Peponocephala Electra (Melon-Headed Whale)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Range-Dependent Flexibility in the Acoustic Field of View Of
RESEARCH ARTICLE elifesciences.org Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena) Danuta M Wisniewska1,2*, John M Ratcliffe3,4, Kristian Beedholm1, Christian B Christensen1, Mark Johnson5, Jens C Koblitz6, Magnus Wahlberg3,7,8, Peter T Madsen1 1Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; 2Marine Mammal Research, Department of Bioscience, Aarhus University, Roskilde, Denmark; 3Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense, Denmark; 4Department of Biology, University of Toronto Mississauga, Mississauga, Canada; 5Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland; 6Animal Physiology, Institute for Neurobiology, University of Tubingen,¨ Tubingen,¨ Germany; 7Marine Biological Research Centre, University of Southern Denmark, Kerteminde, Denmark; 8Fjord and Belt, Kerteminde, Denmark Abstract Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high- repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation *For correspondence: danuta. and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth [email protected] flexibility has been an important driver in the evolution of echolocation for prey tracking. -
Comoros Island Chain and Adjacent Reef Banks IMMA
Comoros Island Chain and Adjacent Reef Banks IMMA Summary The area of the Comoros (Grande Comore, Mohéli, Anjouan), Mayotte and other reef banks under French jurisdiction (Zélée/Geyser complex and the Glorieuses) includes submarine canyons and a large Area Size number of seamounts located between the main 65,900km2 islands. Small resident populations of coastal dolphins occur around Mayotte, particularly Indo-Pacific Qualifying Species and Criteria bottlenose dolphins (Tursiops aduncus) and Humpback whale – Megaptera novaeangliae. endangered Indian Ocean humpback dolphins (Sousa Criterion A; B (ii); C (i, iii) plumbea). Throughout the archipelago, high densities Blue whale – Balaenoptera musculus. of oceanic delphinids have been recorded, Criterion A; B (ii); C (iii) particularly spinner dolphins, pantropical spotted dolphins and melon-headed whales (Peponocephala Sperm whale – Physeter macrocephalus. electra). Other common species include dwarf sperm Criterion A; B (ii) whales, Blainville’s beaked whales, sperm whales, Melon-headed whale – Peponocephala electra. short-finned pilot whales, and false killer whales. The Criterion B (ii) density of migrating humpback whales is particularly high off the south coast of Moheli, in the coastal Short-finned pilot whale – Globicephala macrorhynchus. Criterion B (ii) waters of Grande Comore and on the Geyser/Zélée complex. Finally, dugongs still occur in small numbers Spinner dolphin – Stenella longirostris. in the lagoon of Mayotte, in the Moheli Marine Park Criterion B (ii) (south coast), but this population has declined greatly Indo-Pacific Bottlenose dolphin – Tursiops over the past four decades. aduncus. Criterion B (i) Indian Ocean humpback dolphin – Sousa Description plumbea. Criterion A; B (i) The Comoros archipelago is located in the northern Mozambique Channel, in the southwest tropical Indian Pantropical spotted dolphins – Stenella Ocean. -
Marine Mammal Taxonomy
Marine Mammal Taxonomy Kingdom: Animalia (Animals) Phylum: Chordata (Animals with notochords) Subphylum: Vertebrata (Vertebrates) Class: Mammalia (Mammals) Order: Cetacea (Cetaceans) Suborder: Mysticeti (Baleen Whales) Family: Balaenidae (Right Whales) Balaena mysticetus Bowhead whale Eubalaena australis Southern right whale Eubalaena glacialis North Atlantic right whale Eubalaena japonica North Pacific right whale Family: Neobalaenidae (Pygmy Right Whale) Caperea marginata Pygmy right whale Family: Eschrichtiidae (Grey Whale) Eschrichtius robustus Grey whale Family: Balaenopteridae (Rorquals) Balaenoptera acutorostrata Minke whale Balaenoptera bonaerensis Arctic Minke whale Balaenoptera borealis Sei whale Balaenoptera edeni Byrde’s whale Balaenoptera musculus Blue whale Balaenoptera physalus Fin whale Megaptera novaeangliae Humpback whale Order: Cetacea (Cetaceans) Suborder: Odontoceti (Toothed Whales) Family: Physeteridae (Sperm Whale) Physeter macrocephalus Sperm whale Family: Kogiidae (Pygmy and Dwarf Sperm Whales) Kogia breviceps Pygmy sperm whale Kogia sima Dwarf sperm whale DOLPHIN R ESEARCH C ENTER , 58901 Overseas Hwy, Grassy Key, FL 33050 (305) 289 -1121 www.dolphins.org Family: Platanistidae (South Asian River Dolphin) Platanista gangetica gangetica South Asian river dolphin (also known as Ganges and Indus river dolphins) Family: Iniidae (Amazon River Dolphin) Inia geoffrensis Amazon river dolphin (boto) Family: Lipotidae (Chinese River Dolphin) Lipotes vexillifer Chinese river dolphin (baiji) Family: Pontoporiidae (Franciscana) -
Oceanic Cetaceans and Associated Habitats in the Western Solomon Islands
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/275894391 Oceanic Cetaceans and Associated Habitats in the Western Solomon Islands. In: Green, A., P. Lokani, W. Atu, P. Ramohia, P... Technical Report · May 2006 CITATIONS READS 0 33 1 author: Benjamin Kahn APEX Environmental 14 PUBLICATIONS 136 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Banda & Ceram Seas Marine Mammal Survey, east Indonesia: 5-15 November 2016 View project Oceanic Cetaceans in the Solomon Islands View project All content following this page was uploaded by Benjamin Kahn on 06 May 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. June 2006 TNC Pacifi c Island Countries Report No 1/06 Solomon Islands Government Chapter 8 Oceanic Cetaceans & Associated Habitats Solomon Islands Marine Assessment Benjamin Kahn APEX Environmental 445 Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Benjamin Kahn: P.O. Box 59 Clifton Beach, Cairns 4879 QLD Australia. e-Mail: [email protected] Suggested Citation: Kahn, B. 2006. Oceanic Cetaceans and Associated Habitats. In: Green, A., P. Lokani, W. Atu, P. Ramohia, P. Thomas and J. Almany (eds.) 2006. Solomon Islands Marine Assessment: Technical report of survey conducted May 13 to June 17, 2004. TNC Pacific Island Countries Report No. 1/06 © 2006, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. -
Marine Mammals and Megafauna in Irish Waters - Behaviour, Distribution And
Marine Research Sub-Programme Marine Mammals and Megafauna in Irish (NDP 2007-’13) Series Waters - Behaviour, Distribution and Habitat Use. Monitoring Spatial and Temporal Habitat Use and Abundance of Species Project-based Award Lead Partner: Galway Mayo Institute of Technology/ Irish Whale and Dolphin Group The Marine Institute is the national agency which has the following functions: “to undertake, to co-ordinate, to promote and to assist in marine research and development and to provide such services related to research and development that, in the opinion of the Institute, will promote economic development and create employment and protect the marine environment” Marine Institute Act 1991. Sea Change: A Marine Knowledge, Research & Innovation Strategy for Ireland Sea Change—A Marine Knowledge, Research & Innovation Strategy for Ireland 2007-2013—was launched in early 2007 and was the outcome of extensive analysis and consultation with government departments, state agencies, industry and the third-level sector. It outlines a vision for the development of Ireland’s marine sector and sets clear objectives aimed at achieving this vision, namely to: 1. Assist existing, and largely indigenous, marine sub-sectors to improve their overall competitiveness and engage in activity that adds value to their outputs by utilising knowledge and technology arising from research. 2. Build new research capacity and capability and utilise fundamental knowledge and technology to create new marine-related commercial opportunities and companies. 3. Inform public policy, governance and regulation by applying the knowledge derived from marine research and monitoring. 4. Increase the marine sector’s competitiveness and stimulate the commercialisation of the marine resource in a manner that ensures its sustainability and protects marine biodiversity and ecosystems. -
Review of Small Cetaceans. Distribution, Behaviour, Migration and Threats
Review of Small Cetaceans Distribution, Behaviour, Migration and Threats by Boris M. Culik Illustrations by Maurizio Wurtz, Artescienza Marine Mammal Action Plan / Regional Seas Reports and Studies no. 177 Published by United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS). Review of Small Cetaceans. Distribution, Behaviour, Migration and Threats. 2004. Compiled for CMS by Boris M. Culik. Illustrations by Maurizio Wurtz, Artescienza. UNEP / CMS Secretariat, Bonn, Germany. 343 pages. Marine Mammal Action Plan / Regional Seas Reports and Studies no. 177 Produced by CMS Secretariat, Bonn, Germany in collaboration with UNEP Coordination team Marco Barbieri, Veronika Lenarz, Laura Meszaros, Hanneke Van Lavieren Editing Rüdiger Strempel Design Karina Waedt The author Boris M. Culik is associate Professor The drawings stem from Prof. Maurizio of Marine Zoology at the Leibnitz Institute of Wurtz, Dept. of Biology at Genova Univer- Marine Sciences at Kiel University (IFM-GEOMAR) sity and illustrator/artist at Artescienza. and works free-lance as a marine biologist. Contact address: Contact address: Prof. Dr. Boris Culik Prof. Maurizio Wurtz F3: Forschung / Fakten / Fantasie Dept. of Biology, Genova University Am Reff 1 Viale Benedetto XV, 5 24226 Heikendorf, Germany 16132 Genova, Italy Email: [email protected] Email: [email protected] www.fh3.de www.artescienza.org © 2004 United Nations Environment Programme (UNEP) / Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. -
Humpback Whales 101
G3 U5 OVR GRADE 3 UNIT 5 OVERVIEW Humpback Whales 101 Introduction Humpback whales are highly intelligent marine mammals that depend on specifi c environmental conditions to survive. They migrate north to nutrient-rich waters of Alaska to feed during the summer, and south to tropical, but nutrient-poor, warm waters in winter to give birth and mate. Humpback whales feed on huge amounts of small fi sh and plankton that are abundant in northern marine environments in spring and summer. Adult whales maintain a thick layer of insulating blubber under their skin that keeps internal body temperatures constant. Whales are not born with insulating blubber and would freeze in cold Alaskan waters, which may explain whale migration to tropical environments in winter to give birth, and thus perpetuate survival of the species. Brainstorming the amazing adaptations these marine mammals have undergone over millions of years to survive in ocean environments, brings this unit to life for the students. They then imagine body feature changes that would be required for humans to adapt to similar environments. Students also learn that humpback whales, like humans, are warm-blooded, give birth, engage in courtships, mate, nurse their young, and protect them from predators. Students study whale body features and crucial roles they play during migration, feeding, and mating. The unit’s main focus is on whale behavior while in the mating and nursing grounds in Hawai‘i. Like researchers, students follow the scientifi c inquiry process to answer questions. Through hands-on lab activities and fun games that complement lessons, students replicate the feeding behaviors of whales, and create bar graphs comparing the feeding styles of baleen and toothed whales. -
Globicephala Macrorhynchus Gray, 1846 DELPH Glob 2 SHW
click for previous page 124 Marine Mammals of the World Globicephala macrorhynchus Gray, 1846 DELPH Glob 2 SHW FAO Names: En - Short-finned pilot whale; Fr - Globicephale tropical; Sp - Calderón de aletas cortas. Fig. 280 Globicephala macrorhynchus Distinctive Characteristics: Pilot whales are large, with bulbous heads, dramatically upsloping mouthli- nes, and extremely short or non-existent beaks. The shape of the head varies significantly with age and sex, becoming more globose in adult males. The dorsal fin, which is situated only about one-third of the way back from the head, is low and falcate, with a very wide base (it also varies with age and sex). The flippers are long and sickle-shaped, 16 to 22% of the body length. Adult males are significantly larger than females, with large, sometimes squarish DORSAL VIEW foreheads that may overhang the snout, strongly hooked dorsal fins with thickened leading edges, and deepened tail stocks with post-anal keels. Except for a light grey, anchor-shaped patch on the chest, a grey “saddle” behind the dorsal fin, and a pair of roughly parallel bands high on the back that sometimes end as a light streak or teardrop above each eye, pilot whales are black to dark brownish grey. This is the reason for one of their other com- mon names, blackfish (although the term blackfish is variously used, usually by fishermen, to refer to killer, false killer, pygmy killer, pilot, and melon-headed VENTRAL VIEW whales). There are usually 7 to 9 short, sharply pointed teeth in the front of each tooth row. -
Morphology of the Odontocete Melon and Its Implications for Acoustic Function
MARINE MAMMAL SCIENCE, 28(4): 690–713 (October 2012) C 2011 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2011.00526.x Morphology of the odontocete melon and its implications for acoustic function MEGAN F. M CKENNA Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, Mail Code 0205, La Jolla, California 92093-0208, U.S.A. E-mail: [email protected] TED W. C RANFORD ANNALISA BERTA Department of Biology, San Diego State University, San Diego, California 92182-4614, U.S.A. NICHOLAS D. PYENSON Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7013, U.S.A. and Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, Washington 98195, U.S.A. ABSTRACT Toothed whales (crown Odontoceti) are unique among mammals in their ability to echolocate underwater, using specialized tissue structures. The melon, a structure composed of fat and connective tissue, is an important component in the produc- tion of an echolocation beam; it is known to focus high frequency, short duration echolocation clicks. Here, we report on the morphology of the odontocete melon to provide a comprehensive understanding of melon structure across odontocete taxa. This study examined nine odontocete species (12 individual specimens), from five of the ten extant odontocete families. We established standardized definitions using computed tomography scans of the melon to investigate structure without losing geometric integrity. The morphological features that relate to the focusing capacity of the melon include internal density topography, melon size and shape, and relationship to other forehead structures. -
Pseudorca Crassidens – False Killer Whale
Pseudorca crassidens – False Killer Whale variation is not uncommon in cetaceans (Kitchener et al. 1990; Connor et al. 2000), and is likely attributed to changes in water temperature and prey distribution. Results exhibiting geographic variation in body size were found between Japanese and southern African populations, where Japanese specimens were significantly larger in comparison (Ferreira 2008), confirming previous suggestions that Southern Hemisphere populations are typically smaller and reach sexual maturity at shorter body lengths, compared to those of the northern hemisphere (Purves & Pilleri 1978; Kasuya 1986). Using mitochondrial DNA (mtDNA) control region sequence data Chivers et al. (2007) describe a demographically isolated population of False Killer Whales in the waters off Hawaii, in the eastern North Pacific. Regional Red List status (2016) Least Concern National Red List status (2004) Least Concern Assessment Rationale Global and regional population trends and abundance Reasons for change No change data is unavailable for this species, and it is considered Global Red List status (2008) Data Deficient elusive and rare in the waters of the assessment region. Although, occasional mass stranding events have been TOPS listing (NEMBA) (2007) None documented in South Africa, it is suspected that these are CITES listing (2003) Appendix II accredited to natural causes, rather than anthropogenic activities. No major threats that may cause substantial Endemic No population depletion, have been identified, resultantly, this species -
The Nose of the Sperm Whale: Overviews of Functional Design, Structural Homologies and Evolution Stefan Huggenberger1,2, Michel Andre’ 3 and Helmut H
Journal of the Marine Biological Association of the United Kingdom, page 1 of 24. # Marine Biological Association of the United Kingdom, 2014 doi:10.1017/S0025315414001118 The nose of the sperm whale: overviews of functional design, structural homologies and evolution stefan huggenberger1,2, michel andre’ 3 and helmut h. a. oelschla¤ger4 1Biocentre, University of Cologne, 50923 Cologne, Germany, 2Department of Anatomy II, University of Cologne, 50924 Cologne, Germany, 3Laboratori d’Aplicacions Bioacu´stiques, Universitat Polite`cnica de Catalunya, Centre Tecnolo`gic de Vilanova i la Geltru´, Avenida.Rambla Exposicio´, s/n, 08800 Vilanova i la Geltru´, Barcelona, Spain, 4Department of Anatomy III (Dr Senckenbergische Anatomie), Johann Wolfgang Goethe University of Frankfurt am Main, 60590 Frankfurt am Main, Germany The hypertrophic and much elongated epicranial (nasal) complex of sperm whales (Physeter macrocephalus) is a unique device to increase directionality and source levels of echolocation clicks in aquatic environments. The size and shape of the nasal fat bodies as well as the peculiar organization of the air sac system in the nasal sound generator of sperm whales are in favour of this proposed specialized acoustic function. The morphology of the sperm whale nose, including a ‘connecting acoustic window’ in the case and an anterior ‘terminal acoustic window’ at the rostroventral edge of the junk, supports the ‘bent horn hypothesis’ of sound emission. In contrast to the laryngeal mechanism described for dolphins and porpoises, sperm whales may drive the initial pulse generation process with air pressurized by nasal muscles associated with the right nasal passage (right nasal passage muscle, maxillonasolabialis muscle). This can be interpreted as an adapta- tion to deep-diving and high hydrostatic pressures constraining pneumatic phonation. -
Recommendations Against Dolphinaria in India 2013.Cdr
Recommendations Against Dolphinaria In India 2013 EXECUTIVE SUMMARY In the last two years a spate of proposals have been put forth by government departments and private promoters to set up Dolphinaria in India that showcase performances by live dolphins and other cetacean species as a way to promote tourism (annexed). “Dolphinaria” (such facilities have been known by different names including but not limited to dolphinarium, oceanarium, dolphin park, theme park etc, hereinafter collectively referred to as dolphinaria) are captive facilities that display and also use dolphins and other cetacean species in performances, for commercial entertainment. The only known case of dolphins kept in captivity for use in live performances in India was at the ‘Dolphin City’ facility in Chennai, Tamil Nadu in the late 1990s. Bottlenose dolphin performances used to occur thrice a day at this facility. Within six months of their arrival from Bulgaria, all four dolphins died. Consequently the Central Zoo Authority of India (CZA) refused them the mandatory recognition needed to continue operations. Since then no dolphin shows have existed in India for over a decade. These new proposals therefore are an alarming trend, especially as there is an increasing body of worldwide scientific research that highlights the negative impact of such captive facilities on the welfare of dolphins (family Delphinidae under order Cetaceans) and indeed all cetacean species. Today, there is a significant global movement against such facilities, due to the growing exposure of the cruelty meted out to dolphins and other cetacean species in the commercially exploitative captive industry. This document is to serve as a guide for government agencies and other relevant authorities by providing a brief overview of significant global research studies on the welfare of captive cetacean populations with special emphasis on bottlenose dolphins (Tursiops sp.), that are held in Dolphinaria worldwide.