Movement Within Lymph Nodes T Lymphocytes

Total Page:16

File Type:pdf, Size:1020Kb

Movement Within Lymph Nodes T Lymphocytes Impaired Trafficking of Gnai2+/− and Gnai2− /− T Lymphocytes: Implications for T Cell Movement within Lymph Nodes This information is current as Il-Young Hwang, Chung Park and John H. Kehrl of September 23, 2021. J Immunol 2007; 179:439-448; ; doi: 10.4049/jimmunol.179.1.439 http://www.jimmunol.org/content/179/1/439 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2008/03/14/179.1.439.DC1 Material References This article cites 35 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/179/1/439.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology :Impaired Trafficking of Gnai2؉/؊ and Gnai2؊/؊ T Lymphocytes Implications for T Cell Movement within Lymph Nodes Il-Young Hwang, Chung Park, and John H. Kehrl1 Signals generated by the engagement of chemoattractants with their cognate receptors orchestrate lymphocyte movements into and out of lymphoid organs and sites of inflammation. Yet, the role of chemokines in organizing lymphocyte movements in lymphoid organs is controversial. Recent evidence suggests that the extensive network of fibroblastic reticular cells within the T cell areas helps guide T cells. The expression of adhesion molecules and chemokines by fibroblastic reticular cells most likely facilitates their influence on T cell movements. Consistent with this hypothesis, CD4 T cells with defective chemokine receptor signaling move very differently within lymph nodes than do normal cells. For the imaging studies, we used CD4 T ؊/؊ cells prepared from Gnai2 mice, which lack G␣i2 expression. We first demonstrate that CD4 as well as CD8 T cells from ؊/؊ these mice are markedly defective in chemokine receptor signaling. Gnai2 T cells have profound defects in chemokine- Downloaded from .induced intracellular calcium mobilization, chemotaxis, and homing, whereas Gnai2؉/؊ T cells exhibit modest defects Intravital imaging revealed that within the inguinal lymph nodes Gnai2؊/؊ CD4 T accumulate at the cortical ridge, poorly accessing the lymph node paracortex. They also lack the customary amoeboid-like cell movements and active membrane projections observed with normal CD4 T cells. These results demonstrate the importance of G␣i2 for T lymphocyte chemo- kine receptor signaling and argue that local chemoattractants regulate the movement of CD4 T cells in lymph nodes. The Journal of Immunology, 2007, 179: 439–448. http://www.jimmunol.org/ roper functioning of the immune system depends upon thelial venules (HEVs), and decreased B cell motility within lymph changing intracellular contacts and cellular localization node follicles (8). P both within immune organs and within the body. Che- The impact of Gnai2 deficiency on T cell chemotaxis and T cell moattractants act as signposts to recruit and position lymphocytes trafficking has not been reported. Yet defective T cell function has and dendritic cells in lymphoid organs and inflammatory sites (1, been documented. Gnai2Ϫ/Ϫ mice develop a Th1-mediated in- 2). Most chemoattractants and chemokines signal through G pro- flammatory colitis reminiscent of human ulcerative colitis, whose tein-coupled receptors (GPCRs)2 that use the heterotrimeric G pro- penetrance depends upon the genetic background of the mice (10). Ϫ Ϫ / by guest on September 23, 2021 tein Gi to activate downstream effectors (3, 4). The binding of Gnai2 CD4 T cells exhibit augmented responses to TCR sig- ligand activates receptors triggering G␣i subunits to exchange GTP naling with enhanced intracellular calcium release and cytokine Ϫ/Ϫ for GDP, resulting in the dissociation of the G␣ subunit from its production; in contrast, Gnai3 T cells respond normally to associated G␤␥ heterodimers (5, 6). The release of Gi-associated TCR signaling (9). A relative increase in mature thymocytes in the Ϫ/Ϫ G␤␥ subunits is necessary for triggering directional migration (3, 4, thymus has also been noted in the Gnai2 mice (10). 7). Because G␣ subunits possess an intrinsic GTPase activity, GTP To characterize the impact of Gnai2 deficiency on T cell che- hydrolysis leads to the reassembly of heterotrimeric G protein, motaxis and T cell trafficking, we have examined CD4 and CD8 T causing signaling to cease (5, 6). Lymphocytes strongly express cells from wild-type, Gnai2ϩ/Ϫ, and Gnai2Ϫ/Ϫ mice. We find that Ϫ/Ϫ Ϫ/Ϫ two members of the Gi subfamily, G␣i2 and G␣i3 (8). Gnai3 Gnai2 T cells exhibit significant defects in chemokine receptor mice are reportedly without a phenotype (9); however, Gnai2Ϫ/Ϫ signaling and lymphocyte trafficking, suggesting that signals that mice exhibit defective B cell chemokine receptor signaling, as ev- modulate the level of G␣i2 present in lymphocytes directly affect idenced by depressed B cell chemotaxis, defective B cell homing the capacity of lymphocytes to respond to chemokines. The to lymph nodes, poor B cell adherence to lymph node high endo- Gnai2Ϫ/Ϫ mice have pronounced defects in chemokine receptor signaling, indicating that Gnai3 and Gnai1 poorly compensate for the loss of Gnai2 and that CXCR5 and CCR7 predominantly cou- ple to Gi␣2 in T lymphocytes. Finally, these results argue that Laboratory of Immunoregulation, National Institute of Allergy and Infectious Dis- GPCR signaling significantly impacts the movement of T cells eases, National Institutes of Health, Bethesda, MD 20892 within the lymph node. Received for publication September 25, 2006. Accepted for publication April 16, 2007. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance Materials and Methods with 18 U.S.C. Section 1734 solely to indicate this fact. Mice 1 Address correspondence and reprint requests to Dr. John H. Kehrl, Laboratory of Ϫ/Ϫ Immunoregulation, National Institute of Allergy and Infectious Diseases, National The generation of Gnai2 mice has been previously described (10). The Institutes of Health, Building 10, Room 11B08, 10 Center Drive MSC 1876, Be- mutation was backcrossed onto a C57BL/6 background six times. Mice thesda, MD 20892. E-mail address: [email protected] heterozygotic or homozygotic for the mutation were produced by crossing heterozygotic mice. Wild-type littermates were used as controls. C57BL/6 2 Abbreviations used in this paper: GPCR, G protein-coupled receptor; 3-D, three- 2ϩ 2ϩ mice were purchased from The Jackson Laboratory. All mice used in this dimensional; [Ca ]i, intracellular Ca concentration; CMFDA, 5-chloromethyl- fluorescein diacetate; CMTMR, 5-(and 6-)(((4-chloromethyl)benzoyl) amino)tetram- study were 8–14 wk of age. Mice were housed under specific pathogen- ethylrhodamine; FRC, fibroreticular cell; HEV, high endothelial venule; S1P, free conditions and used in accordance with the guidelines of the Institu- sphingosine 1-phosphate. tional Animal Care Committee at the National Institutes of Health. www.jimmunol.org 440 DEFICIENCY OF G␣i2 INHIBITS CHEMOKINE RECEPTOR SIGNALING Reagents cytometer (BD Biosciences), and the data were analyzed using FlowJo software (Tree Star). Forward and side scatter parameters were used to gate Abs against mouse CD11a, CD11c, GR-1, CD49d, CXCR4, CXCR5, on live cells. Alternatively, the labeled cells were injected into the footpad CCR5, CD4, CD8a, B220, and CD62L were purchased from BD Pharm- of recipient mice, and 12 h later the ipsilateral popliteal and inguinal lymph ␣ ␣ ␣ ingen; CCR7 from BioLegend; and G i1,G i2, and G i3 from Santa Cruz nodes and the contralateral popliteal lymph node were removed and pro- Biotechnology. Streptavidin conjugated to PE was purchased from BD cessed, as above. In some instances, the T cells were pre incubated with Pharmingen. Pertussis toxin was purchased from Calbiochem. The 5-(and 100 ng/ml pertussis toxin for2hat37°C before transfer. 6-)(((4-chloromethyl)benzoyl) amino)tetramethylrhodamine (CMTMR) and 5-chloromethylfluorescein diacetate (CMFDA) were purchased from Lymph node transit assay Molecular Probes. Murine CCL19, CXCL12, and CXCL13 were purchased from R&D Systems. The assay was performed as previously described (8). Splenic CD4 T cells from wild-type or Gnai2Ϫ/Ϫ mice were labeled with either 2 ␮M CMFDA Cells or CMTMR for 15 min at 37°C, and 7–20 million cells of each population were injected i.v. to recipient mice. Two hours later, the mice were injected Splenic T cells were isolated by negative depletion using biotinylated Abs i.v. with either PBS or anti-L-selectin Ab (100 ␮g/mouse). After 12 h, to B220, GR-1, and CDllc and Dynabeads M-280 streptavidin (Dynal Bio- inguinal and popliteal lymph nodes were removed and gently dissociated tech), as previously described (11). The addition of a biotinylated Ab to into single-cell suspensions. Flow cytometric analysis was performed on a CD4 or CD8 allowed isolation of CD8 or CD4 T cells, respectively. The FACSCalibur flow cytometer (BD Biosciences), and the data were ana- cell purity was greater than 95%. Cells were placed in complete RPMI lyzed using the FlowJo software (Tree Star). Forward and side scatter 1640 medium supplemented with 10% FCS, 2 mM L-glutamine, 100 IU/ml parameters were used to gate on live cells. penicillin, 100 ␮g/ml streptomycin, 1 mM sodium pyruvate, and 50 ␮M 2-ME.
Recommended publications
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • The 'C3ar Antagonist' SB290157 Is a Partial C5ar2 Agonist
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.01.232090; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The ‘C3aR antagonist’ SB290157 is a partial C5aR2 agonist Xaria X. Li1, Vinod Kumar1, John D. Lee1, Trent M. Woodruff1* 1School of Biomedical Sciences, The University of Queensland, St Lucia, 4072 Australia. * Correspondence: Prof. Trent M. Woodruff School of Biomedical Sciences, The University of Queensland, St Lucia, 4072 Australia. Ph: +61 7 3365 2924; Fax: +61 7 3365 1766; E-mail: [email protected] Keywords: Complement C3a, C3aR, SB290157, C5aR1, C5aR2 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.01.232090; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abbreviations used in this article: BRET, bioluminescence resonance energy transfer; BSA, bovine serum albumin; C3aR, C3a receptor C5aR1, C5a receptor 1; CHO-C3aR, Chinese hamster ovary cells stably expressing C3aR; CHO-C5aR1, Chinese hamster ovary cells stably expressing C5aR1; DMEM, Dulbecco's Modified Eagle's Medium; ERK1/2, extracellular signal-regulated kinase 1/2; FBS, foetal bovine serum; HEK293, human embryonic kidney 293 cells; HMDM, human monocyte-derived macrophage; i.p., intraperitoneal; i.v., intravenous; rhC5a, recombinant human C5a; RT, room temperature; S.E.M.
    [Show full text]
  • Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
    [Show full text]
  • Pathognomonic and Epistatic Genetic Alterations in B-Cell Non-Hodgkin
    bioRxiv preprint doi: https://doi.org/10.1101/674259; this version posted June 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Pathognomonic and epistatic genetic alterations in 2 B-cell non-Hodgkin lymphoma 3 4 Man Chun John Ma1¥, Saber Tadros1¥, Alyssa Bouska2, Tayla B. Heavican2, Haopeng Yang1, 5 Qing Deng1, Dalia Moore3, Ariz Akhter4, Keenan Hartert3, Neeraj Jain1, Jordan Showell1, 6 Sreejoyee Ghosh1, Lesley Street5, Marta Davidson5, Christopher Carey6, Joshua Tobin7, 7 Deepak Perumal8, Julie M. Vose9, Matthew A. Lunning9, Aliyah R. Sohani10, Benjamin J. 8 Chen11, Shannon Buckley12, Loretta J. Nastoupil1, R. Eric Davis1, Jason R. Westin1, Nathan H. 9 Fowler1, Samir Parekh8, Maher K. Gandhi7, Sattva S. Neelapu1, Douglas Stewart5, Javeed 10 Iqbal2, Timothy Greiner2, Scott J. Rodig13, Adnan Mansoor5, Michael R. Green1,14,15* 11 1Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD 12 Anderson Cancer Center, Houston, TX, USA; 2Department of Pathology and Microbiology, University of 13 Nebraska Medical Center, Omaha, NE, USA; 3Eppley Institute for Research in Cancer and Allied 14 Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 4Department of Pathology and 15 Laboratory Medicine, University of Calgary, Calgary, AB, Canada; 5Section of Hematology, Department of 16 Medicine, University
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • ANALYSIS Doi:10.1038/Nature14663
    ANALYSIS doi:10.1038/nature14663 Universal allosteric mechanism for Ga activation by GPCRs Tilman Flock1, Charles N. J. Ravarani1*, Dawei Sun2,3*, A. J. Venkatakrishnan1{, Melis Kayikci1, Christopher G. Tate1, Dmitry B. Veprintsev2,3 & M. Madan Babu1 G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are 800 human GPCRs and 16 different Ga genes, this raises the question of whether a universal allosteric mechanism governs Ga activation. Here we show that different GPCRs interact with and activate Ga proteins through a highly conserved mechanism. Comparison of Ga with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR–Ga system diversified rapidly, while conserving the allosteric activation mechanism. proteins bind guanine nucleotides and act as molecular switches almost 30 A˚ away from the GDP binding region5 and allosterically trig- in a number of signalling pathways by interconverting between ger GDP release to activate them. 1,2 G a GDP-bound inactive and a GTP-bound active state . They The high-resolution structure of the Gas-bound b2-adrenergic recep- 3 5 consist of two major classes: monomeric small G proteins and hetero- tor (b2AR) provided crucial insights into the receptor–G protein inter- trimeric G proteins4. While small G proteins and the a-subunit (Ga)of face and conformational changes in Ga upon receptor binding6,7. Recent 6 8 heterotrimeric G proteins both contain a GTPase domain (G-domain), studies described dynamic regions in Gas and Gai , the importance of ˚ Ga contains an additional helical domain (H-domain) and also forms a displacement of helix 5 (H5) of Gas and Gat by up to 6 A into the complex with the Gb and Gc subunits.
    [Show full text]
  • Regulation of Immune Cells by Eicosanoid Receptors
    Regulation of Immune Cells by Eicosanoid Receptors The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kim, Nancy D., and Andrew D. Luster. 2007. “Regulation of Immune Cells by Eicosanoid Receptors.” The Scientific World Journal 7 (1): 1307-1328. doi:10.1100/tsw.2007.181. http://dx.doi.org/10.1100/ tsw.2007.181. Published Version doi:10.1100/tsw.2007.181 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298366 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Review Article Special Issue: Eicosanoid Receptors and Inflammation TheScientificWorldJOURNAL (2007) 7, 1307–1328 ISSN 1537-744X; DOI 10.1100/tsw.2007.181 Regulation of Immune Cells by Eicosanoid Receptors Nancy D. Kim and Andrew D. Luster* Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston E-mail: [email protected] Received March 13, 2007; Revised June 14, 2007; Accepted July 2, 2007; Published September 1, 2007 Eicosanoids are potent, bioactive, lipid mediators that regulate important components of the immune response, including defense against infection, ischemia, and injury, as well as instigating and perpetuating autoimmune and inflammatory conditions. Although these lipids have numerous effects on diverse cell types and organs, a greater understanding of their specific effects on key players of the immune system has been gained in recent years through the characterization of individual eicosanoid receptors, the identification and development of specific receptor agonists and inhibitors, and the generation of mice genetically deficient in various eicosanoid receptors.
    [Show full text]
  • Complement Pathway Biomarkers and Age-Related Macular Degeneration
    Eye (2016) 30, 1–14 © 2016 Macmillan Publishers Limited All rights reserved 0950-222X/16 www.nature.com/eye 1 2,3 Complement pathway M Gemenetzi and AJ Lotery REVIEW biomarkers and age- related macular degeneration Abstract In the age-related macular degeneration accounts for 35% of all cases of late AMD and (AMD) ‘inflammation model’, local inflamma- 20% of legal blindness attributable to AMD,4,5 tion plus complement activation contributes to cannot be treated or prevented at the moment the pathogenesis and progression of the dis- and indeed may be increased by anti-VEGF ease. Multiple genetic associations have now therapy.6,7 been established correlating the risk of devel- In this review, we present and comment on opment or progression of AMD. Stratifying the response to both complement and non- patients by their AMD genetic profile may complement-based treatments, in relation to facilitate future AMD therapeutic trials result- complement pathway mechanisms and ing in meaningful clinical trial end points with complement gene regulation of these smaller sample sizes and study duration. mechanisms. We discuss current and potential – Eye (2016) 30, 1 14; doi:10.1038/eye.2015.203; treatments for both wet and dry AMD in relation published online 23 October 2015 to complement pathway pathogenetic 1Royal Eye Unit, Kingston mechanisms. Hospital NHS Foundation Trust, Kingston Upon Thames, UK Introduction The complement system Based on the pioneering work of Dr Judah The innate immune system is composed of 2Southampton Eye Unit, ‘ ’ Folkman, novel research into angiogenesis immunological effectors that provide robust, Southampton University Hospital, Southampton, UK generated the commercial development of drugs immediate, and nonspecific immune responses.
    [Show full text]
  • An Unexpected Role for the Anaphylatoxin C5a Receptor in Allergic Sensitization Bart N
    commentaries fied mice with minimal or no steady-state Phone: (314) 362-8834; Fax: (314) 362-8826; 7. Socolovsky, M., et al. 2001. Ineffective erythropoie- sis in Stat5a(–/–)5b(–/–) mice due to decreased sur- phenotype. In many ways these mice could E-mail: [email protected]. vival of early erythroblasts. Blood. 98:3261–3273. be viewed as models for otherwise normal 8. Zang, H., et al. 2001. The distal region and receptor adult humans who exhibit exaggerated or 1. Palis, J., and Segel, G.B. 1998. Developmental biol- tyrosines of the Epo receptor are non-essential for ogy of erythropoiesis. Blood Rev. 12:106–114. in vivo erythropoiesis. EMBO J. 20:3156–3166. unexpected responses to inflammation, 2. Obinata, M., and Yanai, N. 1999. Cellular and 9. D’Andrea, A.D., et al. 1991. The cytoplasmic region infectious agents, or cancer progression. molecular regulation of an erythropoietic induc- of the erythropoietin receptor contains nonover- As such, they have the potential to identify tive microenvironment (EIM). Cell Struct. Funct. lapping positive and negative growth-regulatory 24:171–179. and dissect regulatory pathways that influ- domains. Mol. Cell. Biol. 11:1980–1987. 3. Menon, M.P., et al. 2006. Signals for stress erythro- 10. Wagner, K.U., et al. 2000. Conditional deletion of the ence but do not cause disease. poiesis are integrated via an erythropoietin receptor– Bcl-x gene from erythroid cells results in hemolytic phosphotyrosine-343–Stat5 axis. J. Clin. Invest. anemia and profound splenomegaly. Development. Acknowledgments 116:683–694. doi:10.1172/JCI25227. 127:4949–4958. 4. Teglund, S., et al.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • GNAI2 Promotes Proliferation and Decreases Apoptosis in Rabbit Melanocytes
    G C A T T A C G G C A T genes Article GNAI2 Promotes Proliferation and Decreases Apoptosis in Rabbit Melanocytes Shuaishuai Hu 1, Yingying Dai 1, Shaocheng Bai 1, Bohao Zhao 1, Xinsheng Wu 1,2,* and Yang Chen 1,2 1 College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; [email protected] (S.H.); [email protected] (Y.D.); [email protected] (S.B.); [email protected] (B.Z.); [email protected] (Y.C.) 2 Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Hangzhou 310021, China * Correspondence: [email protected] Abstract: GNAI2 (G protein subunit alpha i2) is a signaling modulator or transducer, involved in several transmembrane signaling systems, that plays a vital role in the melanogenesis signaling pathway. However, whether GNAI2 regulates cell proliferation and apoptosis in rabbit melanocytes is not known. We found that GNAI2 was differentially expressed in rabbits with different coat colors using qRT-PCR and Wes assays. Furthermore, it was observed that the rabbits with black skin had the highest GNAI2 levels, and those with white skin had the lowest expression. The coding sequence of GNAI2 was successfully cloned and inserted into pcDNA3.1 and pcDNA3.1-Myc vectors. It was observed that the GNAI2 protein was mainly localized in the cytoplasm using the indirect immunofluorescence staining assay. Overexpression of GNAI2 significantly increased melanin content, promoted melanocyte proliferation, and inhibited melanocyte apoptosis. On the contrary, the knockdown of GNAI2 using siRNA had the opposite effect. In addition, GNAI2 significantly increased the mRNA expression levels of the melanin-related genes TYR, GPNMB, PMEL, and DCT Citation: Hu, S.; Dai, Y.; Bai, S.; Zhao, in rabbit melanocytes.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) In vivo studies on the role of Adhesion-GPCR CD97 in immunity Veninga, H. Publication date 2010 Link to publication Citation for published version (APA): Veninga, H. (2010). In vivo studies on the role of Adhesion-GPCR CD97 in immunity. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:04 Oct 2021 CD55 regulates CD97 expression, granulopoietic activity, and anti- bacterial host defense Henrike Veninga,1 Robert M. Hoek,1 Alex F. de Vos,2 Alex M. de Bruin,1 Dennis Flierman,1 Feng-Qi An,3 Tom van der Poll,2 René A.W. van Lier,1 M. Edward Medof,3 and Jörg Hamann1 1Department of Experimental Immunology and 2Center for Experimental Molecular
    [Show full text]