Swelling Behavior of Ph-Sensitive Hydrogels Containing Degradable Poly(1,3-Dioxolane) Segments

Total Page:16

File Type:pdf, Size:1020Kb

Swelling Behavior of Ph-Sensitive Hydrogels Containing Degradable Poly(1,3-Dioxolane) Segments Polymer Journal, Vol.33, No. 10, pp 741—745 (2001) Swelling Behavior of pH-Sensitive Hydrogels Containing Degradable Poly(1,3-dioxolane) Segments Juan DU, Yuxing PENG, Xiaobin DING, and Tingting ZHANG Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China (Received March 8, 2001; Accepted July 18, 2001) ABSTRACT: pH-sensitive hydrogels were obtained by radical copolymerization of telechelic poly(1,3-dioxolane) (PDXLDA) with acrylic acid (AA). The copolymer networks of Poly(AA-block-DXL) showed pH sensitivity due to –COOH groups. They were insoluble in any solvents, but swelled in water or good solvents. The swelling behavior in both water and organic solvents is composition -dependent. The property that the hydrogel can swell in both water and organic solvents can be explained by a microphase-separated bicontinuous structure. The networks containing polyacetal segments (polyDXL) can be decrosslinked under acidic condition due to the low ceiling temperature of polyDXL. The networks structure, swelling behavior and degradation were characterized by Fourier transform infrared, differential scanning calorimetry, GC-MS analysis and swelling data. KEY WORDS pH-Sensitive Hydrogel / Degradation / Poly(1,3-dioxolane) / Polyacetals such as poly(1,3-dioxolane) (PDXL) tential applications in biosystem, such as intelligent provided with reactive endgroups have been used as drug delivery system. building blocks for the preparation of macromolecular compounds with various material properties.1 PDXL RESULTS AND DISCUSSION telechelic bismacromonomers can be synthesized by , several methods,2 3 but few polymer networks have Synthesis of PolyDXL Bismacromonomer been prepared so far. Since polyDXL has a low ceil- As reported earlier by Franta et al.,7 polyDXL with ing temperature, the networks contain segments which primary hydroxy endgroups (HO–PDXL–OH) are ob- are expected to degrade to monomer by treatment with tained if the cation polymerization is carried out in the a trace of an appropriate cationic initiator.4 Therefore, presence of a diol. This is due to a transfer reaction and such networks may be interesting from at least two /or to a propagation via an activated monomer mech- points: first, solubilization of cross-linked polymers anism.8 Ethylene glycol was used as the diol to pre- under mild conditions may be useful in itself; sec- pare the dihydroxylated polyDXL (macromonomer I). ond, the possibility to study the soluble residual lin- And the synthesis of polyDXL bismacromonomer was ear polymer chains may be used to obtain more insight based on acrylation of I with acrylic acid, as shown in in the copolymerization behavior. Among the reported scheme 1. networks containing polyDXL segments, including an This esterification reaction is carried out quantita- elastic material by copolymerization with styrene, and tively without side reaction.9 According to this reac- amphiphilic polymer networks by copolymerization tion, the polyDXL bismacromonomer II-polyDXL di- with methylmethacrylate (MMA) prepared by E. J. acrylate (PDXLDA) was produced. FT-IR spectra of Goethals group.5 However, no stimuli-sensitive such the original polyDXL and the resulting PDXLDA are as pH-sensitive polymer networks containing poly(1,3- shown in Figure 1. The difference appears in 1638 dioxolane) segment have been prepared. and 1720 cm−1 attributed to the streching of C=C and In this paper, novel pH-sensitive network was C=O of the ester structure, respectively. In polyDXL, prepared by copolymerization of poly(1,3-dioxolane) neither streching signals appear, while in PDXLDA, telechelic bismacromonomer with acrylic acid (AA). both signals appear due to AA end groups. Evi- As we know, polyacrylic acid (PAA) is characterized dently, PDXLDA was an ester product of polyDXL. as pH-sensitive.6 Networks containing homopolymeric By comparison of number average molecular weight of segments should give the polymer networks the same PDXLDA attained from hydroxy titration with a calcu- sensitivities. Due to the ease of degradation of PDXL lated result of HNMR analysis, we got confirmed result. in acid, the networks can be decrosslinked. Accord- According to this, the functionality of terminal groups ingly, these materials based on polyacetal segments is about 2.0. have some interesting physical properties and have po- 741 J. DU et al. Scheme 1. Figure 2. Swelling behavior of poly(AA-block-DXL) net- works with different constituents in pH = 1.5 water, Mn (PDXL) Figure 1. FT-IR-Spectrum of macromonomer 1: PDXL; = 2500, 1#: AA-block-95; 2#: AA-block-90; 3#: AA-block-65; 4#: 2: PDXDA; and networks 3: Poly(AA-block-DXL); Mn(PDXL) = AA-block-50. 2500. for 1 h to remove the unreactive monomer or residues Synthesis and Characterization of pH-Sensitive and dried to constant weight and weighed again. The Poly(AA-block-DXL) Networks extraction ratio was about no more than 1%. PDXLDA can copolymer with different monomers Polyacrylic acid (PAA) is characterized as pH- which can determine the properties of networks. If sensitive hydrogel which is due to the –COOH groups. the comonomer is hydrophobic, amphiphilic networks Similarly, the polymer networks with homopolymeric are formed. Hydrophilic comonomer acrylic acid (AA) segments of acrylic acid should also be expected to was selected to prepare polyacetal-based networks with have pH-sensitivity. Figures 2–4 testify this result. Fig- some interesting physical properties. Radical copoly- ures 2–4 show that the swelling degree of the networks ◦ merization was all conducted in toluene at 70 C with in high pH values is always higher than that of in low 2,2 -azobis(2-methylpropionitrile) as initiator. The end pH value under the same constituents. The swelling products were transparent networks (poly(AA-block- behavior of the poly(AA-block-DXL) networks is sen- DXL)) with high elasticity. From Figure 1 follows sitive to pH values of water. the IR-Spectrum of polymer networks (poly(AA-block- The swelling degree is calculated from: DXL)) in which the streching intensity of C=C bond sd = (ws − wd)/wd × 100 was weakened and C=O bond was greatly strengthened ws: swelling sample; wd: dried gel sample. by comparison with PDXLDA. The difference of the The swelling degree of the hydrogels is mainly influ- fingerprints between the PDXLDA and polymer net- enced by the ionization of –COOH functions in water. works also shows poly(AA-block-DXL) is a copoly- In pH = 1.5 (Figure 2), –COOH can hardly be ionized, merizaton product of PDXLDA with AA instead of a thus formed strong hydrogen bonds among carbonyl simple blend of these two constituents. The radical groups prevent water to permeate into the networks. So copolymerization of PDXLDA with AA does occur. it swells slowly and has the lowest equilibrium swelling The polymer network was dried to constant weight un- degree. As shown in pH = 1.5 curve, the networks (AA- der vacuum and weighed and extracted with CH2Cl2 block-90) began to degrade in 10 h, and after 24 h the 742 Polym. J., Vol.33, No. 10, 2001 pH-Sensitive Hydrogels Containing Poly(1,3-dioxolane) Segments Figure 3. Swelling behavior of poly(AA-block-DXL) net- Figure 5. Swelling behavior of networks with different con- works with different constituents in pH = 7.0 water, Mn (PDXL) = 2500, 1#: AA-block-95; 2#: AA-block-90; 3#: AA-block-65; 4#: stituents in CH2Cl2, 1#: AA-block-95; 2#: AA-block-65; 3#: AA- AA-block-50. block-50; Mn(pDXL) = 2500. = 1.5), with decrease of PDXL content in the networks, the swelling degree decreases. The networks with high PDXL content degrade more easily and faster than net- works with low PDXL content. Figure 4 shows the swelling kinetics of the hydrogels with different ratio of the two constituents in pH = 10.0. The equilibrium swelling degree increases with the AA content, but the swelling rate decreases with AA content. PDXL seg- ments thus play a role in the swelling rate of the net- works in water. This means that PDXL contributes more than PAA segments to swelling behavior in wa- ter. The networks prepared swell in organic solvents. In CH2Cl2, the networks swell fast and has the high- est equilibrium swelling degree, then in H2O, THF, Figure 4. Swelling behavior of poly(AA-block-DXL) net- CH3OH in turn. With increase of PAA content in net- works with different constituents in pH = 10 water, Mn(PDXL) = works, the swelling degree in organic solvents is also 2500, 1#: AA-block-95; 2#: AA-block-90; 3#: AA-block-65; 4#: greatly influenced. Figure 5 support this. In CH Cl , AA-block-50. 2 2 the swelling degree decreases with increase of AA con- networks dissolved completely in water. At pH > 7.0 tent contrary to the situation of in CH3OH in which (present = 10.0), the –COOH functions can be easily the swelling degree increases with AA content. The ionized by reaction with OH−. The networks swell fast swelling behavior of the networks depends on a com- and then reach the highest equilibrium swelling degree. prehensive effect of polarity, solubility parameters of While at pH ≥ 7.0, the networks can only swell untill the solvents. As a result, the swelling behavior of reaching equilibrium swelling, but not be decrosslinked the networks is solvent-dependent and composition- in water. With higher basicity, the networks can reach dependent. higher equilibrium swelling degree. That the networks swell in water and organic sol- In the networks of poly(AA-block-DXL), AA ho- vents is interesting because it behaved like an am- mopolymeric segments are connected by the polyDXL phiphilic networks. This behavior can be explained segments. Figures 2–4 also show that the swelling de- by a microphase-separated bicontinuous structure.10 gree of the hydrogel is dependent on the ratio of the two DSC analysis gives further support for a microphase- constituents.
Recommended publications
  • Hazardous Substance Fact Sheet
    Right to Know Hazardous Substance Fact Sheet Common Name: DIOXOLANE Synonyms: 1,3-Dioxolan; Formal Glycol; Glycol Methylene Ether CAS Number: 646-06-0 Chemical Name: 1,3-Dioxolane RTK Substance Number: 0791 Date: February 1999 Revision: April 2008 DOT Number: UN 1166 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Dioxolane is a clear, colorless liquid with an Ether-like odor. It Hazard Summary is used in lithium batteries and as a solvent for oils, fats, waxes Hazard Rating NJDOH NFPA and dyes. HEALTH - 1 FLAMMABILITY - 3 REACTIVITY - 2 FLAMMABLE AND REACTIVE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Dioxolane is on the Right to Know Hazardous Substance List because it is cited by ACGIH, DOT, and NFPA. f Dioxolane can affect you by ingestion and may be absorbed f This chemical is on the Special Health Hazard Substance through the skin. List. f Contact can irritate and burn the skin and eyes with possible eye damage. f Inhaling Dioxolane can irritate the nose and throat causing coughing and wheezing. f Exposure to Dioxolane may damage the nervous system. f Dioxolane may damage the kidneys. f Dioxolane is FLAMMABLE and REACTIVE and a SEE GLOSSARY ON PAGE 5. DANGEROUS FIRE and EXPLOSION HAZARD. FIRST AID Eye Contact f Immediately flush with large amounts of cool water for at Workplace Exposure Limits least 15 minutes, lifting upper and lower lids. Remove ACGIH: The threshold limit value (TLV) is 20 ppm averaged contact lenses, if worn, while flushing.
    [Show full text]
  • A Review on Electrochemical Properties of Choline Chloride Based Eutectic Solvent in Mineral Processing
    JASEM ISSN 1119 -8362 Full-text Available Online at J. Appl. Sci. Environ. Manage. August 2017 Vol. 21 (5) 991-998 www.ajol.info and All rights reserved www.bioline.org.br/ja A Review on Electrochemical Properties of Choline Chloride Based Eutectic Solvent in Mineral Processing *1OBETEN, ME; UGI, BU; ALOBI, NO Department of Chemical Sciences, Cross River University of Technology, P. M. B. 1123 Calabar - Cross River State, Nigeria. ABSTRACT: Our review highlights the most recent developments in ionic liquid (IL) chemistry where the “well-known” description of IL properties sometimes proves to be inaccurate. However, in the authors’ opinion, all these new research developments concerning ionic liquid properties serve to update knowledge on the typical physical and chemical properties of ILs, which is significant to both theoretical research and industrial applications. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, the paper presents an opportunity to understand deep eutectic solvents (DES) through a more complete and accurate view . © JASEM https://dx.doi.org/10.4314/jasem.v21i5.29 Keywords : Eutectic; Solvents; Electrochemistry; Ionic Liquids; purification; Ethylene glycol. Since environmental pollution caused by chemical mixed with different hydrogen bond donors (HBDs) and energy industries has increased for several such as urea, ethylene glycol, acetamide or decades, there is high expectation from scientists and hexanediol (type IV DES). engineers to design sustainable chemical processes, to generate less harmful materials and more Owing to its low cost, biodegradability and low environmentally friendly sources of energy toxicity, ChCl was widely used as an organic salt to production.
    [Show full text]
  • Student Number: 201477310
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). Metabolomics, Physicochemical Properties and Mycotoxin Reduction of Whole Grain Ting (a Southern African fermented food) Produced via Natural and Lactic acid bacteria (LAB) fermentation A Thesis submitted to the Faculty of Science, University of Johannesburg, South Africa In partial fulfilment of the requirement for the award of a Doctoral Degree in Food Technology By OLUWAFEMI AYODEJI ADEBO STUDENT NUMBER: 201477310 Supervisor : Dr. E. Kayitesi Co-supervisor: Prof. P. B. Njobeh October 2018 EXECUTIVE SUMMARY Drought and challenges related to climate change are some of the issues facing sub-Saharan Africa countries, with dire consequences on agriculture and food security. Due to this prevailing situation, drought and climate resistant crops like sorghum (Sorghum bicolor (L) Moench) can adequately contribute to food security. The versatility and importance of sorghum is well reflected in its use as a major food source for millions of people in sub-Saharan Africa.
    [Show full text]
  • US EPA, Inert (Other) Pesticide Ingredients in Pesticide Products
    Inert Ingredients ordered by CAS Number Updated August 2004 CAS PREFIX NAME List No. 50-21-5 Lactic acid 4B 50-70-4 Sorbitol 4A 50-81-7 L- Ascorbic acid 4A 50-99-7 Dextrose 4A 51-03-6 Piperonyl butoxide 3 51-05-8 Procaine hydrochloride 3 51-55-8 Atropine 3 52-51-7 2- Bromo-2-nitro-propane-1,3-dio 3 54-21-7 Sodium salicylate 3 56-81-5 Glycerol (glycerin) 1,2,3 propanetriol 4A 56-86-0 L- Glutamic acid 3 56-95-1 Chlorhexidine diacetate 3 57-10-3 Hexadecanoic acid 4A 57-11-4 Stearic acid 4A 57-13-6 Urea 4A 57-48-7 D- Fructose 4B 57-50-1 Sugar 4A 57-55-6 Propylene glycol 4B 57-88-5 (3.beta.)- Cholest-5-en-3-ol 4B 58-08-2 1H- Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- 4B 58-56-0 Thiamine mononitrate 4B 58-85-5 Biotin 3 58-86-6 D- Xylose 4B 58-95-7 Vitamin E acetate 3 59-30-3 Folic acid 4B 59-40-5 N-(2- Quinoxalinyl)sulfanilide 3 59-67-6 Nicotinic acid 3 60-00-4 Ethylenediaminetetraacetic acid (EDTA) 4B 60-12-8 Benzeneethanol 3 60-29-7 Ethane, 1,1'-oxybis- 3 60-33-3 Linoleic acid 3 61-73-4 C.I. Basic Blue 9 3 62-33-9 Ethylenediaminetetraacetic acid (EDTA), calcium4B 62-54-4 Acetic acid, calcium salt 4A 63-42-3 D-(+)-Lactose 4A 63-68-3 L- Methionine 4B 64-02-8 Ethylenediaminetetraacetic acid (EDTA), tetraso4B 64-17-5 Ethanol 4B 64-18-6 Formic acid 3 64-19-7 Acetic acid 4B 64-86-8 Colchicine 3 65-85-0 Benzoic acid 4B 66-71-7 1,10- Phenanthroline 3 67-03-8 Thiamin hydrochloride 3 67-43-6 1,1,4,7,7- Diethylenetriaminepentaacetic acid 3 67-48-1 Choline chloride 4B 67-56-1 Methyl alcohol 3 67-63-0 2- Propanol 4B 67-64-1 Acetone 3 67-68-5 Dimethyl
    [Show full text]
  • EZ Speed Strip Safety Data Sheet
    Date Printed: 10/14/2020 Page 1 / 6 Safety Data Sheet 1. Identification Product Name: EZ Speed Strip Revision Date: 10/14/2020 Product Identifier: 11212500 Recommended Use: Paint Remover/Strip Supplier: Emergency Telephone: Chemtrec: +1-800-424-9300 (USA) Kop-Coat Marine Group Chemtrec: +1 703-527-3887 (Intl.) 36 Pine Street 24 hrs./day, 7 days/week Rockaway, NJ, 07866, USA Poison Control: 1-800-222-1222 1-800-221-4466 (non - emergency matters) 24 Hour Hotline: 847-367-7700 2. Hazard Identification Classification Symbol(s) of Product Signal Word Danger Possible Hazards 87% of the mixture consists of ingredient(s) of unknown acute toxicity. GHS HAZARD STATEMENTS Acute Toxicity, Inhalation, category 4 H332 Harmful if inhaled. Eye Irritation, category 2A H319 Causes serious eye irritation. Flammable Liquid, category 2 H225 Highly flammable liquid and vapour. STOT, single exposure, category 3, NE H336 May cause drowsiness or dizziness. GHS LABEL PRECAUTIONARY STATEMENTS P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P264 Wash hands thoroughly after handling. P271 Use only outdoors or in a well-ventilated area. P280 Wear protective gloves/protective clothing/eye protection/face protection. P303+P361+P353 IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/ shower. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • WO 2017/087640 Al 26 May 2017 (26.05.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/087640 Al 26 May 2017 (26.05.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 35/ 74 (2015.01) A61K 8/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 35/66 (2015.01) A61K 8/99 (201 7.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US20 16/062480 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 17 November 2016 (17.1 1.2016) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/257,615 1 November 2015 (19. 11.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicants : BAUM, Marc M.
    [Show full text]
  • Etoxadrol-Meta-Isothiocyanate: a Potent, Enantioselective, Electrophilic Affinity Ligand for the Phencyclidine-Binding Site
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 238, number 2, 369-374 FEB 06377 October 1988 Etoxadrol-meta-isothiocyanate: a potent, enantioselective, electrophilic affinity ligand for the phencyclidine-binding site Andrew Thurkauf, Mariena V. Mattson, Philip N. Huguenin*, Kenner C. Rice and Arthur E. Jacobson Section on Drug Design and Synthesis, Laboratory of Neuroscience, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, IUD 20892, USA Received 17 August 1988 Etoxadrol-mera-isothiocyanate (2S,4S,692-ethyl-2-(3-isothiocyanatophenyl)-2-pi~ridyl)1,3-dioxolane, 4n) has been synthesized and characterized as an irreversible ligand for the phencyclidine (PCP)-binding site. It is the first chiral elec- trophilic affinity ligand for this site to have been described. This affinity ligand is based upon etoxadrol, a 1,3-dioxolane known to have PCP-like effects in vivo and in vitro. Etoxadrol-meta-isothiocyanate was found to be four-five times more potent in vitro than metaphit (1-[1-(3-isothiocyanatophenyl)cyclohexyl]pi~~dine), the only previously known electro- philic affinity ligand for the PCP-binding site. The binding was shown to be highly enantioselective for etoxadrol-meta- isothiocyanate (4a). The 2R,4R,6R-enantiomer of 4a was essentially inactive. The ability of the 2S,4$69enantiomer (4a) to interact with the benzodiazepine, muscarinic, and mu opioid receptor systems was also examined, and it was found not to interact with these receptor systems. It seems likely that 4a will prove to be a valuable tool in the study of structure and function of the PCP-binding site.
    [Show full text]
  • Food and Drug Administration, HHS § 172.515
    Food and Drug Administration, HHS § 172.515 Common name Scientific name Limitations Sandalwood, white (yellow, or East Indian) ... Santalum album L. Sandarac ........................................................ Tetraclinis articulata (Vahl.), Mast .............................. In alcoholic beverages only Sarsaparilla ..................................................... Smilax aristolochiaefolia Mill., (Mexican sarsaparilla), S. regelii Killip et Morton (Honduras sarsaparilla), S. febrifuga Kunth (Ecuadorean sarsaparilla), or undetermined Smilax spp. (Ecuadorean or Central American sarsaparilla). Sassafras leaves ............................................ Sassafras albidum (Nutt.) Nees ................................. Safrole free Senna, Alexandria .......................................... Cassia acutifolia Delile. Serpentaria (Virginia snakeroot) .................... Aristolochia serpentaria L ........................................... In alcoholic beverages only Simaruba bark ................................................ Simaruba amara Aubl ................................................. Do. Snakeroot, Canadian (wild ginger) ................ Asarum canadense L. Spruce needles and twigs .............................. Picea glauca (Moench) Voss or P. mariana (Mill.) BSP. Storax (styrax) ................................................ Liquidambar orientalis Mill. or L. styraciflua L. Tagetes (marigold) ......................................... Tagetes patula L., T. erecta L., or T. minuta L. (T. As oil only glandulifera
    [Show full text]
  • Third Supplement, FCC 11 Index / All-Trans-Lycopene / I-1
    Third Supplement, FCC 11 Index / All-trans-Lycopene / I-1 Index Titles of monographs are shown in the boldface type. A 2-Acetylpyridine, 20 Alcohol, 80%, 1524 3-Acetylpyridine, 21 Alcohol, 90%, 1524 Abbreviations, 6, 1726, 1776, 1826 2-Acetylpyrrole, 21 Alcohol, Absolute, 1524 Absolute Alcohol (Reagent), 5, 1725, 2-Acetyl Thiazole, 18 Alcohol, Aldehyde-Free, 1524 1775, 1825 Acetyl Valeryl, 562 Alcohol C-6, 579 Acacia, 556 Acetyl Value, 1400 Alcohol C-8, 863 ªAccuracyº, Defined, 1538 Achilleic Acid, 24 Alcohol C-9, 854 Acesulfame K, 9 Acid (Reagent), 5, 1725, 1775, 1825 Alcohol C-10, 362 Acesulfame Potassium, 9 Acid-Hydrolyzed Milk Protein, 22 Alcohol C-11, 1231 Acetal, 10 Acid-Hydrolyzed Proteins, 22 Alcohol C-12, 681 Acetaldehyde, 10 Acid Calcium Phosphate, 219, 1838 Alcohol C-16, 569 Acetaldehyde Diethyl Acetal, 10 Acid Hydrolysates of Proteins, 22 Alcohol Content of Ethyl Oxyhydrate Acetaldehyde Test Paper, 1535 Acidic Sodium Aluminum Phosphate, Flavor Chemicals (Other than Acetals (Essential Oils and Flavors), 1065 Essential Oils), 1437 1395 Acidified Sodium Chlorite Alcohol, Diluted, 1524 Acetanisole, 11 Solutions, 23 Alcoholic Potassium Hydroxide TS, Acetate C-10, 361 Acidity Determination by Iodometric 1524 Acetate Identification Test, 1321 Method, 1437 Alcoholometric Table, 1644 Aceteugenol, 464 Acid Magnesium Phosphate, 730 Aldehyde C-6, 571 Acetic Acid Furfurylester, 504 Acid Number (Rosins and Related Aldehyde C-7, 561 Acetic Acid, Glacial, 12 Substances), 1418 Aldehyde C-8, 857 Acetic Acid TS, Diluted, 1524 Acid Phosphatase
    [Show full text]
  • Sympathomimetic Anesthetics
    SYMPATHOMIMETIC ANESTHETICS GRAHAM CHEN, SC.D., M.D. A NEW TYPE of general anaesthetic drug has been developed in recent years. These drugs produce surgical anaesthesia without causing depression of respiratory and cardiovascular functions. Slight hypertension and taehycardia usually occur fol- lowing their intravenous administration. Mental confusion, dreaming, and a feel- ing of body dissociation are expressed by some individuals during the recovery period. Two classes of compounds containing a basic amine moiety have been shown to possess such properties: arylcycloalkylamines and 2-(2,2 substituted 1,3 dioxo- lan-4-yl) piperidines. Phencyelidine and ketamine belong to the first category, and dexoxadrol and etoxadrol to the latter. The structures of these drugs are shown in Figure 1. The anaesthetic and some other properties of the two classes of chemi- cals are remarkably similar; they may be considered together insofar as their principal pharmacologic actions are concerned. The purpose of this communication is to describe the neuropharmacological characteristics of these drugs, to indicate structure-activity relationships, and to discuss the mode of their anaesthetic actions. PHARMACOLOGY The progressive central effects of arylcycloalkylamines and 2-(2,2 substituted 1,3 dioxolan-4-yl) piperidines administered to animals in increasing doses gen- erally are excitation, ataxia, catalepsy, general anaesthesia and conwdsions. The degree of stimulation and depression varies with animal species and different compounds. Excitation is a prominent initial effect in rats and mice. It does not usually occur in primates, including man. 1- ~ Ataxia is a concomitant effect in rats and mice, and may occur in other species even in the absence of excitement.1 -3 Catalepsy, similar to that produced by bulbocapnine, is an outstanding central effect of these agents in all species including man.
    [Show full text]
  • Prescribed Drugs Containing Nitrogen Heterocycles: an Overview Cite This: RSC Adv., 2020, 10, 44247 Majid M
    RSC Advances View Article Online REVIEW View Journal | View Issue Prescribed drugs containing nitrogen heterocycles: an overview Cite this: RSC Adv., 2020, 10, 44247 Majid M. Heravi * and Vahideh Zadsirjan Heteroatoms as well as heterocyclic scaffolds are frequently present as the common cores in a plethora of active pharmaceuticals natural products. Statistically, more than 85% of all biologically active compounds are heterocycles or comprise a heterocycle and most frequently, nitrogen heterocycles as a backbone in their complex structures. These facts disclose and emphasize the vital role of heterocycles in modern drug design and drug discovery. In this review, we try to present a comprehensive overview of top Received 28th October 2020 prescribed drugs containing nitrogen heterocycles, describing their pharmacological properties, medical Accepted 23rd November 2020 applications and their selected synthetic pathways. It is worth mentioning that the reported examples are DOI: 10.1039/d0ra09198g actually limited to current top selling drugs, being or containing N-heterocycles and their synthetic rsc.li/rsc-advances information has been extracted from both scientific journals and the wider patent literature. Creative Commons Attribution 3.0 Unported Licence. 1. Introduction chloroquinine, azidothymidine and anti-pyrine. Furthermore, most of the vitamins, nucleic acid, enzymes, co-enzymes, hormones, and 13 Medicinal and pharmaceutical chemistry are disciplines at the alkaloids contain N-based heterocycles as scaffolds. intersection of chemistry, especially synthetic organic chemistry, and Due to exhibiting diverse biological activities, nitrogen pharmacology and various other biological specialties, leading to the heterocyclic compounds have always been attractive targets to design, chemical synthesis and development of bio-active molecules, synthetic organic chemists.
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]