Enantiomerically Pure Beta-D-(-)-Dioxolane-Nucleosides

Total Page:16

File Type:pdf, Size:1020Kb

Enantiomerically Pure Beta-D-(-)-Dioxolane-Nucleosides Europäisches Patentamt *EP001600448A2* (19) European Patent Office Office européen des brevets (11) EP 1 600 448 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07D 405/04, A61K 31/506 30.11.2005 Bulletin 2005/48 (21) Application number: 05075365.6 (22) Date of filing: 05.12.1991 (84) Designated Contracting States: (72) Inventors: AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE • Chu, Chung K. Athens, GA 30605 (US) (30) Priority: 05.12.1990 US 622762 • Schinazi, Raymond F. Decatur, GA 30333 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Hallybone, Huw George et al 01203571.3 / 1 164 133 Carpmaels and Ransford, 92902800.9 / 0 562 009 43-45 Bloomsbury Square London WC1A 2RA (GB) (71) Applicants: • UNIVERSITY OF GEORGIA RESEARCH Remarks: FOUNDATION, INC. This application was filed on 14 - 02 - 2005 as a Athens, Georgia 30602 (US) divisional application to the application mentioned • EMORY UNIVERSITY under INID code 62. Atlanta, GA 30322 (US) (54) Enantiomerically pure beta-D-(-)-Dioxolane-Nucleosides (57) An asymmetric process for the preparation of enantiomerically pure dioxolane nucleosides is lower enantiomerically pure β-D-(-)-dioxolane-nucleosides. than that of the racemic mixture of the nucleosides, be- The enantiomerically pure dioxolane nucleosides are cause the nonnaturally occurring α-isomer is not includ- active HIV agents, that are significantly more effective ed. The product can be used as a research tool to study than the prior prepared racemic mixtures of the nucleo- the inhibition of HIV in vitro or can be administered in a sides. The anti-viral activity of the compounds is surpris- pharmaceutical composition to inhibit the growth of HIV ing in light of the generally accepted theory that moieties in vivo. in the endo conformation, including these dioxolanes, are not effective antiviral agents. The toxicity of the EP 1 600 448 A2 Printed by Jouve, 75001 PARIS (FR) 1 EP 1 600 448 A2 2 Description and C4'-substituents are on the same side of the carbo- hydrate plane (i.e., the substituents are cis) is referred [0001] The government has rights in this invention by to as a "β-configuration." A carbohydrate configuration virtue of grants from the Public Health Service of the Na- in which the C1' and C4'-substituents are on the oppo- tional Institute of Allergy and Infectious Diseases and 5 site side of the carbohydrate plane (i.e., the substituents the Department of Veteran's Affairs that partially funded are trans) is referred to as, an "α-configuration". Refer- research leading to this invention. ring to compound 1 of Figure 2, a nucleoside is desig- nated a D-nucleoside if the non-hydrogen substituent at- Background of the Invention tached to the C4'-atom is above the plane of the carbo- 10 hydrate ring. The nucleoside is designated an L-nucle- [0002] This invention is in the area of organic synthe- oside if the non-hydrogen substituent attached to the sis of nucleosides, and in particular relates to a process C4'-atom is below the plane of the carbohydrate ring. for the preparation of enantiomerically pure β-D-(-)-di- [0007] The non-naturally occurring α-isomers of nucl- oxolane nucleosides. eosides (in which the C1' or C4' substituents are on op- [0003] A number of 2',3'-dideoxynucleosides have 15 posite sides of the carbohydrate plane) are rarely bio- been found to be potent antiviral agents against human logically active, and are typically toxic. immunodeficiency virus (HIV), the causative agent of [0008] An analysis of the solid-state conformations of acquired immunodeficiency syndrome (AIDS). The lead six active and two inactive anti-HIV nucleoside agents compound, AZT (Mitsuya, H.; Broder, S. Proc. Natl. was recently performed to attempt to correlate the pres- Acad. Sci. U.S.A., 1986 83, 1911) has been approved 20 ence or absence of certain stereochemical features with by the U.S. Food and Drug Administration for patients high HIV activity. Van Roey, P.,et al., J. Am. Chem. Soc., with AIDS and AIDS-related complex. Several other 2', 1988, 110, 2277; and Van Roey, P., et al., Proc. Natl. 3'-dideoxynucleosides are undergoing various stages of Acad. Sci. U.S.A., 1989, 86, 3929. The x-ray structures clinical trials, including 3'-azido-2',3'-dideoxyuridine indicated that active anti-HIV nucleosides assume the (AZDU or CS-87, see, Chu, C.K.; et al., J. Med. Chem., 25 C3'-exo or similar carbohydrate conformations while in- 1989, 32, 612; and Eriksson, B.F.H.; et al., Antimicrob. active compounds prefer the C3'-endo conformation. Agents Chemother., 1989, 33, 1927), 2',3'-dideoxyino- (Endo and exo refer to the conformations in which the sine (DDI) and 2',3'-dideoxycytidine (DDC) (see Yarcho- atoms are at the same or opposite side of the sugar ring an, R. et. al., Science, 1989, 245, 412), 3'-deoxy-2',3'- in relation to the base). The C3'-exo and C3'-endo con- didehydrothymidine (D4T, Lin, T.S., et al., Biochem. 30 formations place the C5' atom in axial and equitorial po- Pharmacol., 1987, 36, 311; Hamamoto, Y., et al., An- sitions, respectively. The position of the C5' atom affects tinicrob. Agents Chemother., 1987, 31, 907; Balzarini, the location of the 5'-hydroxyl group in relation to the J., et al., Biochem. Biophys. Res. Commun., 1987, 140, base. Since the 5'-hydroxyl group is the site of phospho- 735), and 2'-fluoro-arabinofuranosyl-2'-3'-dideoxycyti- rylation of the nucleoside, its location with respect to the dine (Martin, T.A., et al., J. Med. Chem., 1990, 33, 2137; 35 rest of the nucleoside is important. Watanabe, K.A., et al., J. Med. Chem., 1990, 33, 2145; [0009] There has been recent interest in the synthesis Sterzycki, R.Z., et al., J. Med. Chem., 1990 33, 2150). of nucleoside derivatives in which the 3'-carbon of the [0004] In the 5'-triphosphorylated form, these nucleo- nucleoside has been replaced with a heteroatom. Nor- sides are known to inhibit HIV reverse transcriptase as beck, D.W., et al., in Tet. Lett., 1989, 30, 6263, reported well as cause chain-termination of the growing viral DNA 40 the synthesis of (±)-1-[(2β,4β)-2-(hydroxymethyl)-4-di- chain. Furman, P.A., et al., Proc. Natl. Acad. Sci. U.S. oxolanyl]thymine (referred to below as (±)-dioxolane-T, A., 1986, 83, 8333; Cheng, Y.C., e al., J. Biol. Chem., see Figure 1), that results in a racemic mixture of dias- 1987, 262, 2187; St. Clair, M.H., et al., Antimicrob. tereomers about the C4' atom. The product is a deriva- Agents Chemother., 1987, 31, 1972; and Schinazi, R. tive of 3'-deoxythymidine in which the C3' atom has F., et al., Antimicrob. Agents Chemother., 1989 33, 115. 45 been replaced with an 03' atom. The product was syn- [0005] The stereochemistry of nucleoside derivatives thesized in five steps from benzyloxyaldehyde dimeth- play an important role in their biological activity. The C1' ylacetal and (±)-methyl glycerate to produce a 79% yield position of the ribose in the nucleoside (the carbon of the 1:1 diastereomeric mixture. The X-ray crystallo- bound to the nitrogen of the heterocyclic base) is a chiral graphic analysis of the product revealed that the diox- 50 3 center because the carbon is attached to four different olane ring adopts the T4 conformation commonly ob- moieties. Likewise, there is an optically active center at served in ribonucleosides, with the 03' atom in the endo C4' of the nucleoside (the ring carbon bound to the hy- position. Norbeck reported that the racemic mixture of droxymethyl group that is phosphorylated in nucle- dioxolane-T exhibits an anti-HIV activity of 20 µMin otides). In the naturally occurring nucleosides, both the ATH8 cells, and attributed the low efficacy against the base attached to the C1' atom and the hydroxymethyl 55 virus to an effect of the endo conformation of the 03' group attached to the C4' atom are on the same side of atom. the carbohydrate ring. [0010] Belleau, et al., in the Fifth International Conf. [0006] A carbohydrate configuration in which the C1' on AIDS, Montreal, Canada June 4-9, 1990, paper No. 2 3 EP 1 600 448 A2 4 T.C.O.l., reported a method of synthesis of cytidine nu- HIV in vivo. cleosides that contain oxygen or sulfur in the 3'-position. The dioxolane ring was prepared by the condensation Brief Description of the Figures of RCO2CH2CHO with glycerine. As with the Norbeck synthesis, the Belleau synthesis results in a racemic 5 [0018] mixture of diastereoisomers about the C4' carbon of the nucleoside. Belleau reported that the sulfur analog, re- Figure 1 is an illustration of the chemical structures ferred to as NGBP-21 or (±) BCH-189 (see Figure 1), of (±)-1-[(2β,4β)-2-(hydroxymethyl)-4-dioxolanyl] had high anti-HIV activity. (±) BCH-189 is currently un- thymine (dioxolane-T) and (±)-1-[(2β,4β)-2-(hy- dergoing preclinical toxicology. 10 droxymethyl)-4-(1,3-thioxolane)]thymine (BCH- [0011] To date, no one has reported a method of syn- 189). thesis of a nucleoside analog with an oxygen in the 3'- Figure 2 is an illustration of the method of synthesis position that results in an enantiomerically pure diox- of enantiomerically pure β-D-(-)-dioxolane-thymine. olane nucleoside that has the same stereochemistry as the nucleosides found in nature (the B stereoisomer). 15 Detailed Description of the Invention There is a need for such a synthesis as a research tool to provide more information on the effect of stereochem- [0019] As used herein, the term "protected" refers to istry on the anti-viral activity of nucleoside derivatives, a moiety that has been placed on a functional group of and to provide new anti-HIV agents.
Recommended publications
  • Hazardous Substance Fact Sheet
    Right to Know Hazardous Substance Fact Sheet Common Name: DIOXOLANE Synonyms: 1,3-Dioxolan; Formal Glycol; Glycol Methylene Ether CAS Number: 646-06-0 Chemical Name: 1,3-Dioxolane RTK Substance Number: 0791 Date: February 1999 Revision: April 2008 DOT Number: UN 1166 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Dioxolane is a clear, colorless liquid with an Ether-like odor. It Hazard Summary is used in lithium batteries and as a solvent for oils, fats, waxes Hazard Rating NJDOH NFPA and dyes. HEALTH - 1 FLAMMABILITY - 3 REACTIVITY - 2 FLAMMABLE AND REACTIVE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Dioxolane is on the Right to Know Hazardous Substance List because it is cited by ACGIH, DOT, and NFPA. f Dioxolane can affect you by ingestion and may be absorbed f This chemical is on the Special Health Hazard Substance through the skin. List. f Contact can irritate and burn the skin and eyes with possible eye damage. f Inhaling Dioxolane can irritate the nose and throat causing coughing and wheezing. f Exposure to Dioxolane may damage the nervous system. f Dioxolane may damage the kidneys. f Dioxolane is FLAMMABLE and REACTIVE and a SEE GLOSSARY ON PAGE 5. DANGEROUS FIRE and EXPLOSION HAZARD. FIRST AID Eye Contact f Immediately flush with large amounts of cool water for at Workplace Exposure Limits least 15 minutes, lifting upper and lower lids. Remove ACGIH: The threshold limit value (TLV) is 20 ppm averaged contact lenses, if worn, while flushing.
    [Show full text]
  • A Review on Electrochemical Properties of Choline Chloride Based Eutectic Solvent in Mineral Processing
    JASEM ISSN 1119 -8362 Full-text Available Online at J. Appl. Sci. Environ. Manage. August 2017 Vol. 21 (5) 991-998 www.ajol.info and All rights reserved www.bioline.org.br/ja A Review on Electrochemical Properties of Choline Chloride Based Eutectic Solvent in Mineral Processing *1OBETEN, ME; UGI, BU; ALOBI, NO Department of Chemical Sciences, Cross River University of Technology, P. M. B. 1123 Calabar - Cross River State, Nigeria. ABSTRACT: Our review highlights the most recent developments in ionic liquid (IL) chemistry where the “well-known” description of IL properties sometimes proves to be inaccurate. However, in the authors’ opinion, all these new research developments concerning ionic liquid properties serve to update knowledge on the typical physical and chemical properties of ILs, which is significant to both theoretical research and industrial applications. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, the paper presents an opportunity to understand deep eutectic solvents (DES) through a more complete and accurate view . © JASEM https://dx.doi.org/10.4314/jasem.v21i5.29 Keywords : Eutectic; Solvents; Electrochemistry; Ionic Liquids; purification; Ethylene glycol. Since environmental pollution caused by chemical mixed with different hydrogen bond donors (HBDs) and energy industries has increased for several such as urea, ethylene glycol, acetamide or decades, there is high expectation from scientists and hexanediol (type IV DES). engineers to design sustainable chemical processes, to generate less harmful materials and more Owing to its low cost, biodegradability and low environmentally friendly sources of energy toxicity, ChCl was widely used as an organic salt to production.
    [Show full text]
  • Student Number: 201477310
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). Metabolomics, Physicochemical Properties and Mycotoxin Reduction of Whole Grain Ting (a Southern African fermented food) Produced via Natural and Lactic acid bacteria (LAB) fermentation A Thesis submitted to the Faculty of Science, University of Johannesburg, South Africa In partial fulfilment of the requirement for the award of a Doctoral Degree in Food Technology By OLUWAFEMI AYODEJI ADEBO STUDENT NUMBER: 201477310 Supervisor : Dr. E. Kayitesi Co-supervisor: Prof. P. B. Njobeh October 2018 EXECUTIVE SUMMARY Drought and challenges related to climate change are some of the issues facing sub-Saharan Africa countries, with dire consequences on agriculture and food security. Due to this prevailing situation, drought and climate resistant crops like sorghum (Sorghum bicolor (L) Moench) can adequately contribute to food security. The versatility and importance of sorghum is well reflected in its use as a major food source for millions of people in sub-Saharan Africa.
    [Show full text]
  • US EPA, Inert (Other) Pesticide Ingredients in Pesticide Products
    Inert Ingredients ordered by CAS Number Updated August 2004 CAS PREFIX NAME List No. 50-21-5 Lactic acid 4B 50-70-4 Sorbitol 4A 50-81-7 L- Ascorbic acid 4A 50-99-7 Dextrose 4A 51-03-6 Piperonyl butoxide 3 51-05-8 Procaine hydrochloride 3 51-55-8 Atropine 3 52-51-7 2- Bromo-2-nitro-propane-1,3-dio 3 54-21-7 Sodium salicylate 3 56-81-5 Glycerol (glycerin) 1,2,3 propanetriol 4A 56-86-0 L- Glutamic acid 3 56-95-1 Chlorhexidine diacetate 3 57-10-3 Hexadecanoic acid 4A 57-11-4 Stearic acid 4A 57-13-6 Urea 4A 57-48-7 D- Fructose 4B 57-50-1 Sugar 4A 57-55-6 Propylene glycol 4B 57-88-5 (3.beta.)- Cholest-5-en-3-ol 4B 58-08-2 1H- Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- 4B 58-56-0 Thiamine mononitrate 4B 58-85-5 Biotin 3 58-86-6 D- Xylose 4B 58-95-7 Vitamin E acetate 3 59-30-3 Folic acid 4B 59-40-5 N-(2- Quinoxalinyl)sulfanilide 3 59-67-6 Nicotinic acid 3 60-00-4 Ethylenediaminetetraacetic acid (EDTA) 4B 60-12-8 Benzeneethanol 3 60-29-7 Ethane, 1,1'-oxybis- 3 60-33-3 Linoleic acid 3 61-73-4 C.I. Basic Blue 9 3 62-33-9 Ethylenediaminetetraacetic acid (EDTA), calcium4B 62-54-4 Acetic acid, calcium salt 4A 63-42-3 D-(+)-Lactose 4A 63-68-3 L- Methionine 4B 64-02-8 Ethylenediaminetetraacetic acid (EDTA), tetraso4B 64-17-5 Ethanol 4B 64-18-6 Formic acid 3 64-19-7 Acetic acid 4B 64-86-8 Colchicine 3 65-85-0 Benzoic acid 4B 66-71-7 1,10- Phenanthroline 3 67-03-8 Thiamin hydrochloride 3 67-43-6 1,1,4,7,7- Diethylenetriaminepentaacetic acid 3 67-48-1 Choline chloride 4B 67-56-1 Methyl alcohol 3 67-63-0 2- Propanol 4B 67-64-1 Acetone 3 67-68-5 Dimethyl
    [Show full text]
  • EZ Speed Strip Safety Data Sheet
    Date Printed: 10/14/2020 Page 1 / 6 Safety Data Sheet 1. Identification Product Name: EZ Speed Strip Revision Date: 10/14/2020 Product Identifier: 11212500 Recommended Use: Paint Remover/Strip Supplier: Emergency Telephone: Chemtrec: +1-800-424-9300 (USA) Kop-Coat Marine Group Chemtrec: +1 703-527-3887 (Intl.) 36 Pine Street 24 hrs./day, 7 days/week Rockaway, NJ, 07866, USA Poison Control: 1-800-222-1222 1-800-221-4466 (non - emergency matters) 24 Hour Hotline: 847-367-7700 2. Hazard Identification Classification Symbol(s) of Product Signal Word Danger Possible Hazards 87% of the mixture consists of ingredient(s) of unknown acute toxicity. GHS HAZARD STATEMENTS Acute Toxicity, Inhalation, category 4 H332 Harmful if inhaled. Eye Irritation, category 2A H319 Causes serious eye irritation. Flammable Liquid, category 2 H225 Highly flammable liquid and vapour. STOT, single exposure, category 3, NE H336 May cause drowsiness or dizziness. GHS LABEL PRECAUTIONARY STATEMENTS P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P264 Wash hands thoroughly after handling. P271 Use only outdoors or in a well-ventilated area. P280 Wear protective gloves/protective clothing/eye protection/face protection. P303+P361+P353 IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/ shower. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • WO 2017/087640 Al 26 May 2017 (26.05.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/087640 Al 26 May 2017 (26.05.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 35/ 74 (2015.01) A61K 8/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 35/66 (2015.01) A61K 8/99 (201 7.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US20 16/062480 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 17 November 2016 (17.1 1.2016) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/257,615 1 November 2015 (19. 11.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicants : BAUM, Marc M.
    [Show full text]
  • Etoxadrol-Meta-Isothiocyanate: a Potent, Enantioselective, Electrophilic Affinity Ligand for the Phencyclidine-Binding Site
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 238, number 2, 369-374 FEB 06377 October 1988 Etoxadrol-meta-isothiocyanate: a potent, enantioselective, electrophilic affinity ligand for the phencyclidine-binding site Andrew Thurkauf, Mariena V. Mattson, Philip N. Huguenin*, Kenner C. Rice and Arthur E. Jacobson Section on Drug Design and Synthesis, Laboratory of Neuroscience, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, IUD 20892, USA Received 17 August 1988 Etoxadrol-mera-isothiocyanate (2S,4S,692-ethyl-2-(3-isothiocyanatophenyl)-2-pi~ridyl)1,3-dioxolane, 4n) has been synthesized and characterized as an irreversible ligand for the phencyclidine (PCP)-binding site. It is the first chiral elec- trophilic affinity ligand for this site to have been described. This affinity ligand is based upon etoxadrol, a 1,3-dioxolane known to have PCP-like effects in vivo and in vitro. Etoxadrol-meta-isothiocyanate was found to be four-five times more potent in vitro than metaphit (1-[1-(3-isothiocyanatophenyl)cyclohexyl]pi~~dine), the only previously known electro- philic affinity ligand for the PCP-binding site. The binding was shown to be highly enantioselective for etoxadrol-meta- isothiocyanate (4a). The 2R,4R,6R-enantiomer of 4a was essentially inactive. The ability of the 2S,4$69enantiomer (4a) to interact with the benzodiazepine, muscarinic, and mu opioid receptor systems was also examined, and it was found not to interact with these receptor systems. It seems likely that 4a will prove to be a valuable tool in the study of structure and function of the PCP-binding site.
    [Show full text]
  • Food and Drug Administration, HHS § 172.515
    Food and Drug Administration, HHS § 172.515 Common name Scientific name Limitations Sandalwood, white (yellow, or East Indian) ... Santalum album L. Sandarac ........................................................ Tetraclinis articulata (Vahl.), Mast .............................. In alcoholic beverages only Sarsaparilla ..................................................... Smilax aristolochiaefolia Mill., (Mexican sarsaparilla), S. regelii Killip et Morton (Honduras sarsaparilla), S. febrifuga Kunth (Ecuadorean sarsaparilla), or undetermined Smilax spp. (Ecuadorean or Central American sarsaparilla). Sassafras leaves ............................................ Sassafras albidum (Nutt.) Nees ................................. Safrole free Senna, Alexandria .......................................... Cassia acutifolia Delile. Serpentaria (Virginia snakeroot) .................... Aristolochia serpentaria L ........................................... In alcoholic beverages only Simaruba bark ................................................ Simaruba amara Aubl ................................................. Do. Snakeroot, Canadian (wild ginger) ................ Asarum canadense L. Spruce needles and twigs .............................. Picea glauca (Moench) Voss or P. mariana (Mill.) BSP. Storax (styrax) ................................................ Liquidambar orientalis Mill. or L. styraciflua L. Tagetes (marigold) ......................................... Tagetes patula L., T. erecta L., or T. minuta L. (T. As oil only glandulifera
    [Show full text]
  • Third Supplement, FCC 11 Index / All-Trans-Lycopene / I-1
    Third Supplement, FCC 11 Index / All-trans-Lycopene / I-1 Index Titles of monographs are shown in the boldface type. A 2-Acetylpyridine, 20 Alcohol, 80%, 1524 3-Acetylpyridine, 21 Alcohol, 90%, 1524 Abbreviations, 6, 1726, 1776, 1826 2-Acetylpyrrole, 21 Alcohol, Absolute, 1524 Absolute Alcohol (Reagent), 5, 1725, 2-Acetyl Thiazole, 18 Alcohol, Aldehyde-Free, 1524 1775, 1825 Acetyl Valeryl, 562 Alcohol C-6, 579 Acacia, 556 Acetyl Value, 1400 Alcohol C-8, 863 ªAccuracyº, Defined, 1538 Achilleic Acid, 24 Alcohol C-9, 854 Acesulfame K, 9 Acid (Reagent), 5, 1725, 1775, 1825 Alcohol C-10, 362 Acesulfame Potassium, 9 Acid-Hydrolyzed Milk Protein, 22 Alcohol C-11, 1231 Acetal, 10 Acid-Hydrolyzed Proteins, 22 Alcohol C-12, 681 Acetaldehyde, 10 Acid Calcium Phosphate, 219, 1838 Alcohol C-16, 569 Acetaldehyde Diethyl Acetal, 10 Acid Hydrolysates of Proteins, 22 Alcohol Content of Ethyl Oxyhydrate Acetaldehyde Test Paper, 1535 Acidic Sodium Aluminum Phosphate, Flavor Chemicals (Other than Acetals (Essential Oils and Flavors), 1065 Essential Oils), 1437 1395 Acidified Sodium Chlorite Alcohol, Diluted, 1524 Acetanisole, 11 Solutions, 23 Alcoholic Potassium Hydroxide TS, Acetate C-10, 361 Acidity Determination by Iodometric 1524 Acetate Identification Test, 1321 Method, 1437 Alcoholometric Table, 1644 Aceteugenol, 464 Acid Magnesium Phosphate, 730 Aldehyde C-6, 571 Acetic Acid Furfurylester, 504 Acid Number (Rosins and Related Aldehyde C-7, 561 Acetic Acid, Glacial, 12 Substances), 1418 Aldehyde C-8, 857 Acetic Acid TS, Diluted, 1524 Acid Phosphatase
    [Show full text]
  • Sympathomimetic Anesthetics
    SYMPATHOMIMETIC ANESTHETICS GRAHAM CHEN, SC.D., M.D. A NEW TYPE of general anaesthetic drug has been developed in recent years. These drugs produce surgical anaesthesia without causing depression of respiratory and cardiovascular functions. Slight hypertension and taehycardia usually occur fol- lowing their intravenous administration. Mental confusion, dreaming, and a feel- ing of body dissociation are expressed by some individuals during the recovery period. Two classes of compounds containing a basic amine moiety have been shown to possess such properties: arylcycloalkylamines and 2-(2,2 substituted 1,3 dioxo- lan-4-yl) piperidines. Phencyelidine and ketamine belong to the first category, and dexoxadrol and etoxadrol to the latter. The structures of these drugs are shown in Figure 1. The anaesthetic and some other properties of the two classes of chemi- cals are remarkably similar; they may be considered together insofar as their principal pharmacologic actions are concerned. The purpose of this communication is to describe the neuropharmacological characteristics of these drugs, to indicate structure-activity relationships, and to discuss the mode of their anaesthetic actions. PHARMACOLOGY The progressive central effects of arylcycloalkylamines and 2-(2,2 substituted 1,3 dioxolan-4-yl) piperidines administered to animals in increasing doses gen- erally are excitation, ataxia, catalepsy, general anaesthesia and conwdsions. The degree of stimulation and depression varies with animal species and different compounds. Excitation is a prominent initial effect in rats and mice. It does not usually occur in primates, including man. 1- ~ Ataxia is a concomitant effect in rats and mice, and may occur in other species even in the absence of excitement.1 -3 Catalepsy, similar to that produced by bulbocapnine, is an outstanding central effect of these agents in all species including man.
    [Show full text]
  • Prescribed Drugs Containing Nitrogen Heterocycles: an Overview Cite This: RSC Adv., 2020, 10, 44247 Majid M
    RSC Advances View Article Online REVIEW View Journal | View Issue Prescribed drugs containing nitrogen heterocycles: an overview Cite this: RSC Adv., 2020, 10, 44247 Majid M. Heravi * and Vahideh Zadsirjan Heteroatoms as well as heterocyclic scaffolds are frequently present as the common cores in a plethora of active pharmaceuticals natural products. Statistically, more than 85% of all biologically active compounds are heterocycles or comprise a heterocycle and most frequently, nitrogen heterocycles as a backbone in their complex structures. These facts disclose and emphasize the vital role of heterocycles in modern drug design and drug discovery. In this review, we try to present a comprehensive overview of top Received 28th October 2020 prescribed drugs containing nitrogen heterocycles, describing their pharmacological properties, medical Accepted 23rd November 2020 applications and their selected synthetic pathways. It is worth mentioning that the reported examples are DOI: 10.1039/d0ra09198g actually limited to current top selling drugs, being or containing N-heterocycles and their synthetic rsc.li/rsc-advances information has been extracted from both scientific journals and the wider patent literature. Creative Commons Attribution 3.0 Unported Licence. 1. Introduction chloroquinine, azidothymidine and anti-pyrine. Furthermore, most of the vitamins, nucleic acid, enzymes, co-enzymes, hormones, and 13 Medicinal and pharmaceutical chemistry are disciplines at the alkaloids contain N-based heterocycles as scaffolds. intersection of chemistry, especially synthetic organic chemistry, and Due to exhibiting diverse biological activities, nitrogen pharmacology and various other biological specialties, leading to the heterocyclic compounds have always been attractive targets to design, chemical synthesis and development of bio-active molecules, synthetic organic chemists.
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]