Color and Learn About Whales in MA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toothed Vs. Baleen Whales Monday
SPOT THE DIFFERENCE: TOOTHED VS. BALEEN WHALES MONDAY Their classifications help to give you the answer, so what do you think the most obvious difference is in a toothed whale versus a baleen whale? Your clues are in the close-up photos, below! PHOTO: TASLI SHAW PHOTO: CINDY HANSEN Answer: The most obvious difference between a toothed whale and a baleen whale is the way that they feed and what’s inside their mouth. Toothed whales (including all dolphins and porpoises) have teeth, like we do, and they actively hunt fish, squid, and other sea creatures. Their teeth help them capture, bite, and tear their food into smaller pieces before swallowing. Baleen whales have several hundred plates that hang from their upper jaw, instead of teeth. These plates are made of keratin, the same substance as our hair and fingernails, and are used to filter food from the water or the sediment. Once the food has been trapped in the baleen plates, the whales will use their massive tongues to scrape the food off and swallow it. SPOT THE DIFFERENCE: TOOTHED VS. BALEEN WHALES TUESDAY The photos provided show specific prey types for resident orcas and for the gray whales that stop to feed in Saratoga Passage in the spring. Besides being two different species, what is another difference between these prey types? Who eats what and what makes you think that? Answer: The photos show Chinook salmon and ghost shrimp. Other than being two different species, their main difference is size! A toothed whale, like a resident orca, uses their teeth to capture, bite, and tear Chinook salmon into smaller pieces to be shared with other orcas in their family. -
Balaenoptera Bonaerensis – Antarctic Minke Whale
Balaenoptera bonaerensis – Antarctic Minke Whale compared to B. bonaerensis. This smaller form, termed the “Dwarf” Minke Whale, may be genetically different from B. bonaerensis, and more closely related to the North Pacific Minke Whales, and thus has been classified B. acutorostrata (Wada et al. 1991; IWC 2001). This taxonomic position, although somewhat controversial, has been accepted by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), and the Convention on Migratory Species (CMS). Assessment Rationale The current IWC global estimate of abundance of Antarctic Dr. Meike Scheidat Minke Whales is about 500,000 individuals. The abundance estimates declined from about 700,000 for the second circumpolar set of abundance survey cruises Regional Red List status (2016) Least Concern* (1985/86 to 1990/91) to about 500,000 for the third National Red List status (2004) Least Concern (1991/92 to 2003/04). Although this decline was not statistically significant, the IWC Scientific Committee does Reasons for change No change consider these results to reflect a change. However, Global Red List status (2008) Data Deficient whether this change is genuine or attributed to greater proportions of pack ice limiting the survey extent, has not TOPS listing (NEMBA) (2007) None yet been determined. More detailed results from an CITES listing (1986) Appendix I assessment model are available for the mid-Indian to the mid-Pacific region, and suggest that the population Endemic No increased to a peak in 1970 and then declined, with it *Watch-list Data being unclear whether this decline has levelled off or is still continuing past 2000. -
Cetacean Fact Sheets for 1St Grade
Whale & Dolphin fact sheets Page CFS-1 Cetacean Fact Sheets Photo/Image sources: Whale illustrations by Garth Mix were provided by NOAA Fisheries. Thanks to Jonathan Shannon (NOAA Fisheries) for providing several photographs for these fact sheets. Beluga: http://en.wikipedia.org/wiki/File:Beluga03.jpg http://upload.wikimedia.org/wikipedia/commons/4/4b/Beluga_size.svg Blue whale: http://upload.wikimedia.org/wikipedia/commons/d/d3/Blue_Whale_001_noaa_body_color.jpg; Humpback whale: http://www.nmfs.noaa.gov/pr/images/cetaceans/humpbackwhale_noaa_large.jpg Orca: http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/killerwhale_photos.htm North Atlantic right whale: http://www.nmfs.noaa.gov/pr/images/cetaceans/narw_flfwc-noaa.jpg Narwhal: http://www.noaanews.noaa.gov/stories2010/images/narwhal_pod_hires.jpg http://upload.wikimedia.org/wikipedia/commons/a/ac/Narwhal_size.svg Pygmy sperm whale: http://swfsc.noaa.gov/textblock.aspx?ParentMenuId=230&id=1428 Minke whale: http://www.birds.cornell.edu/brp/images2/MinkeWhale_NOAA.jpg/view Gray whale: http://upload.wikimedia.org/wikipedia/commons/b/b8/Gray_whale_size.svg Dall’s porpoise: http://en.wikipedia.org/wiki/File:Dall%27s_porpoise_size.svg Harbor porpoise: http://www.nero.noaa.gov/protected/porptrp/ Sei whale: http://upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Sei_whale_size.svg/500px- Sei_whale_size.svg.png Whale & Dolphin fact sheets Page CFS-2 Beluga Whale (buh-LOO-guh) Photo by Greg Hume FUN FACTS Belugas live in cold water. They swim under ice. They are called white whales. They are the only whales that can move their necks. They can move their heads up and down and side to side. Whale & Dolphin fact sheets Page CFS-3 Baby belugas are gray. -
Lunge Filter Feeding Biomechanics Constrain Rorqual Foraging Ecology Across Scale S
© 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb224196. doi:10.1242/jeb.224196 RESEARCH ARTICLE Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale S. R. Kahane-Rapport1,*, M. S. Savoca1, D. E. Cade1,2, P. S. Segre1, K. C. Bierlich3, J. Calambokidis4, J. Dale3, J. A. Fahlbusch1, A. S. Friedlaender2, D. W. Johnston3, A. J. Werth5 and J. A. Goldbogen1 ABSTRACT morphological scaling (Haldane, 1926), resulting in functional Fundamental scaling relationships influence the physiology of vital trade-offs that ultimately impact evolution and ecology. rates, which in turn shape the ecology and evolution of organisms. For The physiological advantages and disadvantages associated with diving mammals, benefits conferred by large body size include different body sizes have wide-ranging effects, from behavior to life reduced transport costs and enhanced breath-holding capacity, history. For example, the smallest animals have the lowest absolute thereby increasing overall foraging efficiency. Rorqual whales feed energetic demands (Kelt and Van Vuren, 1999), yet they may also by engulfing a large mass of prey-laden water at high speed and struggle with thermoregulation and be forced to compensate by filtering it through baleen plates. However, as engulfment capacity increasing their metabolism (Scholander et al., 1950; Taylor et al., increases with body length (engulfment volume∝body length3.57), the 1980). Small size enables high performance maneuverability and surface area of the baleen filter does not increase proportionally agility (Domenici, 2001), but may limit maximum attainable speeds (baleen area∝body length1.82), and thus the filtration time of larger (Carrier, 1994; Hirt et al., 2017). -
Fall12 Rare Southern California Sperm Whale Sighting
Rare Southern California Sperm Whale Sighting Dolphin/Whale Interaction Is Unique IN MAY 2011, a rare occurrence The sperm whale sighting off San of 67 minutes as the whales traveled took place off the Southern California Diego was exciting not only because slowly east and out over the edge of coast. For the first time since U.S. of its rarity, but because there were the underwater ridge. The adult Navy-funded aerial surveys began in also two species of dolphins, sperm whales undertook two long the area in 2008, a group of 20 sperm northern right whale dolphins and dives lasting about 20 minutes each; whales, including four calves, was Risso’s dolphins, interacting with the the calves surfaced earlier, usually in seen—approximately 24 nautical sperm whales in a remarkable the company of one adult whale. miles west of San Diego. manner. To the knowledge of the During these dives, the dolphins researchers who conducted this aerial remained at the surface and Operating under a National Marine survey, this type of inter-species asso- appeared to wait for the sperm Fisheries Service (NMFS) permit, the ciation has not been previously whales to re-surface. U.S. Navy has been conducting aerial reported. Video and photographs surveys of marine mammal and sea Several minutes after the sperm were taken of the group over a period turtle behavior in the near shore and whales were first seen, the Risso’s offshore waters within the Southern California Range Complex (SOCAL) since 2008. During a routine survey the morning of 14 May 2011, the sperm whales were sighted on the edge of an offshore bank near a steep drop-off. -
Mandible Allometry in Extant and Fossil Balaenopteridae (Cetacea: Mammalia): the Largest Vertebrate Skeletal Element and Its Role in Rorqual Lunge Feeding
bs_bs_banner Biological Journal of the Linnean Society, 2013, 108, 586–599. With 6 figures Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): the largest vertebrate skeletal element and its role in rorqual lunge feeding NICHOLAS D. PYENSON1,2*, JEREMY A. GOLDBOGEN3 and ROBERT E. SHADWICK4 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC, 20013-7013, USA 2Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA 3Cascadia Research Collective, 218½ West 4th Avenue, Olympia, WA, USA 4Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4 Received 4 July 2012; revised 10 September 2012; accepted for publication 10 September 2012 Rorqual whales (crown Balaenopteridae) are unique among aquatic vertebrates in their ability to lunge feed. During a single lunge, rorquals rapidly engulf a large volume of prey-laden water at high speed, which they then filter to capture suspended prey. Engulfment biomechanics are mostly governed by the coordinated opening and closing of the mandibles at large gape angles, which differentially exposes the floor of the oral cavity to oncoming flow. The mouth area in rorquals is delimited by unfused bony mandibles that form kinetic linkages to each other and with the skull. The relative scale and morphology of these skeletal elements have profound consequences for the energetic efficiency of foraging in these gigantic predators. Here, we performed a morphometric study of rorqual mandibles using a data set derived from a survey of museum specimens. Across adult specimens of extant balaenopterids, mandibles range in size from ~1–6 m in length, and at their upper limit they represent the single largest osteological element of any vertebrate, living or extinct. -
Taxonomic Status of the Genus Sotalia: Species Level Ranking for “Tucuxi” (Sotalia Fluviatilis) and “Costero” (Sotalia Guianensis) Dolphins
MARINE MAMMAL SCIENCE, **(*): ***–*** (*** 2007) C 2007 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2007.00110.x TAXONOMIC STATUS OF THE GENUS SOTALIA: SPECIES LEVEL RANKING FOR “TUCUXI” (SOTALIA FLUVIATILIS) AND “COSTERO” (SOTALIA GUIANENSIS) DOLPHINS S. CABALLERO Laboratory of Molecular Ecology and Evolution, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand and Fundacion´ Omacha, Diagonal 86A #30–38, Bogota,´ Colombia F. TRUJILLO Fundacion´ Omacha, Diagonal 86A #30–38, Bogota,´ Colombia J. A. VIANNA Sala L3–244, Departamento de Biologia Geral, ICB, Universidad Federal de Minas Gerais, Avenida Antonio Carlos, 6627 C. P. 486, 31270–010 Belo Horizonte, Brazil and Escuela de Medicina Veterinaria, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello Republica 252, Santigo, Chile H. BARRIOS-GARRIDO Laboratorio de Sistematica´ de Invertebrados Acuaticos´ (LASIA), Postgrado en Ciencias Biologicas,´ Facultad Experimental de Ciencias,Universidad del Zulia, Avenida Universidad con prolongacion´ Avenida 5 de Julio, Sector Grano de Oro, Maracaibo, Venezuela M. G. MONTIEL Laboratorio de Ecologıa´ y Genetica´ de Poblaciones, Centro de Ecologıa,´ Instituto Venezolano de Investigaciones Cientıficas´ (IVIC), San Antonio de los Altos, Carretera Panamericana km 11, Altos de Pipe, Estado Miranda, Venezuela S. BELTRAN´ -PEDREROS Laboratorio de Zoologia,´ Colec¸ao˜ Zoologica´ Paulo Burheim, Centro Universitario´ Luterano de Manaus, Manaus, Brazil 1 2 MARINE MAMMAL SCIENCE, VOL. **, NO. **, 2007 M. MARMONTEL Sociedade Civil Mamiraua,´ Rua Augusto Correa No.1 Campus do Guama,´ Setor Professional, Guama,´ C. P. 8600, 66075–110 Belem,´ Brazil M. C. SANTOS Projeto Atlantis/Instituto de Biologia da Conservac¸ao,˜ Laboratorio´ de Biologia da Conservac¸ao˜ de Cetaceos,´ Departamento de Zoologia, Universidade Estadual Paulista (UNESP), Campus Rio Claro, Sao˜ Paulo, Brazil M. -
Morphometrics of the Dolphin Genus Lagenorhynchus: Deciphering A
Morphometrics of the dolphin genus Lagenorhynchus: deciphering a contested phylogeny Allison Galezo1,2 and Nicole Vollmer1,3 1 Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History 2 Department of Biology, Georgetown University 3 NOAA National Systematics Laboratory Background Results & Analysis Discussion • Our morphological data support the hypothesis that Figure 1. Phenogram from cluster analysis of dolphin skull Figure 2. Species symbols key with sample sizes. measurements. Calculated using Euclidian distances and the genus Lagenorhynchus is not monophyletic, evident Height l La. acutus (24) p C. commersonii (5) a b c Ward’s method. from the separation in the phenogram of La. albirostris Height p C. eutropia (2) Recent phylogenetic studies1-7 have indicated that the Distance l La. albirostris (10) and La. acutus from the other Lagenorhynchus species, 0 2 4 6 8 p genus Lagenorhynchus, currently containing the species 0 2 4 6 8 l La. australis (7) C. heavisidii (1) u Li. borealis (11) and the mix of genera in the lowermost clade (Figure 1). L. obliquidensa, L. acutusb , L. albirostrisc, L. obscurusd , L. l La. obliquidens (28) p C. hectori (2) n Unknown (1) • Our results show that La. obscurus and La. obliquidens e f cruciger , and L. australis , is not monophyletic. These C. commersonii l La. obscurus (15) are very similar morphologically, which supports the C. commersonii species were originally grouped together because of C.C. cocommemmersoniirsonii C. commeC. hersoniictori hypothesis that they are closely related: they have C. commeC. hersoniictori similarities in external morphology and coloration, but C. commeC. hersoniictori Figure 3. -
Global Patterns in Marine Mammal Distributions
SUPPLEMENTARY INFORMATION I. TAXONOMIC DECISIONS In this work we followed Wilson and Reeder (2005) and Reeves, Stewart, and Clapham’s (2002) taxonomy. In the last 20 years several new species have been described such as Mesoplodon perrini (Dalebout 2002), Orcaella heinsohni (Beasley 2005), and the recognition of several species have been proposed for orcas (Perrin 1982, Pitman et al. 2007), Bryde's whales (Kanda et al. 2007), Blue whales (Garrigue et al. 2003, Ichihara 1996), Tucuxi dolphin (Cunha et al. 2005, Caballero et al. 2008), and other marine mammals. Since we used the conservation status of all species following IUCN (2011), this work is based on species recognized by this IUCN to keep a standardized baseline. II. SPECIES LIST List of the species included in this paper, indicating their conservation status according to IUCN (2010.4) and its range area. Order Family Species IUCN 2010 Freshwater Range area km2 Enhydra lutris EN A2abe 1,084,750,000,000 Mustelidae Lontra felina EN A3cd 996,197,000,000 Odobenidae Odobenus rosmarus DD 5,367,060,000,000 Arctocephalus australis LC 1,674,290,000,000 Arctocephalus forsteri LC 1,823,240,000,000 Arctocephalus galapagoensis EN A2a 167,512,000,000 Arctocephalus gazella LC 39,155,300,000,000 Arctocephalus philippii NT 163,932,000,000 Arctocephalus pusillus LC 1,705,430,000,000 Arctocephalus townsendi NT 1,045,950,000,000 Carnivora Otariidae Arctocephalus tropicalis LC 39,249,100,000,000 Callorhinus ursinus VU A2b 12,935,900,000,000 Eumetopias jubatus EN A2a 3,051,310,000,000 Neophoca cinerea -
Beluga Whale Pvhl Enhances HIF-2A Activity Via Inducing
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 26), pp: 42272-42287 Research Paper Beluga whale pVHL enhances HIF-2α activity via inducing HIF- 2α proteasomal degradation under hypoxia Jianling Bi1, Bo Hu1, Jing Wang1, Xing Liu1, Jinsong Zheng1, Ding Wang1 and Wuhan Xiao1,2 1The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China 2State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China Correspondence to: Wuhan Xiao, email: [email protected] Ding Wang, email: [email protected] Keywords: beluga whale, cetaceans, hypoxia, HIF-2α, VHL Received: October 09, 2016 Accepted: January 09, 2017 Published: February 02, 2017 Copyright: Bi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Aquatic mammals, such as cetaceans experience various depths, with accordingly diverse oxygenation, thus, cetaceans have developed adaptations for hypoxia, but mechanisms underlying this tolerance to low oxygen are unclear. Here we analyzed VHL and HIF-2α, in the hypoxia signaling pathway. Variations in VHL are greater than HIF-2α between cetaceans and terrestrial mammals, and beluga whale VHL (BW-VHL) promotes HIF-2α degradation under hypoxia. BW-VHL catalyzes BW-HIF-2α to form K48-linked poly- ubiquitin chains mainly at the lysine 429 of BW-HIF-2α (K429) and induces BW-HIF-2α for proteasomal degradation. -
New Finds of Giant Raptorial Sperm Whale Teeth (Cetacea, Physeteroidea) from the Westerschelde Estuary (Province of Zeeland, the Netherlands)
1 Online Journal of the Natural History Museum Rotterdam, with contributions on zoology, paleontology and urban ecology deinsea.nl New finds of giant raptorial sperm whale teeth (Cetacea, Physeteroidea) from the Westerschelde Estuary (province of Zeeland, the Netherlands) Jelle W.F. Reumer 1,2, Titus H. Mens 1 & Klaas Post 2 1 Utrecht University, Faculty of Geosciences, P.O. Box 80115, 3508 TC Utrecht, the Netherlands 2 Natural History Museum Rotterdam, Westzeedijk 345 (Museumpark), 3015 AA Rotterdam, the Netherlands ABSTRACT Submitted 26 June 2017 Two large sperm whale teeth were found offshore from Breskens in the Westerschelde Accepted 28 July 2017 estuary. Comparison shows they share features with the teeth of the stem physteroid Published 23 August 2017 Zygophyseter, described from the Late Miocene of southern Italy. Both teeth are however significantly larger than the teeth of theZygophyseter type material, yet still somewhat Author for correspondence smaller than the teeth of the giant raptorial sperm whale Livyatan melvillei, and confirm the Jelle W.F. Reumer: presence of so far undescribed giant macroraptorial sperm whales in the Late Miocene of [email protected] The Netherlands. Editors of this paper Keywords Cetacea, Odontoceti, Westerschelde, Zygophyseter Bram W. Langeveld C.W. (Kees) Moeliker Cite this article Reumer, J.W.F., Mens, T.H. & Post, K. 2017 - New finds of giant raptorial sperm whale teeth (Cetacea, Physeteroidea) from the Westerschelde Estuary (province of Copyright Zeeland, the Netherlands) - Deinsea 17: 32 - 38 2017 Reumer, Mens & Post Distributed under Creative Commons CC-BY 4.0 DEINSEA online ISSN 2468-8983 INTRODUCTION presence of teeth in both maxilla and mandibula they are iden- Fossil Physeteroidea are not uncommon in Neogene marine tified as physeteroid teeth (Gol’din & Marareskul 2013). -
SHORT-FINNED PILOT WHALE (Globicephala Macrorhynchus): Western North Atlantic Stock
February 2019 SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): Western North Atlantic Stock STOCK DEFINITION AND GEOGRAPHIC RANGE There are two species of pilot whales in the western North Atlantic - the long-finned pilot whale, Globicephala melas melas, and the short-finned pilot whale, G. macrorhynchus. These species are difficult to differentiate at sea and cannot be reliably visually identified during either abundance surveys or observations of fishery mortality without high-quality photographs (Rone and Pace 2012); therefore, the ability to separately assess the two species in U.S. Atlantic waters is complex and requires additional information on seasonal spatial distribution. Pilot whales (Globicephala sp.) in the western North Atlantic occur primarily along the continental shelf break from Florida to the Nova Scotia Shelf (Mullin and Fulling 2003). Long-finned and short- finned pilot whales overlap spatially along the mid-Atlantic shelf break between Delaware and the southern flank of Georges Bank (Payne and Heinemann 1993; Rone and Pace 2012). Long-finned pilot whales have occasionally been observed stranded as far south as South Carolina, and short- finned pilot whales have occasionally been observed stranded as far north as Massachusetts (Pugliares et al. 2016). The exact latitudinal ranges of the two species remain uncertain. However, south of Cape Hatteras most pilot whale sightings are expected to be short- Figure 1. Distribution of long-finned (open symbols), short-finned finned pilot whales, while north of (black symbols), and possibly mixed (gray symbols; could be ~42°N most pilot whale sightings are either species) pilot whale sightings from NEFSC and SEFSC expected to be long-finned pilot whales shipboard and aerial surveys during the summers of 1998, 1999, (Figure 1; Garrison and Rosel 2017).