Facultative Thermogenesis During Brooding Is Not the Norm Among Pythons

Total Page:16

File Type:pdf, Size:1020Kb

Facultative Thermogenesis During Brooding Is Not the Norm Among Pythons Facultative thermogenesis during brooding is not the norm among pythons Jake Brashears & Dale F. DeNardo Journal of Comparative Physiology A Neuroethology, Sensory, Neural, and Behavioral Physiology ISSN 0340-7594 Volume 201 Number 8 J Comp Physiol A (2015) 201:817-825 DOI 10.1007/s00359-015-1025-4 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Comp Physiol A (2015) 201:817–825 DOI 10.1007/s00359-015-1025-4 ORIGINAL PAPER Facultative thermogenesis during brooding is not the norm among pythons Jake Brashears1,2 · Dale F. DeNardo1 Received: 8 February 2015 / Revised: 2 May 2015 / Accepted: 12 June 2015 / Published online: 27 June 2015 © Springer-Verlag Berlin Heidelberg 2015 Abstract Facultative thermogenesis is often attributed to our data combined with existing literature demonstrate pythons in general despite limited comparative data avail- that facultative thermogenesis is not as widespread among able for the family. While all species within Pythonidae pythons as previously thought. brood their eggs, only two species are known to produce heat to enhance embryonic thermal regulation. By contrast, Keywords Evolution of endothermy · Metabolic rate · a few python species have been reported to have insig- Parental care · Reptile · Snake nificant thermogenic capabilities. To provide insight into potential phylogenetic, morphological, and ecological fac- tors influencing thermogenic capability among pythons, Introduction we measured metabolic rates and clutch-environment temperature differentials at two environmental tempera- Although it often requires a substantial expenditure of tures—python preferred brooding temperature (31.5 °C) resources on the part of the parent, parental care is wide- and a sub-optimal temperature (25.5 °C)—in six species spread because it confers numerous fitness benefits to off- of pythons, including members of two major phylogenetic spring (e.g., increased survival and growth) (Clutton-Brock branches currently devoid of data on the subject. We found 1991). A common benefit of parental care is thermoregula- no evidence of facultative thermogenesis in five species: tion of the developing offspring (Shine and Harlow 1996; Aspidites melanocephalus, A. ramsayi, Morelia viridis, M. Ashmore and Janzen 2003). In fact, thermoregulation of the spilota cheynei, and Python regius. However, we found that developmental environment has been proposed as an ini- Bothrochilus boa had a thermal metabolic sensitivity indic- tial driving factor in the evolution of endothermy (Farmer ative of facultative thermogenesis (i.e., a higher metabolic 2000). rate at the lower temperature). However, its metabolic rate Pythons (Squamata: Pythonidae) are rare among reptiles was quite low and technical challenges prevented us from in providing ubiquitous parental care that provides ther- measuring temperature differential to make conclusions mal, hydric, and predator defense benefits (Shine 2004; about facultative endothermy in this species. Regardless, Stahlschmidt and DeNardo 2010). Pythons are ectothermic throughout most of life, but during brooding the females of some species are known to increase their metabolic rate and * Jake Brashears exhibit muscular twitching, termed facultative thermogen- [email protected] esis. While widely accepted as a trait of pythons in general, Dale F. DeNardo of the 44 extant python species (Barker et al. 2015), facul- [email protected] tative thermogenesis has been confirmed in only two spe- cies: the Burmese python (Python molurus) (Vinegar et al. 1 School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85281‑4501, USA 1970), which has since been broken into two species (P. molurus and P. bivitattus, Jacobs et al. 2009) and two sub- 2 Present Address: Department of Life Sciences, San Diego City College, 1313 Park Boulevard, San Diego, species of the carpet python (Morelia spilota spilota) (Slip CA 92101‑4787, USA and Shine 1988); (M. s. imbricata) (Pearson et al. 2003). In 1 3 Author's personal copy 818 J Comp Physiol A (2015) 201:817–825 these species, facultative thermogenesis provides substan- species as the diamond python (M. s. spilota) and the tial heat to the clutch, supplementing the insulatory benefits southwestern carpet python (M. s. imbricata), both of associated with coiling around the eggs (Stahlschmidt et al. which have been shown to use facultative thermogenesis 2008). Female heat production is inversely proportional to (Slip and Shine 1988; Pearson et al. 2003). Morelia spilota environmental temperature (Tenv), with metabolic rate and is widely distributed throughout Australia and thus experi- muscular twitching increasing as temperature decreases ences a great range with considerable variation in environ- below optimal developmental temperature (approximately mental temperature. Morelia s. spilota and M. s. imbricata 31.5 °C for most species) (Brashears and DeNardo 2013). are both from high latitudes, while M. s. cheynei is more In P. molurus, maximum heat production occurs when Tenv tropical in distribution. Examining M. s. cheynei provides approaches 24 °C (Van Mierop and Barnard 1978). insight into environmental influences on facultative ther- Currently, the occurrence of facultative thermogenesis mogenesis. Lastly, we examined the ball pythons (Python within the Pythonidae remains unclear (Stahlschmidt and regius) to clarify somewhat ambiguous prior results from DeNardo 2010). This limitation compromises our under- this species. Together, these species combined with the pre- standing of the factors that have shaped its evolution within vious species studied provide a considerable variation in the pythons and, as a result, decreases the utility of python adult size and thus may reveal any influence that size may facultative endothermy in evaluating the driving forces have on the use of endothermy. behind the evolution of endothermy. More complete knowl- edge of the existence of facultative endothermy among pythons would provide for a better understanding of the rel- Materials and methods ative importance of phylogenetic constraints, morphologi- cal limitations, and environmental conditions on the exist- Animals ence of facultative endothermy, and thus provide insight into driving forces (and constraints) of endothermic capa- Over two breeding seasons (2007 and 2008), data were col- bility in general. lected from 18 brooding females representing six species of The Pythonidae is divided between two primary phylo- python: 3 A. melanocephalus, 3 A. ramsayi, 2 B. boa, 3 M. genetic clades, an Afro-Asian clade with two major line- spilota cheynei, 1 M. viridis, and 6 P. regius. Snakes were ages and an Indo-Australian clade with eight major lineages either borrowed from private breeders and housed at Ari- (Reynolds et al. 2014; for recent review, see Barker et al. zona State University (ASU) during the two-year period or 2015). The two species with confirmed facultative thermo- were part of a long-term captive breeding colony at ASU. genesis are in the different clades—P. molurus within the Animals were housed individually in temperature-con- Afro-Asian group and M. spilota within the Indo-Austral- trolled rooms (27 1 °C) under a 12:12 h photoperiod ± ian group. Conversely, both primary clades are also known with supplemental heat provided at one of the cage by a to contain species where the absence of facultative thermo- subsurface heating element (Flexwatt, Flexwatt Corp., genesis has been confirmed—the rock python (P. sebae) Wareham, MA, USA). During the non-breeding season (Vinegar et al. 1970) and the ball python (P. regius) (Ellis (June to November), animals were fed weekly and pro- and Chappell 1987) within the Afro-Asian clade and the vided water ad libitum. In November, animals underwent reticulated python (P. reticulatus) (Vinegar et al. 1970), the a 6-week cooling period in which we turned off the sub- water python (Liasis fuscus) (Stahlschmidt et al. 2012), and surface heating elements and ceased feeding. In January, the Children’s python (Antaresia childreni) (Stahlschmidt subsurface heating and feeding resumed. After 2 weeks, we and DeNardo 2009) in the Indo-Australian clade (Fig. 1). began rotating males through the females’ cages. In Feb- Brooding metabolic data are currently absent for all other ruary, we began weekly ultrasound scans (Concept/MCV, species, including no representation from four of the ten Dynamic Imaging, Livingston, Scotland) of females to major lineages. assess their reproductive progress. The aim of this study was to assess the presence of We weighed gravid females 1 week prior to oviposition. brooding facultative thermogenesis in four previously For three of the species (M. viridis, M. s. cheynei, P. regius), unstudied species of python, including representatives from pre-oviposition females were
Recommended publications
  • Liasis Fuscus) in Tropical Australia
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 1-1-2009 Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia Richard Shine University of Sydney Thomas R. Madsen University of Wollongong, [email protected] Ligia Pizzatto University of Sydney Gregory P. Brown University of Sydney Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Shine, Richard; Madsen, Thomas R.; Pizzatto, Ligia; and Brown, Gregory P.: Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia 2009, 181-191. https://ro.uow.edu.au/scipapers/380 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia Abstract Young snakes are rarely seen in the field and little is known about their habits. mostly because they are too small for radio-telemetry (the primary method for Studying snake spatial ecology). However, the offspring or some larger species can be fitted with transmitters and we investigated the spatial ecology and habitat use of ten hatchling water pythons (Liasis fuscus: Pythonidae) in the floodplain of the Adelaide River, tropical Australia. Patterns of habitat use in the late wet season and during the dry season were similar to those of adults tracked in the same vicinity in an earlier study. Soon after release the young snakes moved to the floodplain, va oiding pasture areas.
    [Show full text]
  • Problems of Python Classification and Hybrid Pythons
    PROBLEMS OF PYTHON CLASSIFICATION AND HYBRID PYTHONS. By: Raymond Hoser, 170 Lawson Street, Redfern, NSW, 2016, Australia. Contents: Introduction - Summary of the problems in classifying Australia's pythons - Hybrids between species - Acknowledge­ ments - References. INTRODUCTION Australasia's pythons attract disproportionate in­ terest from herpetologists within Australia and elsewhere. There is also considerable debate in relation to the relationships between species, with various arrangements being proposed. Authors including Cogger (1986), Schmida (1985), and Stafford (1986), have tended to follow 'con­ sensus opinion' when assigning generic names to Australasian pythons. References in relation to general and more specific aspects of Australian pythons can be found in Haser (1981 a , 1981 b, 1981 c and 1982), and elsewhere. This short paper gives a summary of the problems facing Australian python taxonomists and gives details of an unusual captive breeding that resulted in hybrids between species being produced. SUMMARY OF THE PROBLEMS IN CLASSIFYING AUSTRALIA'S PYTHONS With the exception of the Black headed python and Woma (Genus Aspidites), all other Australian py­ thons have at various times been assigned to a number of different genera. Numerous schemes of 134 classification for the rema1n1ng Australian spe­ cies of python have been proposed. These include Hoser (1982), McDowell (1975), and Stull (1935). The schemes range from the placing of all species in the genus Python shared with other non Austra­ lian species, to placing the species in question in up to seven genera. Namely Bot"h:PochiZus3 Chon­ dropython3 Liasis3 LisaZia3 Liasis3 MoreZia3 and Python. The assignment of given species within a particular genus is also a matter of conflict.
    [Show full text]
  • Koolan Island Quoll Demographics & Genetics
    Running head: Conservation status of the Olive Python Final report GENETIC SURVEY OF THE PILBARA OLIVE PYTHON (Liasis olivaceaus barroni) David Pearson1, Peter Spencer2 Mia Hillyer2 and Ric A. How3 1Science Division, Department of Parks and Wildlife PO Box 51, Wannerooo, WA 6946 2School of Veterinary and Life Sciences, Murdoch University 90 South St, Murdoch, WA 6150 3Department of Terrestrial Zoology (Vertebrates), Western Australian Museum, 49 Kew St, Welshpool, WA 6986 September, 2013 Olive python – final report 1 Running head: Conservation status of the Olive Python Summary • The study used genetic information to investigate differences between and within populations of olive pythons in the Pilbara. This information was compared with genetic profiles from olive pythons form the Kimberley and carpet pythons. • Genetic variation was examined at eight nuclear genes (microsatellite) from 47 individual olive pythons. • Genetic analyses of nuclear markers show that the Pilbara olive python contains low levels of diversity, compared with its Kimberley counterpart. • The Pilbara population also had a low effective population size, but showed no signatures of a genetic bottleneck as a result of a population crash. • Nuclear DNA markers identified two distinct olive python populations. One in the Pilbara and the other in the Kimberley. • Mitochondrial analysis at three diagnostic regions showed two distinct clades representing Pilbara and Kimberley olive pythons, exclusively, consistent with results from nuclear markers. • Overall olive pythons appear to have two Evolutionary Significant Units. The Pilbara unit appear to be less genetically diverse than Kimberley one and shows little phylogeographic structure within the Pilbara. • There is sufficient evidence from the data that the taxonomy of the two groups should be subject to a re-appraisal, the Kimberley and Pilbara Olive pythons sufficiently different to be considered as different species.
    [Show full text]
  • Quick Reference Guide: Introduced Constrictors in Florida1 Steve A
    WEC302 Quick Reference Guide: Introduced Constrictors in Florida1 Steve A. Johnson and Monica E. McGarrity2 Three non-native species of large constrictor snakes are that these were escaped or released pets. View maps of loca- now breeding in Florida, and several others have been tions where each species has been encountered in Florida encountered but have not yet established wild populations. by visiting the EDDMapS Florida invasive species reporting This fact sheet, best viewed as a pdf (http://edis.ifas.ufl.edu/ portal online at http://www.IveGot1.org. Learn more about pdffiles/UW/UW34700.pdf), is a quick reference guide how to scan for, recognize, and report introduced constric- to identification of the constrictors you are most likely to tors by completing the Introduced Reptile Early Detection encounter in Florida. Although many of these snakes are and Documentation training course. Visit http://ufwildlife. not established in the wild, they are common in the pet ifas.ufl.edu/reddy.shtml to learn more and get REDDy! trade, and each has been spotted in the wild—it is likely Pythons Burmese Python (Python bivittatus) Status: established, breeding populations; range expanding Head: dark arrowhead, light center line, dark and light in Florida wedges under eyes Size: up to 12 feet or longer Body: Giraffe-like spots, dark blotches not connected Figure 1. Burmese python. Credits: Head illustration by USGS; body illustration by Monica E. McGarrity, UF 1. This document is WEC302, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. Original publication date November 2010. Revised February 2014 and June 2017.
    [Show full text]
  • A New Species of Hepatozoon (Apicomplexa: Adeleorina) from Python Regius (Serpentes: Pythonidae) and Its Experimental Transmission by a Mosquito Vector
    J. Parasitol., 93(?), 2007, pp. 1189–1198 ᭧ American Society of Parasitologists 2007 A NEW SPECIES OF HEPATOZOON (APICOMPLEXA: ADELEORINA) FROM PYTHON REGIUS (SERPENTES: PYTHONIDAE) AND ITS EXPERIMENTAL TRANSMISSION BY A MOSQUITO VECTOR Michal Sloboda, Martin Kamler, Jana Bulantova´*, Jan Voty´pka*†, and David Modry´† Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Palacke´ho 1-3, 612 42 Brno, Czech Republic. e-mail: [email protected] ABSTRACT: Hepatozoon ayorgbor n. sp. is described from specimens of Python regius imported from Ghana. Gametocytes were found in the peripheral blood of 43 of 55 snakes examined. Localization of gametocytes was mainly inside the erythrocytes; free gametocytes were found in 15 (34.9%) positive specimens. Infections of laboratory-reared Culex quinquefasciatus feeding on infected snakes, as well as experimental infection of juvenile Python regius by ingestion of infected mosquitoes, were performed to complete the life cycle. Similarly, transmission to different snake species (Boa constrictor and Lamprophis fuliginosus) and lizards (Lepidodactylus lugubris) was performed to assess the host specificity. Isolates were compared with Hepatozoon species from sub-Saharan reptiles and described as a new species based on the morphology, phylogenetic analysis, and a complete life cycle. Hemogregarines are the most common intracellular hemo- 3 genera (Telford et al., 2004). Low host specificity of Hepa- parasites found in reptiles. The Hemogregarinidae, Karyolysi- tozoon spp. is supported by experimental transmissions between dae, and Hepatozoidae are distinguished based on the different snakes from different families. Ball (1967) observed experi- developmental patterns in definitive (invertebrate) hosts oper- mental parasitemia with Hepatozoon rarefaciens in the Boa ating as vectors; all 3 families have heteroxenous life cycles constrictor (Boidae); the vector was Culex tarsalis, which had (Telford, 1984).
    [Show full text]
  • Prevent Problems with Large Boas & Pythons
    Client Education—Snake Safety Tips Prevent Problems with Large Boas & Pythons ! According to the Humane Society of the United States,17 deaths and many more injuries have been related to large constrictors since 1978. Given the tens of thousands of large constrictors sold, the incidence of fatalities and injuries is relatively low, however every incident—including the death of four babies in their cribs and three additional children— is particularly tragic since such cases are completely preventable. So called “giant snakes” regularly exceed 8 feet (2.4 m) in length, potentially making them difficult or even unsafe to handle. Large constrictor species include the green anaconda (Eunectes murinus), Indian python (Python molurus), African rock python (Python sebae), amethystine python (Morelia amethistina), reticulated python (Python reticulatus), and Burmese python (Python molurus bivittatus). Only the latter two species, reticulated and Burmese pythons, are regularly found in the pet trade, however these species can exceed 20 feet (6.1 m) and are not recommended for casual hobbyists. One real life tragedy: In 2011, a Florida mother and her boyfriend were found guilty of the murder of her 2-year old daughter, strangled by her 8-foot 6- “The baby’s dead. inch pet Burmese python. The child was found in her crib, with the Our stupid snake snake coiled tightly around her neck and numerous bite marks on got out in the middle her face. of the night and strangled the Evaluation of the albino python named “Gypsy” found her to be baby”.—Florida man underweight, and the snake's enclosure had only a quilt for a lid.
    [Show full text]
  • Final Rule to List Reticulated Python And
    Vol. 80 Tuesday, No. 46 March 10, 2015 Part II Department of the Interior Fish and Wildlife 50 CFR Part 16 Injurious Wildlife Species; Listing Three Anaconda Species and One Python Species as Injurious Reptiles; Final Rule VerDate Sep<11>2014 18:14 Mar 09, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10MRR2.SGM 10MRR2 mstockstill on DSK4VPTVN1PROD with RULES2 12702 Federal Register / Vol. 80, No. 46 / Tuesday, March 10, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR Services Office, U.S. Fish and Wildlife 3330) to list Burmese (and Indian) Service, 1339 20th Street, Vero Beach, pythons, Northern African pythons, Fish and Wildlife Service FL 32960–3559; telephone 772–562– Southern African pythons, and yellow 3909 ext. 256; facsimile 772–562–4288. anacondas as injurious wildlife under 50 CFR Part 16 FOR FURTHER INFORMATION CONTACT: Bob the Lacey Act. The remaining five RIN 1018–AV68 Progulske, Everglades Program species (reticulated python, boa Supervisor, South Florida Ecological constrictor, green anaconda, [Docket No. FWS–R9–FHC–2008–0015; Services Office, U.S. Fish and Wildlife DeSchauensee’s anaconda, and Beni FXFR13360900000–145–FF09F14000] Service, 1339 20th Street, Vero Beach, anaconda) were not listed at that time and remained under consideration for Injurious Wildlife Species; Listing FL 32960–3559; telephone 772–469– 4299. If you use a telecommunications listing. With this final rule, we are Three Anaconda Species and One listing four of those species (reticulated Python Species as Injurious Reptiles device for the deaf (TDD), please call the Federal Information Relay Service python, green anaconda, AGENCY: Fish and Wildlife Service, (FIRS) at 800–877–8339.
    [Show full text]
  • RETICULATED PYTHON Malayopython Reticulatus (SCHNEIDER 1801) : RESCUE, RECOVERY and RECENT SIGHTINGS from GREAT NICOBAR ISLAND-A CONSERVATION APPROACH
    ECOPRINT 22: 50-55, 2015 ISSN 1024-8668 DOI: http://dx.doi.org/10.3126/eco.v22i0.15470 Ecological Society (ECOS), Nepal www.nepjol.info/index.php/eco; www.ecosnepal.com RETICULATED PYTHON Malayopython reticulatus (SCHNEIDER 1801) : RESCUE, RECOVERY AND RECENT SIGHTINGS FROM GREAT NICOBAR ISLAND-A CONSERVATION APPROACH S. Rajeshkumar 1*, C. Raghunathan 1 and Kailash Chandra 2 1Zoological Survey of India, Andaman and Nicobar Regional Centre Port Blair-744 102, Andaman and Nicobar Islands, India 2Zoological Survey of India, M-Block, New Alipore, Kolkatta-700 053, India *Email: [email protected] ABSTRACT Previously the Reticulated python was recorded by few researchers from Nicobar Islands In 2006, four individuals were observed, but there was no more information added in their literature about sightings in Great Nicobar Island. Pythons were considered as an uncommon and rare encountered species in India also to the Nicobar Islands. Pythons considered relatively rare appearance to have declined due to frequent eradication by habitat destruction On 25 th August 2013, first individual of reticulated python was caught by the local people at Govind Nagar (Lat: 07° 00.074' N, Long: 093° 54.128' E, Altitude at 49.4 meter) in Great Nicobar Island The second one was rescued on 31 st August 2013 in the same area by the local people. Both the recovered individuals were appeared as juvenile. Investigations on population census of this threatened species and their habitat have been felt from the present incidences. Key words : .................................... INTRODUCTION as Malayopython reticulatus (Schneider 1801). Snakes are perhaps one of the most difficult Python is locally (in Nicobarese) called as vertebrate groups to survey (Groombridge and ‘Yammai’ or ‘Tulanth’ (Chandi 2006) and Luxmoore 1991).
    [Show full text]
  • Evidence for Range Maintenance and Homing in a New World Elapid, The
    bioRxiv preprint doi: https://doi.org/10.1101/092833; this version posted December 9, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evidence for Philopatry and Homing in a New World Elapid Snake Alexander S. Hall1, Abigail M. K. Vázquez-Quinto2, Antonio Ramírez-Velázquez2, Eric N. Smith1 1 Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA. E- mail: [email protected], [email protected] 2 Zoológico Regional Miguel Álvarez del Toro, Calzada Cerro Hueco, Col Zapotal, C. P. 29094, Tuxtla Gutiérrez, Chiapas, México. E-mail: [email protected], [email protected] Short running title: Homing elapid bioRxiv preprint doi: https://doi.org/10.1101/092833; this version posted December 9, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Homing elapid 2 Abstract Animal navigation allows individuals to efficiently find and use best available habitats. Despite the long history of research into well-studied taxa (e.g., pigeons, salmon, sea turtles), we know relatively little about squamate navigational abilities. Among snakes, documented philopatry (range maintenance) in a non-colubrid species has been rare. In this study, we document the first example of philopatry and homing in a new world elapid snake, Micrurus apiatus.
    [Show full text]
  • Dispelling Python Regius Myths "Gorzula, Stefan, William Owusu Nsiah, and William Oduro
    Dispelling Python regius Myths "Gorzula, Stefan, William Owusu Nsiah, and William Oduro. Survey of the status and ​ By Francis Cosquieri management of the Royal Python (Python regius) in Ghana. Secrétariat CITES, 1997." ​ This paper lists several pythons being found in Before we get deep into the “nitty gritty” of the trees, although points out that the species is subject I want to take a moment to say that the very adaptable to the point of being AHH Royal Python sub-group "Not Just a Pet semi-invasive and responds well to Rock" is the best place to start for getting rid of anthropogenic disturbance. the preconceptions surrounding the poor old Royal Python. Zack Tippie and the other admins have done an incredible job of "Luiselli, Luca, and Francesco Maria Angelici. dispelling the myths surrounding Royal Python "Sexual size dimorphism and natural history ​ behaviour and husbandry, and Zack’s care traits are correlated with intersexual dietary guide for this oft-maligned snake (to be found divergence in royal pythons (Python regius) in the third Advancing Herpetological ​ from the rainforests of southeastern Nigeria." Husbandry Quarterly Newsletter) is one of the ​ ​ Italian Journal of Zoology 65.2 (1998): best I have read. 183-185." - In the meantime, here is a post I made some Half of the male pythons encountered over a time ago on AHH itself bringing together some two year period were found on trees, there is a information on the wild habits of this python. large discrepancy between habitat use by All the papers mentioned here can be found in male and female pythons, and by larger and the AHH Files section.
    [Show full text]
  • Cfreptiles & Amphibians
    WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANS IRCF REPTILES • VOL15, & NAMPHIBIANSO 4 • DEC 2008 •189 22(3):102–105 • SEP 2015 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES Range. ChasingExtension Bullsnakes (Pituophis catenifer sayi ) inand Wisconsin: Geographic Distribution On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: RecordA Hypothetical Excursion ............................................................................................................................ for the Burmese Python,Robert W. Henderson 198 RESEARCHPython ARTICLES bivittatus Kuhl 1820 . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida (Reptilia: ............................................. Pythonidae)Brian J. Camposano, Kenneth L. Krysko, in Kevin M.Northwestern Enge, Ellen M. Donlan, and Michael Granatosky 212 India CONSERVATION ALERT Ritesh Joshi1 and Abhishek Singh2 . World’s Mammals in Crisis ............................................................................................................................................................. 220 1Conservation. More & Survey Than Mammals Division, .....................................................................................................................................................................
    [Show full text]
  • Investigations Into the Presence of Nidoviruses in Pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2*
    Blahak et al. Virology Journal (2020) 17:6 https://doi.org/10.1186/s12985-020-1279-5 RESEARCH Open Access Investigations into the presence of nidoviruses in pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2* Abstract Background: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. Methods: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. Results: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs.
    [Show full text]