Micropogonias Furnieri) Y SUREL (Trachurus Lathami) EN EL RÍO DE LA PLATA

Total Page:16

File Type:pdf, Size:1020Kb

Micropogonias Furnieri) Y SUREL (Trachurus Lathami) EN EL RÍO DE LA PLATA Universidad de la Republica Facultad de Ciencias Tesis de Maestría PEDECIBA Biología – Opción Ecología DISTRIBUCIÓN Y ECOLOGÍA TRÓFICA EN LARVAS DE CORVINA (Micropogonias furnieri) Y SUREL (Trachurus lathami) EN EL RÍO DE LA PLATA Orientador: Dr. Danilo Calliari Sección Oceanología Co-orientador: Dr. Marcelo Loureiro Sección Limnología INSTITUTO DE ECOLOGÍA Y CIENCIAS AMBIENTALES Montevideo, 2011 Universidad de la Republica Facultad de Ciencias Tesis De Maestría PEDECIBA Biología – Opción Ecología DISTRIBUCIÓN Y ECOLOGÍA TRÓFICA EN LARVAS DE CORVINA (Micropogonias furnieri) Y SUREL (Trachurus lathami) EN EL RÍO DE LA PLATA Mario Vera Sierra Orientador: Dr. Danilo Calliari Sección Oceanología Co-orientador: Dr. Marcelo Loureiro Sección Limnología INSTITUTO DE ECOLOGÍA Y CIENCIAS AMBIENTALES Montevideo, 2011 ÍNDICE PÁGINA Lista de figuras (capitulo 1) iii Lista de figuras (capitulo 2) iv Lista de tablas (capitulo 1) v Lista de tablas (capitulo 2) vi Resumen 1 Abstract 2 Introducción general 3 Factores abióticos 3 Factores bióticos 4 Mortalidad y reclutamiento 5 El ictioplancton y los estuarios 5 Área de estudio 7 Sobre las especies a estudiar 8 Ecología trófica del ictioplancton 10 Referencias 13 Capitulo I 1. Introducción 20 2. Objetivos 23 2.1 Objetivo general 23 2.2 Objetivos específicos 23 3. Materiales y métodos 23 3.1 Trabajo de campo 23 3.2 Trabajo de laboratorio 24 3.3 Análisis de datos 25 4. Resultados 28 4.1 Variables ambientales, crucero octubre 2006 28 4.2 Abundancia de larvas de corvina 29 4.3 Abundancia de larvas de surel 31 4.4 Variables ambientales crucero, marzo del 2007 39 4.5 Abundancia de larvas de corvina 40 4.6 Abundancia de larvas de surel 41 5. Discusión 47 5.1 Condiciones ambientales 47 5.2 Distribución de tallas 48 5.3 Abundancia y relación con variables ambientales 49 5.4 Solapamiento espacial 51 5.5 Adaptacion de M. furnieri y T. lathami al ecosistema del Río de la Plata 52 6. Referencias 54 i CAPITULO II 1. Introducción 42 2. Justificación e hipótesis 45 2.1 Hipótesis 46 3. Objetivos 47 3.1 Objetivo general 47 3.2 Objetivos específicos 47 4. Métodos 48 4.1 Trabajo de campo 48 4.2 Trabajo de laboratorio 48 4.3 Análisis de datos 48 5. Resultados 52 5.1 Composición y abundancia de las presas potenciales en el zooplancton en octubre de 2006 52 5.2 Composición y abundancia de las presas potenciales en el zooplancton en marzo de 2007 52 5.3 Morfometría 55 5.4 Número de presas en función de la talla larval 57 5.5 Incidencia alimentaria 58 5.6 Índice de importancia relativa (iir) 59 5.7 Índice de solapamiento dietario d 67 5.8 Amplitud de nicho 67 5.9 Índice de diversidad de presas 69 6. Selectividad de presas 70 7. Discusión 72 7.1 Morfometría 72 7.2 Descriptores del comportamiento trófico 73 7.3 Solapamiento trófico 74 7.4 Amplitud de nicho 75 7.5 Diversidad de presas y selectividad 77 8.Discusión general 80 9. Referencias 83 ii LISTA DE TABLAS CAPÍTULO I Tabla 1. Gradiente Horizontal Local de salinidad (GHL) máximo, mínimo y promedio (± desviación estándar) en superficie y fondo en los transectos 1(T1). 2 (T2) y 3 (T3), durante el crucero de Octubre 2006…………………………………………………………………………………………… 30 Tabla 2. Correlación de Spearman (rs) entre la Abundancia de larvas de M. furnieri y T. lathami vs. Temperatura (superficie y fondo), salinidad (superficie y fondo), Coeficiente de estratificación (CS), Gradiente horizontal local (GHL superficie y fondo) y profundidad durante octubre de 2006. p= nivel de probabilidad asociado. n = número de estaciones en las que ocurrieron las especies………………………………....………………............34 Tabla 3. Comparación de las variables ambientales en las cuales ocurrieron M. furnieri y T.lathami durante la campaña de octubre 2006. U = estadístico de Mann Whitney, p= nivel de probabilidad asociado, n= número de observaciones. n = 12 (M. furnieri), y n = 9 (T. lathami)…………………….....................................................................................35 Tabla 4. Gradiente Horizontal Local de salinidad (GHL) máximo. Mínimo y promedio (± desviación estándar) en superficie y fondo en los transectos 1(T1). 2 (T2) y 3 (T3). Durante el crucero de Marzo 2007…………………………………………………………………………………………… 42 Tabla 5. Correlación de Spearman entre la abundancia de larvas de M. furnieri y Temperatura (superficie y fondo), salinidad (superficie y fondo), Coeficiente de estratificación (CS), Gradiente horizontal local (GHL superficie y fondo) y profundidad durante la campaña de Marzo de 2007 y teniendo en cuenta ambas campañas (n = número de estaciones en las que ocurrieron las especies)……………………………………………………………………………………… 42 Tabla 6. Comparación de las variables ambientales en las cuales ocurrieron M. furnieri y T.lathami durante la campaña de Marzo 2007, u = estadístico de Mann Whitney, p= nivel de probabilidad asociado, n= numero de observaciones, n = 11 (M. furnieri), y n = 2 (T. lathami)…………………………………………………………………………………………43 iii CAPÍTULO II Tabla 1. Abundancia (ind m3) de presas >200 µm en las estaciones donde ocurrieron Micropogonias furnieri (M) y Trachurus lathami (T) durante el crucero de Octubre de 2006. (Valor en negrita corresponde al máximo por estación)………………………………………………………………………………………..53 Tabla 2. Abundancia (ind m3) de presas >200 µm en las estaciones donde ocurrieron Micropogonias furnieri (M) y Trachurus lathami (T) durante el crucero de Marzo de 2007. (Valores en negrita corresponden al valor máximo por estación)………………………………………………………………………………………..54 Tabla 3. Resultados de la relación entre las variables morfométricas ancho de boca y largo de mandíbula, en funcion del largo corporal, (y=a*xb). Se muestran a (intercepto), b (pendiente), EE (error estándar), r2 (coeficiente de correlación), p (nivel de probabilidad asociado) y n (número de observaciones)………………………………………………………………………………...60 Tabla 4. Frecuencia de ocurrencia (Fi), proporción (N), e Índice de importancia relativa (IIR) de cada ítem en la dieta de M. furnieri, expresado en porcentaje. Larvas en preflexión y postflexión capturadas en los cruceros de Octubre de 2006 y Marzo de 2007. n = número de larvas analizadas………………………………………………………………...64 Tabla 5. Índice de solapamiento dietario (D) para el total de las larvas y entre estadíos. El índice D fue calculado según la composición de la dita teniendo en cuenta los ítems en común y los anchos de presa en común…………………………………………………………………………………………… …………………………………………………………………………………………………..67 Tabla 6. Comparación de los valores de amplitud de nicho entre especies (M. furnieri y T.lathami) y entre estadíos (PF y PsF). U = estadístico de Mann Whitney, p= nivel de probabilidad asociado, n= número de observaciones: n = 9 (M. furnieri PF), n = 2 (M. furnieri PsF), n = 9 (T. lathami PF) y, n = 4 (T. lathami PsF)…………………………………………………………………………………………….68 Tabla 7. Índice de selectividad de ítems presa por estación (aplicado a larvas con ancho de boca mayor a 0,5mm) en larvas de M. furnieri durante las campañas de octubre de 2006 y marzo de 2007…………………..……………………………………………………70 Tabla 8. Índice de selectividad de ítems presa por estación (aplicado a larvas con ancho de boca mayor a 0,5mm) en larvas de T. lathami durante las campañas de octubre de 2006………………………………………….....................................................................71 iv LISTA DE FIGURAS CAPÍTULO I Figura 1. Río de la Plata (arriba) y ubicación de las estaciones de muestreo por transecta (abajo: T1, T2 y T3) que cubren parte del Río de la Plata medio y exterior. Los círculos blancos corresponden a estaciones donde se realizaron muestreos hidrográficos y de plancton; los círculos negros corresponden a estaciones.……………………………………………………………………………………..24 Figura 2. Representación de las mediciones realizadas a las larvas de M. furnieri y T. lathami. Ancho de la boca (Ab, arriba), largo de mandibula (Lm, abajo y en el medio), largo notocordal (Ln, en el medio) y longitud standart (Ls, abajo) Imagen tomada y modificada de Johnson 1978 en: http://www.odu.edu/sci/cqfe/Research/Chesapeake%20Bay/Atlantic%20croaker/Atlanti c_croaker.htm................................................................................................................25 Figura 3. Distribución de salinidad en durante la campaña de Octubre de 2006 a lo largo de los Transectos 1 (arriba), 2 (medio) y 3 (abajo)………………………………………………………………………………………….29 Figura 4 Distribución salinidad y temperatura (Cº) durante el crucero de Octubre de 2006. Temperatura de superficie (A), temperatura de fondo (B), salinidad de superficie (C), salinidad de fondo (D)………………………………………………………………………………………………29 Figura 5 Número de observaciones respecto al largo corporal (LC) de M. furnieri (n=171) (A) y T. lathami (n= 206) (B) durante la campaña de Octubre 2006……………………………………………………………………….............................31 Figura 6. Largo corporal (LC) promedio por estación para M. furnieri (A) y T. lathami (B) durante Octubre 2006. Las barras de error corresponden a la desviación estándar………………………………………………………………………………………..33 Figura 7. Temperatura de ocurrencia de larvas de M. furnieri y T. lathami (superficie: A y fondo: B) durante la campaña de 2006…………………………………………………………………………………………….35 Figura 8. Salinidad de ocurrencia de larvas de M. furnieri y T. lathami (superficie: A y fondo: B) durante la campaña de 2006…………………………………………………………………………………………….35 Figura 9. Abundancia de larvas de M. furnieri (A) y T. lathami (B) expresada en Ind 10m-3 durante la campaña de octubre de 2006. Círculos blancos: preflexión; círculos negros: post-flexión…………………………………………………………………………………….36 Figura 10. Frecuencias acumuladas (DFA) de ocurrencia
Recommended publications
  • Species of the Genera Temora and Tortanus from Indonesian Coastal Waters
    Berk. Penel. Hayati: 14 (125–135), 2009 SPECIES OF THE GENERA TEMORA AND TORTANUS FROM INDONESIAN COASTAL WATERS Mulyadi Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Bogor Km. 46 Cibinong 16911, Indonesia E-mail: [email protected] ABSTRACT During taxonomic studies on the pelagic copepods of Indonesian waters, three species of Temora, T. discaudata Giesbrecht, 1882, T. discaudata n. var. and T. turbinata (Dana, 1849), and three species of Tortanus, T. (Tortanus) barbatus, T. (Tortanus) forcipatus and T. (Tortanus) gracilis were described and figured on specimens collected from 8 sites along Indonesian coastal waters. Descriptions, measurements and figures are given for those species, along with a review of their distribution over the world oceans, and with taxonomic remarks, ecological notes, and restricted synonymies. Key words: taxonomy, Temora, Tortanus, Indonesian waters INTRODUCTION MATERIALS AND METHODS Family Temoridae Giesbrecht, 1893 comprises of The present plankton samples were obtained from 8 35 species from four genera, Epischura Forbes, 1882; sites during 1994–2007 (Figure 1). Sampling was done Eurytemora Giesbrecht, 1881; Heterocope Sars, 1863; and by surface and vertical hauls (10 m and 20 m depth to the Temora Baird, 1850. The genus Temora presently comprises surface) with plankton net (0.33 mm mesh size, 0.45 m of five species (Boxshall & Halsey, 2004). Among them two mouth diameter). The samples were fixed and preserved species, T. discaudata Giesbrecht, 1882 and T. turbinata in 5% buffered formaldehyde/sea water solution. As far (Dana, 1849) have been reported from Indonesian waters as possible, the specimens were identified to species level.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Temora Baird, 1850
    Temora Baird, 1850 Iole Di Capua Leaflet No. 195 I April 2021 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: Di Capua, I. 2021. Temora Baird, 1850. ICES Identification Leaflets for Plankton No. 195. 17 pp. http://doi.org/10.17895/ices.pub.7719 ISBN number: 978-87-7482-580-7 ISSN number: 2707-675X Cover Image: Inês M. Dias and Lígia F. de Sousa for ICES ID Plankton Leaflets This document has been produced under the auspices of an ICES Expert Group. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. i | ICES Identification Leaflets for Plankton 195 Contents 1 Summary ......................................................................................................................... 1 2 Introduction .................................................................................................................... 1 3 Distribution ....................................................................................................................
    [Show full text]
  • The “Metacopepod” Project: Designing an Integrated DNA Metabarcoding and Image Analysis Approach to Study and Monitor Biodiversity of Zooplanktonic Copepods
    The “MetaCopepod” project: Designing an integrated DNA metabarcoding and image analysis approach to study and monitor biodiversity of zooplanktonic copepods. PanagiotisPanagiotis KasapidisKasapidis HellenicHellenic CentreCentre forfor MarineMarine ResearchResearch (HCMR),(HCMR), InstituteInstitute ofof MarineMarine Biology,Biology, BiotechnologyBiotechnology andand AquacultureAquaculture P.O.Box 2214, 71003 Heraklion Crete, Greece 1 The “MetaCopepod” project Aim: to develop a novel methodology, based on the combination of DNA metabarcoding and image analysis, to assess and monitor the diversity of marine zooplanktonic copepods (and cladocera), in the Mediterranean and the Black Sea, in a high-throughput, cost- effective, accurate and quantitative way. Coordinator: Dr. Panagiotis Kasapidis, Hellenic Centre for Marine Research (HCMR), GREECE Study area: Mediterranean and the Black Sea Duration: Feb. 2014 – Oct. 2015 Budget: 180,000 euros Funding: European Social Fund (ESF) and National Funds through the National Strategic Reference Framework (NSRF) 2007-2013, Operational Programme "Education and Life-Long Learning", Action "ARISTEIA II", Greek Ministry of Education and Religious Affairs, General Secretary of Research and Technology. 2 Studying zooplankton diversity: limitations of traditional approaches ● Quite laborious (sorting, identification under stereoscope) → bottleneck in sample processing. ● Requires local taxonomic expertise ● Difficult to identify immature stages ● Misidentifications ● Cryptic species 3 Image analysis + Pros
    [Show full text]
  • Rare Sexual Anomalies in Temora Stylifera (Dana, 1849) (Copepoda: Calanoida)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/26737274 Rare sexual anomalies in Temora stylifera (Dana, 1849) (Copepoda: Calanoida) ARTICLE in BRAZILIAN JOURNAL OF BIOLOGY · JUNE 2009 Impact Factor: 0.78 · DOI: 10.1590/S1519-69842009000200031 · Source: PubMed CITATIONS READS 3 20 4 AUTHORS, INCLUDING: José Eduardo Martinelli-Filho Federal University of Pará 8 PUBLICATIONS 28 CITATIONS SEE PROFILE Rubens M Lopes University of São Paulo 76 PUBLICATIONS 699 CITATIONS SEE PROFILE Available from: José Eduardo Martinelli-Filho Retrieved on: 06 April 2016 ID Artigo: 098-08 envio: 18/05/2009 Diagramador: Alexandra cubomultimidia publicações e-mail: [email protected] Rare sexual anomalies in Temora stylifera (Dana, 1849) (Copepoda: Calanoida) Martinelli-Filho, JE.*, Melo-Júnior M., Cunha, DR. and Lopes, RM. Departamento de Oceanografia Biológica, Instituto Oceanográfico – IO, Universidade de São Paulo – USP, Praça do Oceanográfico, 191, Cidade Universitária, CEP 05508-120, São Paulo, SP, Brazil *e-mail: [email protected] Received September 5, 2008 – Accepted October 8, 2008 – Distributed May 30, 2009 (With 2 figures) Temora stylifera (Dana, 1849) is one of the most sexual characters such as A1 and fifth leg (P5) abundant species of calanoid copepods in neritic waters were typically male (Figure 2); and off Brazil (e.g. Neumann-Leitão et al., 1999). This species 2) Male bearing geniculation in both antennules: has a circumglobal distribution in tropical and subtropical the specimen was observed alive in microcosms waters (Bradford-Grieve et al., 1999), and has been stud- and displayed similar swimming behavior when ied in several aspects such as morphology, feeding ecol- compared to normal males.
    [Show full text]
  • Oithona Similis (Copepoda: Cyclopoida) - a Cosmopolitan Species?
    OITHONA SIMILIS (COPEPODA: CYCLOPOIDA) - A COSMOPOLITAN SPECIES? DISSERTATION Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften -Dr. rer. nat- Am Fachbereich Biologie/Chemie der Universität Bremen BRITTA WEND-HECKMANN Februar 2013 1. Gutachter: PD. Dr. B. Niehoff 2. Gutachter: Prof. Dr. M. Boersma Für meinen Vater Table of contents Summary 3 Zusammenfassung 6 1. Introduction 9 1.1 Cosmopolitan and Cryptic Species 9 1.2 General introduction to the Copepoda 12 1.3 Introduction to the genus Oithona 15 1.4 Feeding and role of Oithona spp in the food web 15 1.5 Geographic and vertical distribution of Oithona similis 16 1.6. Morphology 19 1.6.1 General Morphology of the Subclass Copepoda 19 1.6.1.1 Explanations and Abbrevations 31 1.6.2 Order Cyclopoida 33 1.6.2.1 Family Oithonidae Dana 1853 35 1.6.2.2 Subfamily Oithoninae 36 1.6.2.3 Genus Oithona Baird 1843 37 1.7 DNA Barcoding 42 2. Aims of the thesis (Hypothesis) 44 3. Material and Methods 45 3.1. Investigation areas and sampling 45 3.1.1 The Arctic Ocean 46 3.1.2 The Southern Ocean 50 3.1.3 The North Sea 55 3.1.4 The Mediterranean Sea 59 3.1.5 Sampling 62 3.1.6 Preparation of the samples 62 3.2 Morphological studies and literature research 63 3.3 Genetic examinations 71 3.4 Sequencing 73 4 Results 74 4.1 Morphology of Oithona similis 74 4.1.1 Literature research 74 4.1.2 Personal observations 87 4.2.
    [Show full text]
  • Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance
    Current Status and Historical Trends of the Estuarine Living Resources within the Corpus Christi Bay National Estuary Program Study Area Volume 4 of 4 Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance Corpus Christi Bay National Estuary Program CCBNEP-06D • January 1996 This project has been funded in part by the United States Environmental Protection Agency under assistance agreement #CE-9963-01-2 to the Texas Natural Resource Conservation Commission. The contents of this document do not necessarily represent the views of the United States Environmental Protection Agency or the Texas Natural Resource Conservation Commission, nor do the contents of this document necessarily constitute the views or policy of the Corpus Christi Bay National Estuary Program Management Conference or its members. The information presented is intended to provide background information, including the professional opinion of the authors, for the Management Conference deliberations while drafting official policy in the Comprehensive Conservation and Management Plan (CCMP). The mention of trade names or commercial products does not in any way constitute an endorsement or recommendation for use. Volume 4 Checklist of Species within Corpus Christi Bay National Estuary Program Study Area: References, Habitats, Distribution, and Abundance John W. Tunnell, Jr. and Sandra A. Alvarado, Editors Center for Coastal Studies Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, Texas 78412 Current Status and Historical Trends of Estuarine Living Resources of the Corpus Christi Bay National Estuary Program Study Area January 1996 Policy Committee Commissioner John Baker Ms. Jane Saginaw Policy Committee Chair Policy Committee Vice-Chair Texas Natural Resource Regional Administrator, EPA Region 6 Conservation Commission Mr.
    [Show full text]
  • BIO Review This Year
    Bedford Institute of Oceanography The Bedford Institute of Oceanography (BIO) is the principal oceanographic institution in Canada; it is operated within the framework of several federal government de- partments; its staff, therefore, are public servants. BIO facilities (buildings, ships, computers, library, workshops, etc.) are operated by the Department of Fisheries and Oceans, through its Director-General, Ocean Science and Surveys (Atlantic). The principal laboratories and departments are: Department of Fisheries and Oceans (DFO) = Canadian Hydrographic Service (Atlantic Region) = Atlantic Oceanographic Laboratory = Marine Ecology Laboratory = Marine Fish Division Department of Energy, Mines and Resources (DEMR) = Atlantic Geoscience Centre Department of the Environment (DOE) = Seabird Research Unit BIO operates a fleet of three research vessels, together with several smaller craft. The two larger scientific ships, Hudson and Baffin, have global capability, extremely long endurance, and are Lloyds Ice Class I vessels able to work throughout the Canadian Arctic. BIO has four objectives: (1) To perform fundamental long-term research in all fields of the marine sciences (and to act as the principal Canadian repository of expertise). (2) To perform shorter-term applied research in response to present national needs, and to advise on the management of our marine environment including its fisheries and offshore hydrocarbon resources. (3) To perform necessary surveys and cartographic work to ensure a supply of suitable navigational charts for the region from George’s Bank to the Northwest Passage in the Canadian Arctic. (4) To respond with all relevant expertise and assistance to any major marine emergen- cy within the same region W.D. Bowen - Chief, Marine Fish Division, DFO M.J.
    [Show full text]
  • A Comprehensive List of Chesapeake Bay Basin Species 1997
    CBP/TRS 164/97 EPA 903R -97-004 A Comprehensive List of Chesapeake Bay Basin Species 1997 Chesapeake Bay Program February 1997 Chesapeake Bay Program The Chesapeake Bay Program is a unique regional partnership leading and directing restoration of Chesapeake Bay since 1983. The Chesapeake Bay Program partners include the states of Maryland, Pennsylvania, and Virginia; the District of Columbia; the Chesapeake Bay Commission, a tri-state legislative body; the U.S. Environmental Protection Agency (EPA), which represents the federal government; and participating citizen advisory groups. In the 1987 Chesapeake Bay Agreement, Chesapeake Bay Program partners set a goal to reduce the nutrients nitrogen and phosphorus entering the Bay by 40% by the year 2000. In the 1992 Amendments to the Chesapeake Bay Agreement, partners agreed to maintain the 40% goal beyond the year 2000 and to attack nutrients at their source--upstream in the tributaries. The Chesapeake Executive Council, made up of the governors of Maryland, Pennsylvania, and Virginia; the mayor of Washington, D.C.; the EPA administrator; and the chair of the Chesapeake Bay Commission, guided the restoration effort in 1993 with five directives addressing key areas of the restoration, including the tributaries, toxics, underwater bay grasses, fish passages, and agricultural nonpoint source pollution. In 1994, partners outlined initiatives for habitat restoration of aquatic, riparian, and upland environments; nutrient reduction in the Bay's tributaries; and toxics reductions, with an emphasis on pollution prevention. The 1995 Local Government Partnership Initiative engages the watershed’s 1,650 local governments in the Bay restoration effort. The Chesapeake Executive Council followed this in 1996 by adopting the Local Government Participation Action Plan and the Priorities for Action for Land, Growth and Stewardship in the Chesapeake Bay Region, which address land use management, growth and development, stream corridor protection, and infrastructure improvements.
    [Show full text]
  • Diel Feeding Pattern and Diet of Rough Scad Trachurus Lathaminichols, 1920 (Carangidae) from the Southwestern Atlantic
    Neotropical Ichthyology, 4(4):419-426, 2006 Copyright © 2006 Sociedade Brasileira de Ictiologia Diel feeding pattern and diet of rough scad Trachurus lathami Nichols, 1920 (Carangidae) from the Southwestern Atlantic Maria Raquel de Carvalho and Lucy Satiko Hashimoto Soares Diel changes in feeding activity and dietary composition of the rough scad Trachurus lathami were investigated through the analysis of stomach contents of 307 fish sampled over a 24-h period on the continental shelf off Ubatuba (23o 35´S 45oW). Stomach contents were analyzed by frequency of occurrence (O%), percent number (N%), percent mass (M%), and feeding index (FI% = O% * M%). Rough scad fed on mollusks (Gastropoda, Crepidula sp.), crustacean (Ostracoda, Copepoda, deca- pod larvae), chaetognat and teleostean fish. The main items were calanoid copepods (Eucalanus sp. and Centropages sp.). According to the analysis of the stomach fullness and prey digestion, T. lathami is both a diurnal and nocturnal feeder, showing some seasonal variation in feeding time. According to the Chronobiology concept, it was raised the hypothesis of circadian rhythm in feeding of this fish, probably synchronized by light/dark cycle. O estudo da dieta e do padrão diário e sazonal de atividade alimentar do chicharro Trachurus lathami foi realizado através de análises dos conteúdos estomacais de 307 peixes amostrados em estações fixas de coleta de 24 horas na plataforma continental ao largo de Ubatuba (23o 35´S 45oW). Os conteúdos estomacais foram analisados através da freqüência numérica (N%), massa porcentual (M%) e freqüência de ocorrência (O%) dos itens alimentares, e índice alimentar (O% * M%). A espécie caracterizou- se por ingerir principalmente copépodes calanóides (ex.
    [Show full text]
  • Temperature Impact on Reproduction and Development of Congener Copepod Populations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Journal of Experimental Marine Biology and Ecology 271 (2002) 121–153 www.elsevier.com/locate/jembe Temperature impact on reproduction and development of congener copepod populations Claudia Halsband-Lenk a,b,*, Hans-Ju¨rgen Hirche a, Francßois Carlotti b,1 aAlfred-Wegener-Institute for Polar and Marine Research, Columbusstrasse, 27568 Bremerhaven, Germany bLOBEPM Station Zoologique, B.P. 28, 06234 Villefranche-sur-Mer Cedex, France Received 31 July 2001; received in revised form 20 January 2002; accepted 24 January 2002 Abstract The goal of this study was to relate the temperature response of all developmental stages and reproductive biology of two congener copepod pairs inhabiting different biogeographic regions to their geographic distribution patterns. Survival of adult females and egg production, embryonic development and hatching success of the genera Centropages and Temora from two stations, in the North Sea and the Mediterranean, were studied in laboratory experiments in a temperature range from 2to35°C. Postembryonic development was determined from cohorts raised at temperatures between 10 and 20 °C with surplus food. Tolerance limits and optima of female survival, reproduction and development distinguished the northern species Centropages hamatus and Temora longicornis from the southern T. stylifera, while C. typicus, which is found in both regions, was intermediate. Thus, thermal preferences could in part explain distribution patterns of these species. While C. hamatus and the two Temora species showed distinct temperature ranges, C. typicus was able to tolerate different temperature conditions, resulting in its wide distribution range from the subarctic to the tropics.
    [Show full text]
  • Evelyn Zoppi De Roa in Memoriam
    PUBLICACIÓN ESPECIAL Evelyn Zoppi de Roa In Memoriam Editado por Brightdoom Márquez-Rojas, Luís Troccoli-Ghinaglia & Eduardo Suárez-Morales Boletín del Instituto Oceanográfico de Venezuela Vol. 59. Nº 1 1 ISSN 0798-0639 Bahía de Mochima, Sucre, Venezuela BOLETÍN DEL INSTITUTO OCEANOGRÁFICO DE VENEZUELA UNIVERSIDAD DE ORIENTE CUMANÁ – VENEZUELA COMITÉ EDITORIAL El Instituto Oceanográfico de Venezuela (IOV) constituye el núcleo primigenio de la Universidad de ANTONIO BAEZA Clemson University, Oriente, creada por el Decreto de la Junta de Gobierno Nº Clemson, United State of America. 459 de fecha 21 de noviembre de 1958. Sus actividades comenzaron el 12 de octubre de 1959, en la ciudad de ARTURO ACERO P. Cumaná estado Sucre, Venezuela y han continuado Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia. ininterrumpidamente desde entonces. JOSÉ MANUEL VIÉITEZ EL BOLETÍN DEL INSTITUTO OCEANOGRÁFICO Universidad de Alcalá, DE VENEZUELA es una revista arbitrada que tiene Alcalá de Henares, España. como objeto fundamental difundir el conocimiento MAURO NIRCHIO científico sobre la oceanografía del Mar Caribe y el Universidad de Oriente y Universidad Técnica de Océano Atlántico Tropical. Machala, Machala, Ecuador. El Boletín fue editado por primera vez en el mes LUÍS TROCCOLI Universidad de Oriente y Universidad Estatal Santa de octubre del año 1961, siendo publicado con el nombre Elena, Santa Elena, Ecuador. de “Boletín del Instituto Oceanográfico”. A partir del volumen n° 8 publicado en el año 1970, la portada, el CARMEN TERESA RODRÍGUEZ Universidad de Carabobo, formato y las normas editoriales fueron modificadas. En el Carabobo, Venezuela. año 1980 es rebautizado con el nombre actual de “Boletín JULIÁN CASTAÑEDA del Instituto Oceanográfico de Venezuela”.
    [Show full text]