm 5. Grating1 4.48mm 6. Silica 2.70mm >159mm 7. Grating–2 4.48mm 8. CalciumFluoride–2 2.50mm >125mm NUVCHANNEL S.No. FilterType FilterThickness Passband Material 1. BlockwithAluminium 2. FusedSilicaWindow 3.00mm >159nm 3. NUVB15 2.97mm 200nm–230nm Silica(UV) 4. NUVB13 3.15mm 230nm–260nm Silica(UV) 5. Grating 4.48mm 6. NUVB4 3.33mm 250nm–280nm Silica(UV) 7. NUVN2 3.38mm 275nm–285nm Silica(UV) 8. FusedSilicaWindow 3.30mm >159nm VISCHANNEL S.No. FilterType FilterThickness Passband Material 1. BlockwithAluminium 2. VIS3 3.00mm 400nm–530nm UBK7 3. VIS2 3.00mm 370nm–410nm UBK7 4. VIS1 3.00mm 320nm–360nm UBK7 5. NeutralDensityFilter 3.00mm 6. BK7Window 3.00mm 3.3 MechanicalandThermalDesign ThemechanicalconfigurationofthepayloadisdescribedandshownintheFigure1anditssubsystemsinterfacesandits specifications are presented. The primary and secondary mirror system separation is maintained by invar tubular structure (~1500 mm), made in 3 segments. The Telescope ring (TR ring) at bottom supports primary mirror, the secondaryissupportedattopendbyspiderring(SPDR).TheTRringalsosupportsfocalvolumeelementsbyasystem

3invarrods(FR’s),bottomsegmentofthetelescopetube(TT3)andthermalcover.TheSPDRis4bladestangential systemholdingsecondarymirroratcenter,theprovisionforrequiredtiltanddecenteraregivenatthesecondarymirror interface. Overthemeteringstructureisamainbafflesection(~910mm),whichalsoprovidesinterfacetothedoor,which,when deployedinspacealsoservesassunshield.Belowthemeteringstructureisfocalvolume,whereinalldetectors,filter wheel,drivesystemandhighvoltageunitsarecontained.ThedetectorbracketsupportedatthebottomendoftheFR’s serves a supporting structure for the above subsystems. The entire focal volume is covered by an Al. sheet metal enclosure(thermalcover).Thisdesignismodifiedfromitsearlyversion 4. ThetitaniumsatelliteadapterontheUVITstructureprovidestheinterfacebetweenUVITandspacecraft(ASTROSAT). Theattachmentisthrough18nostabsonthetitaniumadapter, whichareheldagainstsatellitecylinderbyM6bolts, whichgetengagedintotheplatenutsrivetedinthetabs.Thesatellitecylinderisprovidedwithtwocutoutstotakethe cableharnessintothespacecraft.Thetitaniumsatelliteadapteralsohasamasterref.cubefittedonit,toserveasaref whileintegratingwithspacecraft.ICDSstatingalltheaboverequirementsandarealsomet. Thestructuralmaterialsanditspropertiesusedinpayloadaredetailedintable3.Asthetelescopedemandshighdegree ofdimensionalstabilityunderchangingtemperatures,thetelescopetubewhichholdstheprimaryandsecondarymirror ismadeofInvar36material.TheTelescopetubemadeofInvar36materialismadein3partsastube1,tube2andtube3 and three tubes are connected together by Titanium bolts. These tubes holds the Primary and secondary mirror to at required position with high degree of positional accuracy. Other parts of the telescopelike the baffles and detector mountsaremadeofaluminumalloymaterialwhichhashightensilestrengthandlightinweight.Aluminum6061T6/IS: 64430 alloy has been used for making above said components. Twotelescopeshavebeencoupledtoanadapterand furthertheadapterwiththetelescopesismountedtothesatellitecylinder.Consideringthehighstiffness,lightweight anditsthermalproperties,theadapterismadeof Titaniumalloymaterial,Ti6Al4VGrade5.Theadapterisofunique shapewithdiameteron877mmwithheightof284mmhasbeenscoopedoutfromatitaniumforgedblock. ThemassofUVIThastwoparts,UVITmassattachedtocentralcylinderofsatelliteis202Kg,andUVITelectronics packagesmassonsatelliteequipmentpanelsisabout28KgamountingthetotalUVITmassas230Kg. Table3MaterialUsedandtheirproperties

NameofMaterial Youngs Density Poisons Tensile yield CTE modulus (kg/m 3) ratio strength(Mpa) (m/m 0C) (Gpa) INVAR 148 8005 0.29 240 1.3 Al.Alloy(6061T6) 68.9 2700 0.33 320 23.6 Titaniumalloy(Ti6AL4v) 115 4300 0.3 880 8.6 Thepayload is modeledcompletely with a finiteelementmodel, Static, modalandfrequencyresponseanalysis were carriedoutforsineandrandominputs.Thequasistaticdesignmargins,boltforces(subsysteminterfaces),firstresonant frequency,anddynamicresponsesattheinterfaceswereanalyzed.Bucklinganalysiswasalsocarryiedouttofindthe lowestbucklingfactor. Thermal design and analysis is concerned with predicting temperatures of the payload in a specific orbital thermal environment.Thenumericalthermalmodelisusedastheworkingtoolinthedevelopmentofthesatellitethermalcontrol system.Itisusedtopredicttemperatureonalargescale,withstructuresandothercomponentsinteractingwithone anotherand withthesurroundingenvironment.The modeofheat transferinthe payloadsystemis generally through conduction and radiation heat transfer except in the case at the launch pad. The ambient temperature and heat loads influences overall temperature distribution in the payload.Thermalcontrolsystemofthepayloademploysapassive

methodofisolationbymultilayerinsulation(MLI),andheatersunderclosedloopcontrol.TheUVIT is wrappedall overwith MLI.HeatersandOpticalsolarreflector(OSR)areusedto maintainthetemperature.Thermalloadarethe internalandexternalloads.Internalloadsduetointernalpowerdissipationofthefiltermotor,detectorandhighvoltage box,whicharelocatedinthefocalvolumeunit.Externalloadsareduetothesun,albedooftheearthandearthshineand areevaluatedbasedontheorbitparameters.Followingtable4showsthethermalspecificationsandachievedvaluesas perthermalmodeldesign.Outofalltherequirementsforthepayload,themostdifficulttocontrolisthevariationin relativealignmentofthetwotelescopes,asavariationof1"overatypicalexposureof1000scanleadtoanadditional blurof~0.3"rmsintheimagesize(duetoalessthanperfectcorrelationbetweenaspectsofthetwotelescopeduringthe periodofintegration).Relativealignmentofaxisofthetwotelescopesshouldnotdriftbymorethan0.5arcsecinany15 minutes(atypicalperiodofobservingafieldinUV)oftheorbit;butitcanchangeby30arcseconlongtimescales subjecttoadriftratelessthan1arcsecper15minutes. Table4ThermalRequirementsandachievedthermalmodelresults

Requirements Achievedvalues Temperatureoftelescopetubestobe 17.5 oC(Minimum)and22.8 oC(Maximum)incoldinvarcase between18 oCand22 oC Axialvariationoftemperatureontelescopetubes 2.3 oConNUVsideincoldfocalcaseandcoldinvarcases. tobewithin+/2oC

Circumferential variation of temperature on 2.8 oCincoldfocalcase. telescopetubestobe within5oC Temporalvariationoftemperature 0.77 oC (TT2 bottom portion in FUV side) in hot focal case at a given point within 1000secs (~15 minutes) (Maximum)and0.02 oC(TT2topportioninNUVside)inhot (inquasisteadystate)tobewithin0.3oC focalcase(Minimum) Temperature of elements in the focal plane 12.7 oC(Minimum)20.6 oC(Maximum) volumetobebetween15 oCand20 oC Temperature (during operation) of detectors 16.4 oC(Mini mum)17.9 oC(Maximum) (CPU’s)between0 oCand20 oC Temperature(duringoperation)ofHighVoltage 12.7 oC(Minimum)18.4 oC(Maximum) Units(HVU’s)between0 oCand30 oC Dutycycleofheatersnottoexceed65% 64%inMB1incoldinvarcase. 3.4 DetectorandElectronics Thedetectorsystemforeachofthe3channelsisgenericallyidentical.Eachconsistsofanimageintensifiertube,fiber optic coupling and an imaging sensor. A typical photon event undergoes the following: in the intensifier tube, the incident UV/optical photonejectsaprimary electronfrom thePhotoCathode(PC), whichisacceleratedtowardsand multiplied within the MicroChannelPlate (MCP). Gain of MCP is of order 10 7. The large number of secondary electronsemergingfromtheMCParefurtheracceleratedtowardstheAnode(A)andwhichiscoatedwithaphosphor. Thelightemission ofthe phosphoris topologically mapped(withareduction of~ 3:1) ontothe Fillfactory/ Cypress STAR250(512x512pixelon25mpitch)5 CMOSimagesensorbythefiberoptictaper.Theintensifiertuberequires3 setsofhighvoltagesforitsPhotoCathode(V_PC),MicroChannelPlateassembly(V_MCP)andtheAnode(V_A)for itsoperations.TheV_PCcanbeusedtoelectronicallyswitchthechannelON/OFF,andV_MCPisforcontrollingthe 'gain'(=amountoflightsignalfromthephosphoroftheintensifiertubeperprimaryphotonevent).Foreachintensifier tube,asetofoptimumvaluesforthese3voltagesareavailablebasedongroundtests&calibrations.

Figure4PhotonCountingDetector

Thefullcircularfieldofview(28arcmindiameter)fitsintothesquareimagesensor(512x512pixels)whichisreadata selectableframerateuptoamaximumof~29frames/sec.Eithertheentirearrayorarectangular'window'ofselectable dimensionsandpositioncanbereadout;themaximumframerateincreasesininverseproportiontoareaoftheselected windowEachofthe3detectorscaneitherbeusedinthe'PhotonCounting'modeor'Integration'mode.Inthe'Photon Counting'mode,thephotoneventsaredetectedandtheircentroidsarecalculatedonboard.Inthe'Integration'mode,the rawframesaresenttoground.Normally,theFUV&NUVchannelsareusedin'PhotonCounting'mode,andtheVIS channelin'Integration'mode . Thehighvoltagesupplyofeachofthedetectorismountednearthedetector.Electronics forcontrolandprocessingofthesignalsfromofthedetectorsisplacedinsideaboxwhichismountedondeckofthe S/C;thesameelectronicsprovidedinterfacewiththeS/Cfortelemetryandtelecommandoperations.Fordetailsoftests seereference6,7&8. The UVIT Filter system (for each of the 3 channels) consists oftwo distinct physicalsubunits: FilterWheelMotor Assemblywhichcarriesthefilterwheeland FilterWheelDriveElectronics(FWDE)whichdrivesthemotor.TheFilter WheelMotorAssemblyislocatedsuchthatthefiltersare~40mminfrontofthedetectorwindow.AllthethreeFilter WheelDriveUnitsarelocatedinaboxmountedondeckoftheS/C. All the three channels (FUV, NUV & VIS) of UVIT individually commandedby spacecraft onboardcontrollerand payloadhealthparameters(voltages,currents&temperatures)willbereceivedbyspacecraftonboardcontroller.These healthparameterswillbetransmittedbythespacecrafttogroundstationforreviewingandrecordingpurpose. 3.5 ContaminationControlforUVIT Theabsorptioncrosssectionsinultravioletareverylarge,andgreatcareneedstobetakentoavoidanycontaminationof the optical surfaces of the UVIT, on which the radiation falls, during any stage of fabrication/testing/assembly or packing/transportetc.Therefore,greatcareistakeninselectingmaterialswhichgointheopticalcavity.Thissection describesthepossiblewaystominimizethechancesofcontamination.Thecontaminationofanopticalsurfacecanbe either dueto deposition oftheparticles or due to deposition ofthe molecules. Contamination dueto particlescanbe minimizedbyinsistingthattheopticalsurfacesareonlyopenedinareaswithcleanair;forthepurposeofthewindowof CPUs,Mirrors,etc.,itisbestthattheseareonlyopenedinClass100air,andthisexposureisminimized.Thecontrolof molecular contamination is far more difficult to achieve. In this note we are primarily concerned with control and monitoringofthemolecularcontamination.

All materials and process used in any part of the instrument are subjected to a screening process and based on contamination clearance the material or process are added in to the approved Declared Material List(DML)Declared ProcessList(/DPL).OnlythosematerialsareselectedforfurthercheckswhichhaveTML<1%andCVCM<0.1%.The materialspassingthesecriteriaarefurthertestedfortheirpotentialforcontaminationbeforebeingacceptedforuse. For UVIT 20mm diameter x 2mm thick windows of MgF2 are used as witness samples for measuring possible contaminationduetothematerial.Thewindowisexposedtothematerialkeptinvacuumatahightemperaturefora longperiod,e.g.at80120degCfor2472hrs.Thematerialdegassedfromcontaminantdepositsoverthewitness samplewhichiskeptatlowertemperature(~30degC).ThetransmissionofthewindowinUVrange(120nmto180nm) ismeasuredandcomparedwithitsoriginaltransmission.Thedegradationintransmissiongivesthemeasureofpotential ofcontaminationfromtheparticularmaterial. Inordertomonitorthattheopticalsurfacehasnotbeen contaminated during tests/assembly/transportetc.a witness sample—eithera MgF2 window oramirror witha layerofMgF2alwaysaccompaniestheopticalcomponent. The witnesssampleisperiodically checkedforitstransmission/reflection in 120180 nm range, and any reduction in the transmission/reflection is indication of contamination of the component. The key specification is that the overall transmission/reflection loss on a witness sample, during all the operations from assembly to launch, be < 5%. This affectstheeffectiveareaofthetelescopes,andalossof5%impliesanoveralllossof1520%intheeffectivearea. Sofarthewitnesswindowskeptwiththedetectorsandthemirrorshavenotshownanymeasurablelossoftransmission. 3.6 SpatialresolutionandDriftofS/C As mentioned earlier, pointing of the S/C is not stable for the required spatial resolution of 1.8”. In order to avoid blurringshortexposures(e.g.<1s)aretakenandalltheexposuresarecombinedthroughshiftandaddprocesstogetan effectivelongexposureimage.Typically,thenumberofultravioletphotonsistoosmalltogiveasensibleimageinan exposure of 1 s. However, the visible channel can collect enough photons in 1 s to make a useful image. Therefore, imagesfromthevisiblechannelareobtainedevery~1stoestimaterelativedriftoftheS/Cduringalongexposure.This processhasbeensimulatedforrealisticvaluesoftheparametersandisseentowork 9.Thisprocessworkswellaslongas therelativeaspectofthethreechannelsdoesnotchangeoverperiodofthelongexposure,andthemechanicalstructure ismadeofInvar36tominimizeanydriftsintherelativeaspectsduetothermaleffects.

4. CURRENTSTATUS After successful testing of the engineering model, the flight model is being assembled at MGKM Space Science LaboratoryofIIA,seefigure5.ThetelescopeforNUV/VISchannelshasbeenfullyassembledandtestedtogiveimages with FWHM,1.5”. The FUV telescope is underassembly and would be testedinthe month ofJune. The payloadis expected to be delivered to ISRO in the month of July, for environmental testing and integration with the S/C. The expectedlaunchofthemissionissecondquarterof2013.

Figure5AssembledUVITFUVandNUVVISFlightModeltelescope

5. CONCLUSION Thedesignanditsimplementation,hasbeendescribedfortheUltraVioletImagingTelescopeforthemultiwavelength Indian mission ASTROSAT. The results of the tests on components and the assembled telescopes show that the key specificationsofspatialresolution<1.8”FWHMandasensitivityofmag20in200sfortheFUVchannelareexpected tobemet.Thepayloadisexpectedtobelaunchedintheearlypartofyear2013. ACKNOWLEDGMENTS TheUVITprojectiscollaborationbetweenthefollowinginstitutesfromIndia:IndianInstituteof Astrophysics(IIA), Bengaluru, Inter University Centre for Astronomy and Astrophysics (IUCAA), Pune, and National Centre for Radioastrophysics(NCRA)(TIFR),Pune,andtheCanadianSpaceAgency(CSA).Thedetectorsystemsareprovidedby the Canadian Space Agency. The mirrors are provided by LEOS, ISRO, Bengaluru and the filterwheels drives are providedbyIISU,ISRO,Trivandrum.ManydepartmentsfromISAC,ISRO,Bengaluruhaveprovideddirectsupportin designandimplementationofthevarioussubsystems.

REFERENCES

[1] OswaldSiegmundetal,“TheGALEXMissionandDetectors”,ProceedingsofSPIE,Vol.5488,1324(2004). [2] Pati,A.K.,“ProposedUVopticalpayloadfortheIndianastronomysatellite”,BASI(1999),27:295300. [3] KameshwaraRao,N.,“UltraVioletImagingTelescope(UVIT)–Science”,BASI(2003),31:249255. [4] Pati,A.K.,“TheUltraVioletImagingTelescope:MechanicalDesign”,BASI(2003),31:479482. [5] FillfactoryImageSensors,STAR250datasheet,issue5.1,Sep2004.

[6] Hutchings, J.B., Postma J, Asquin D, Leahy D, “Photon Event Centroiding with UV Photon ‐counting Detectors",PASP,1191152(2007). [7] J.Postma,J.B.Hutchings,D.Leahy,“CalibrationandPerformanceofthePhotoncountingDetectorsforthe UltraVioletImagingTelescope(UVIT)oftheAstrosatObservatory”,PASP,123:833843(2011). [8] Stalin,C.S.,Sriram,S.,AmitKumar,“DeterminationofQuantumEfficiencyofUVITFlightModelDetectors”, IndianInstituteofAstrophysics,Bangalore, http://www.iiap.res.in/files/corrected_detector_1.pdf,(2010). [9] MuditK,Srivastava,Swapnil.M.Prabhudesai,ShyamN.Tandon,“StudyingtheImagingCharacteristicsof UltraVioletImagingTelescope(UVIT)throughNumericalSimulations”,PASP(2009),121:621633.