1P36 Tumor Suppression—A Matter of Dosage?

Total Page:16

File Type:pdf, Size:1020Kb

1P36 Tumor Suppression—A Matter of Dosage? Published OnlineFirst November 29, 2012; DOI: 10.1158/0008-5472.CAN-12-2230 Cancer Review Research 1p36 Tumor Suppression—A Matter of Dosage? Kai-Oliver Henrich, Manfred Schwab, and Frank Westermann Abstract A broad range of human malignancies is associated with nonrandom 1p36 deletions, suggesting the existence of tumor suppressors encoded in this region. Evidence for tumor-specific inactivation of 1p36 genes in the classic "two-hit" manner is scarce; however, many tumor suppressors do not require complete inactivation but contribute to tumorigenesis by partial impairment. We discuss recent data derived from both human tumors and functional cancer models indicating that the 1p36 genes CHD5, CAMTA1, KIF1B, CASZ1, and miR-34a contribute to cancer development when reduced in dosage by genomic copy number loss or other mechanisms. We explore potential interactions among these candidates and propose a model where heterozygous 1p36 deletion impairs oncosuppressive pathways via simultaneous downregulation of several dosage-dependent tumor suppressor genes. Cancer Res; 72(23); 6079–88. Ó2012 AACR. Introduction (Fig. 1; refs. 1, 17–29). Despite extensive 1p36 candidate gene Deletions of the distal short arm of chromosome 1 (1p) are sequence analyses, success was limited for identifying tumor- fi frequently observed in a broad range of human cancers, speci c mutations in neuroblastomas or other malignancies, including breast cancer, cervical cancer, pancreatic cancer, which led some to conclude that a deletion mapping approach pheochromocytoma, thyroid cancer, hepatocellular cancer, was unlikely to deliver tumor suppressor genes. Many tumor colorectal cancer, lung cancer, glioma, meningioma, neuro- suppressor genes, however, do not require inactivation in a blastoma, melanoma, Merkel cell carcinoma, rhabdomyosar- classic "two-hit" manner but contribute to tumor development coma, acute myeloid leukemia, chronic myeloid leukemia, and when their dosage is reduced, sometimes only subtly, by non-Hodgkin lymphoma (1, 2). These nonrandom aberrations mechanisms such as copy number change, transcriptional suggest that loss of genetic information mapping to this region repression, epigenetic downregulation, or aberrant miRNA contributes to cancer development. This is supported by regulation (30). Unlike in a classic "two-hit" mutational inac- fi constitutional 1p aberrations in neuroblastoma patients (3, tivation scenario, de nite proof for dosage-sensitive tumor 4) and the association of 1p deletion with poor survival of suppressor gene involvement is not offered by a single straight neuroblastoma (5), breast cancer (6, 7), and colon cancer (8, 9) forward assay. Instead, evidence must be accumulated from patients. Deletion of 1p in premalignant lesions and/or early genetic, epigenetic, and transcriptional analyses of human tumor stages of colorectal, breast, and hepatocellular cancer tumors and functional in vitro and in vivo assays. This review fi (10–12) points to a role for 1p genes during the early steps of discusses ve 1p36 genes, CHD5, CAMTA1, KIF1B, CASZ1, and carcinogenesis in these entities. This is supported by loss of 1p miR-34a, recently suggested as tumor suppressor candidates material during in vitro progression in a cell culture model of and likely to be impaired by partial reduction as suggested by colon carcinogenesis (13). Furthermore, transfer of 1p chro- both their status in human cancers and their activity in mosomal material suppresses tumorigenicity of both neuro- functional cancer models. blastoma and colon carcinoma cells (14, 15). Since the first report of 1p deletions in neuroblastomas in CHD5 1977 (16), smallest regions of overlapping heterozygous dele- Chromodomain helicase DNA binding (CHD) genes encode a tions (SRO) have been defined in various tumor entities in the class of ATPase-dependent DNA-binding proteins interacting pursuit of cancer-related genes. That 1p36 is a hot spot of with histones to modulate chromatin structure and transcrip- chromosomal aberrations became clear early on (1), with the tion. CHD5 resides in 1p36.31, is preferentially expressed in most detailed mapping picture appearing for neuroblastoma neuronal tissues, and its product regulates genes involved in neuronal function, cell-cycle control, and chromatin remodel- ing (31). Functional evidence for a tumor suppressive role of mouse Chd5 derives from an elegant approach using chromo- Authors' Affiliation: Division of Tumor Genetics B030, German Cancer Research Center, Heidelberg, Germany some engineering to generate mouse models with loss or gain of genomic regions corresponding to human 1p36 (22). Dele- Corresponding Author: Kai-Oliver Henrich, Division of Tumor Genetics B030, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 tion of a Chd5-containing 4.3 Mb genomic subinterval, corre- Heidelberg, Germany. Phone: 496-221-423-220; Fax: 496-221-423-277; sponding to 5.7 Mb of human 1p36, enhanced proliferation, loss E-mail: [email protected] of contact inhibition, spontaneous immortalization, and sen- doi: 10.1158/0008-5472.CAN-12-2230 sitivity to oncogenic transformation of cultured mouse embry- Ó2012 American Association for Cancer Research. onic fibroblasts. Mice with heterozygous deletion of this www.aacrjournals.org 6079 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2012 American Association for Cancer Research. Published OnlineFirst November 29, 2012; DOI: 10.1158/0008-5472.CAN-12-2230 Henrich et al. 0 Mb 5 Mb 10 Mb 15 Mb 20 Mb 25 Mb 1p36.33 1p36.32 1p36.31 1p36.23 1p36.22 1p36.21 1p36.13 1p36.12 1p36.11 p73 CAMTA1 CHD5 p73 CHD5 KIF1B CASZ1 miR-34a CAMTA1 Schwab et al., 1996 (review) (1) Neuronal D1S47 D1S244 miR-34a genes Caron et al., 2001 (17) D1S1615 MYCN / MYC CASZ1 Bauer et al., 2001 (18) D1S2731 D1S2666 White et al., 2005 (19) BMI1 EZH2 D1S214 D1S2660 Neuroblastoma Ohira et al., 2000 (homozygous, cell line) (20) CADM1 miR-101 HDNB1 KIF1B D1S2736 (11q23) (1p31) Ejeskär et al., 2001 (germ cell tumors + NB) (21) D1S508 D1S244 1p36-encoded Bagchi et al., 2007 (22) Barbashina et al., 2005 (23) D1S2694 D1S2666 Glioma Felsberg et al., 2004 (24) D1S482 D1S489 D1S2633 D1S2642 Pheochromocytoma; Edström Elder et al., 2000 (25) D1S1612 Melanoma; Poetsch et al., 2003 (26) D1S214 D1S253 D1S243 D1S468 Small cell lung cancer; Girard et al., 2000 (27) D1S214 Non-small cell lung cancer; Girard et al., 2000 (27) D1S199 Other entities Breast cancer; Bieche et al., 1999 (28) D1S243 D1S468 D1S160 D1S244 Colorectal cancer; Thorstensen et al., 2000 (29) D1S228 D1S2647 Figure 1. Localization of tumor suppressor candidates p73, CHD5, CAMTA1, miR-34a, KIF1b, and CASZ1 with respect to 1p36 alterations in human cancers. Horizontal bars illustrate the extension of commonly deleted regions; short vertical bars at their end represent the first nondeleted locus. Only size (5.4 Mb) and chromosomal extension (1p32.32–1p36.22) are available for the region identified by Bagchi et al. (22). Genomic positions correspond to the UCSC genome browser, assembly Feb. 2009 (GRCh37/hg19). Gray box, model illustrating potential interactions between 1p36 tumor suppressor candidates. subinterval were prone to hyperplasia in a variety of tissues effects of the engineered deletion, including enhanced prolif- (22). Duplication of this subinterval in mouse embryonic eration, sensitivity to oncogenic transformation, and inhibition fibroblasts inhibited proliferation and increased the senescent of p19Arf/p53 (22). This suggests that Chd5 is a dose-dependent cell fraction. Mice with subinterval duplication had develop- gene within the identified 4.3 Mb genomic subinterval that mental abnormalities characterized by an increased apoptotic mediates the tumor suppressive mechanisms seen in mouse cell fraction in various tissues, including the neural tube (22). models. The functional role of human CHD5 in a cancer The identified subinterval includes 52 genes. Among 11 tested background was analyzed in neuroblastoma cells, where its candidate genes, knockdown of only Chd5 functionally rescued overexpression had no impact on proliferation, morphology, the proliferative defect of mouse embryonic fibroblasts with differentiation, or apoptosis but significantly inhibited clono- duplication of the subinterval. Chd5 knockdown in wild-type genic growth in soft agar and xenograft tumor growth in mice cells induced phenotypic changes closely resembling the (32). The absence of an impact on proliferation may indicate an 6080 Cancer Res; 72(23) December 1, 2012 Cancer Research Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2012 American Association for Cancer Research. Published OnlineFirst November 29, 2012; DOI: 10.1158/0008-5472.CAN-12-2230 1p36 Tumor Suppression—A Matter of Dosage? already impaired p14Arf (human p19Arf homolog)/p53 pathway nostic information to existing risk stratification (46). Conse- in these cells, a defect frequently seen in neuroblastomas (33). quently, CAMTA1 is included in most recent prognostic neu- CHD5 is one of 23 genes mapping to a 2 Mb SRO in neuro- roblastoma expression classifiers (51–54). Low CAMTA1 blastoma (34) and a 5.4 Mb SRO spanning 1p36.32 to 1p36.22 expression is also significantly associated with shorter survival in glioma (Fig. 1; refs. 22, 34). An SRO containing Chd5 was in glioblastoma patients (50), and, intriguingly, low CAMTA1 identified in a lymphoma mouse model with chromosomal expression emerged as a new independent predictor of poor instability, and syntenic CHD5-containing deletions were dis- outcome
Recommended publications
  • The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1
    The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Quan, Jinhua, Guillaume Adelmant, Jarrod A. Marto, A. Thomas Look, and Timur Yusufzai. 2014. “The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1.” PLoS ONE 9 (9): e108066. doi:10.1371/journal.pone.0108066. http:// dx.doi.org/10.1371/journal.pone.0108066. Published Version doi:10.1371/journal.pone.0108066 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13347631 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1 Jinhua Quan1,2, Guillaume Adelmant2,3, Jarrod A. Marto2,3, A. Thomas Look4, Timur Yusufzai1,2* 1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Blais Proteomics Center, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 4 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America Abstract Loss of the chromatin remodeling ATPase CHD5 has been linked to the progression of neuroblastoma tumors, yet the underlying mechanisms behind the tumor suppressor role of CHD5 are unknown.
    [Show full text]
  • Definition and Characterization of a Region of 1P36.3 Consistently
    Oncogene (2005) 24, 2684–2694 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma Peter S White*,1,2, Patricia M Thompson1, Takahiro Gotoh1, Erin R Okawa1, Jun Igarashi1, Marleen Kok1, Cynthia Winter1, Simon G Gregory3, MichaelD Hogarty 1,2, John M Maris1,2,4 and Garrett M Brodeur1,2 1Division of Oncology, The Children’s Hospital of Philadelphia, 3516 Civic Center Blvd, Philadelphia, PA 19104, USA; 2Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; 3Center for Human Genetics, Duke University School of Medicine, Durham, NC 27710, USA; 4Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA Substantial genomic and functional evidence from primary Introduction tumors and cell lines indicates that a consistent region of distal chromosome 1p is deleted in a sizable proportion of Neuroblastoma is a common pediatric malignancy of human neuroblastomas, suggesting that this region contains the peripheralsympathetic nervous system. Despite one or more tumor suppressor genes. To determine system- recent advances in therapy, a large proportion of atically and precisely the location and extent of 1p deletion neuroblastoma patients succumb to the disease. Thus, in neuroblastomas, we performed allelic loss studies of 737 identification and characterization of the genetic events primary neuroblastomas and genotype analysis of 46 underlying neuroblastoma tumorigenesis and progres- neuroblastoma cell lines. Together, the results defined a sion are important priorities for management of this single region within 1p36.3 that was consistently deleted in malignancy.
    [Show full text]
  • Defining the Transcriptomic Landscape of the Developing Enteric Nervous System and Its Cellular Environment Sweta Roy-Carson Iowa State University, [email protected]
    Genetics, Development and Cell Biology Genetics, Development and Cell Biology Publications 2017 Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment Sweta Roy-Carson Iowa State University, [email protected] Kevin Natukunda Iowa State University, [email protected] Hsien-chao Chou Iowa State University Narinder Pal Iowa State University Caitlin Farris Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/gdcb_las_pubs See next page for additional authors Part of the Cell and Developmental Biology Commons, and the Molecular Genetics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ gdcb_las_pubs/202. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Genetics, Development and Cell Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Genetics, Development and Cell Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment Abstract Background: Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The og al of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development.
    [Show full text]
  • A Rare CHD5 Haplotype and Its Interactions with Environmental
    Xiao et al. BMC Cancer (2018) 18:658 https://doi.org/10.1186/s12885-018-4551-y RESEARCHARTICLE Open Access ArareCHD5 haplotype and its interactions with environmental factors predicting hepatocellular carcinoma risk Qin Xiao1,2†, Lianzhou Chen3†, Haiqing Luo1,4†, Hongmei Li1,5†, Qingming Kong6, Fei Jiao7, Shifeng Pang1, Ming Zhang8, Feifei Lan9, Wenguo Fan10, Hui Luo1*, Tao Tao8* and Xiao Zhu1* Abstract Background: CHD5 is a conventional tumour-suppressing gene in many tumours. The aim of this study was to determine whether CHD5 variants contribute to the risk of hepatocellular carcinoma (HCC). Methods: Gene variants were identified using next-generation sequencing targeted on referenced mutations followed by TaqMan genotyping in two case-control studies. Results: We discovered a rare variant (haplotype AG) in CHD5 (rs12564469-rs9434711) that was markedly associated with the risk of HCC in a Chinese population. A logistical regression model and permutation test confirmed the association. Indeed, the association quality increased in a gene dose-dependent manner as the number of samples increased. In the stratified analysis, this haplotype risk effect was statistically significant in a subgroup of alcohol drinkers. The false-positive report probability and multifactor dimensionality reduction further supported the finding. Conclusions: Our results suggest that the rare CHD5 gene haplotype and alcohol intake contribute to the risk of HCC. Our findings can be valuable to researchers of cancer precision medicine looking to improve diagnosis and treatment of HCC. Keywords: CHD5, Gene haplotype, Hepatocellular carcinoma, Alcohol intake, Risk Background is one of the nine members of the CHD-binding en- Hepatocellular carcinoma (HCC) is the most common zymes and belongs to the snf2 DNA helicase/methylase primary liver cancer and has the worst prognoses of all superfamily [2].
    [Show full text]
  • CHD5 Is Required for Neurogenesis and Has a Dual Role in Facilitating Gene Expression and Polycomb Gene Repression
    Developmental Cell Article CHD5 Is Required for Neurogenesis and Has a Dual Role in Facilitating Gene Expression and Polycomb Gene Repression Chris M. Egan,1,9 Ulrika Nyman,7,9 Julie Skotte,3 Gundula Streubel,1 Siobha´ n Turner,1 David J. O’Connell,6 Vilma Rraklli,7 Michael J. Dolan,1 Naomi Chadderton,1 Klaus Hansen,3 Gwyneth Jane Farrar,1 Kristian Helin,3,4,5 Johan Holmberg,7,8,10,* and Adrian P. Bracken1,2,10,* 1The Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland 2The Adelaide and Meath Hospital, Incorporating the National Children’s Hospital, Dublin 16, Ireland 3Biotech Research and Innovation Centre (BRIC) 4Centre for Epigenetics 5The Danish Stem Cell Center (DanStem) University of Copenhagen, 2200 Copenhagen, Denmark 6The Conway Institute, University College Dublin, Dublin 4, Ireland 7Ludwig Institute for Cancer Research 8Department of Cell and Molecular Biology Karolinska Institutet, Stockholm S-171 77, Sweden 9These authors contributed equally to this work 10These authors contributed equally to this work *Correspondence: [email protected] (J.H.), [email protected] (A.P.B.) http://dx.doi.org/10.1016/j.devcel.2013.07.008 SUMMARY alternative lineages are silenced. Furthermore, the precise roles of chromatin regulators during neuronal lineage specification The chromatin remodeler CHD5 is expressed in neu- remain largely unexplored. ral tissue and is frequently deleted in aggressive Chromatin regulators are generally considered to act as facili- neuroblastoma. Very little is known about the function tators of lineage specification, rather than actually directing the of CHD5 in the nervous system or its mechanism of process (Holmberg and Perlmann, 2012).
    [Show full text]
  • Comparative Transcriptomics Reveals Similarities and Differences
    Seifert et al. BMC Cancer (2015) 15:952 DOI 10.1186/s12885-015-1939-9 RESEARCH ARTICLE Open Access Comparative transcriptomics reveals similarities and differences between astrocytoma grades Michael Seifert1,2,5*, Martin Garbe1, Betty Friedrich1,3, Michel Mittelbronn4 and Barbara Klink5,6,7 Abstract Background: Astrocytomas are the most common primary brain tumors distinguished into four histological grades. Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma grades. Methods: We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I), diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and differences using well-established bioinformatics and systems biology approaches. We further validated the expression and localization of Ang2 involved in angiogenesis using immunohistochemistry. Results: Our analyses show similarities and differences between astrocytoma grades at the level of individual genes, signaling pathways and regulatory networks. We identified many differentially expressed genes that were either exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the absence of invasive growth.
    [Show full text]
  • Exosomes from Plasma of Neuroblastoma Patients Contain Doublestranded DNA Reflecting the Mutational Status of Parental Tumor Cells
    International Journal of Molecular Sciences Article Exosomes from Plasma of Neuroblastoma Patients Contain Doublestranded DNA Reflecting the Mutational Status of Parental Tumor Cells Chiara Degli Esposti 1,† , Barbara Iadarola 1,† , Simone Maestri 1 , Cristina Beltrami 1, Denise Lavezzari 1 , Martina Morini 2 , Patrizia De Marco 3, Giovanni Erminio 4 , Alberto Garaventa 5, Federico Zara 3, Massimo Delledonne 1 , Marzia Ognibene 3,* and Annalisa Pezzolo 6 1 Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy; [email protected] (C.D.E.); [email protected] (B.I.); [email protected] (S.M.); [email protected] (C.B.); [email protected] (D.L.); [email protected] (M.D.) 2 Laboratorio di Biologia Molecolare, IRCCS Giannina Gaslini, 16147 Genova, Italy; [email protected] 3 U.O.C. Genetica Medica, IRCCS Giannina Gaslini, 16147 Genova, Italy; [email protected] (P.D.M.); [email protected] (F.Z.) 4 Epidemiologia e Biostatistica, IRCCS Giannina Gaslini, 16147 Genova, Italy; [email protected] 5 Divisione di Oncologia, IRCCS Giannina Gaslini, 16147 Genova, Italy; [email protected] 6 IRCCS Giannina Gaslini, 16147 Genova, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-010-56362601 † These authors contributed equally to this work. Citation: Degli Esposti, C.; Iadarola, Abstract: Neuroblastoma (NB) is an aggressive infancy tumor, leading cause of death among B.; Maestri, S.; Beltrami, C.; Lavezzari, preschool age diseases. Here we focused on characterization of exosomal DNA (exo-DNA) isolated D.; Morini, M.; De Marco, P.; Erminio, from plasma cell-derived exosomes of neuroblastoma patients, and its potential use for detection of G.; Garaventa, A.; Zara, F.; et al.
    [Show full text]
  • The Quest for the 1P36 Tumor Suppressor
    Review The Quest for the 1p36 Tumor Suppressor Anindya Bagchi and Alea A. Mills Cold Spring Harbor Laboratory, Cold Spring Harbor, New York Abstract identity are rare. One idea is that 1p36 is inherently unstable. 1p36 Genomic analyses of late-stage human cancers have uncov- Another possibility is that several tumor suppressors work ered deletions encompassing 1p36, thereby providing an together and, therefore, that loss of a combination of these genes is extensive body of literature supporting the idea that a potent a prerequisite for cancer. Because hereditary cancer predisposition tumor suppressor resides in this interval. Although several syndromes do not exist for this genomic region, linkage-based genes have been proposed as 1p36 candidate tumor suppres- methodologies that were so crucial for discovering tumor suppres- sors such as retinoblastoma, are not helpful for identifying tumor sors, convincing evidence that their encoded products protect 1p36 from cancer has been scanty. A recent functional study iden- suppressors in this interval. In short, has presented a major tified chromodomain helicase DNA-binding protein 5 (CHD5)as challenge for the cancer community. a novel tumor suppressor mapping to 1p36. Here, we discuss evidence supporting the tumor-suppressive role of CHD5. Pinpointing the Tumor-Suppressive Region Together, these findings suggest that strategies designed to The underlying assumption for the approach that we took was enhance CHD5 activity could provide novel approaches for that there was a region of 1p36 that when deleted would predispose treating a broad range of human malignancies. [Cancer Res to cancer. Therefore, increased tumorigenicity would provide the 2008;68(8):2551–6] functional readout needed to reveal the location of the tumor suppressor.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Chd5 Requires PHD-Mediated Histone 3 Binding for Tumor Suppression
    Cell Reports Article Chd5 Requires PHD-Mediated Histone 3 Binding for Tumor Suppression Shilpi Paul,1 Alex Kuo,4 Thomas Schalch,1,2,3,6 Hannes Vogel,5 Leemor Joshua-Tor,1,2,3 W. Richard McCombie,1 Or Gozani,4 Molly Hammell,1 and Alea A. Mills1,* 1Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA 2W.M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA 3Howard Hughes Medical Institute 4Department of Biological Sciences 5Department of Pathology Stanford University, Stanford, CA 94305, USA 6Present address: Department of Molecular Biology, University of Geneva, Geneva, Switzerland *Correspondence: [email protected] http://dx.doi.org/10.1016/j.celrep.2012.12.009 SUMMARY et al., 2011; Berger et al., 2011; Gorringe et al., 2008; Jones et al., 2010; Lang et al., 2011; Li et al., 2011; Okawa et al., 2008; Rob- Chromodomain Helicase DNA binding protein 5 bins et al., 2011; Sjo¨ blom et al., 2006; Cancer Genome Atlas (CHD5) is a tumor suppressor mapping to 1p36, Research Network, 2008, 2011) in a variety of human cancers. a genomic region that is frequently deleted in human CHD5 expression is also a favorable predictor of survival cancer. Although CHD5 belongs to the CHD family of following anticancer therapy (Du et al., 2012; Garcia et al., chromatin-remodeling proteins, whether its tumor- 2010; Koyama et al., 2012; Wong et al., 2011). suppressive role involves an interaction with chro- CHD5 is a member of the CHD protein family, a group of nine proteins (CHD1–CHD9) that are defined by dual chromodomains matin is unknown.
    [Show full text]
  • Trans-Ethnic Genome-Wide Association Study of Severe COVID-19
    ARTICLE https://doi.org/10.1038/s42003-021-02549-5 OPEN Trans-ethnic genome-wide association study of severe COVID-19 Peng Wu1,2,20, Lin Ding3,4,20, Xiaodong Li5,6,20, Siyang Liu7,20, Fanjun Cheng8,20, Qing He9,20, Mingzhong Xiao5,6, Ping Wu1,2, Hongyan Hou2,10, Minghui Jiang3,4, Pinpin Long4,11, Hao Wang4,11, Linlin Liu12, Minghan Qu3,4, Xian Shi3,4, Qin Jiang4,11, Tingting Mo4,11, Wencheng Ding1,2,YuFu1,2, Shi Han12, Xixiang Huo12, Yingchun Zeng12, Yana Zhou5,6, Qing Zhang5,6, Jia Ke5,6,XiXu5,6, Wei Ni5,6, Zuoyu Shao5,6, Jingzhi Wang5,6, Panhong Liu13, Zilong Li 13, Yan Jin14, Fang Zheng15, Fang Wang9, Lei Liu9, Wending Li4,11, Kang Liu4,11, Rong Peng4,11, Xuedan Xu4,11, Yuhui Lin4,11, Hui Gao4,11, Limei Shi4,11, Ziyue Geng4,11, Xuanwen Mu4,11, Yu Yan3,4, Kai Wang3,4, Degang Wu3,4, Xingjie Hao3,4, Shanshan Cheng3,4, Gaokun Qiu4,11, Huan Guo4,11, Kezhen Li 1,2, ✉ ✉ ✉ Gang Chen1,2, Ziyong Sun2,10, Xihong Lin16,17,18, Xin Jin 19,21 , Feng Wang2,10,21 , Chaoyang Sun 1,2,21 & ✉ Chaolong Wang 2,3,4,21 1234567890():,; COVID-19 has caused numerous infections with diverse clinical symptoms. To identify human genetic variants contributing to the clinical development of COVID-19, we genotyped 1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667) patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced ancestry-matched population controls, and tested genome-wide association on 1072 severe cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with summary statistics of 3199 hospitalized cases and 897,488 population controls from the COVID-19 Host Genetics Initiative.
    [Show full text]
  • An RNA-Seq-Based Resource for Pain and Sensory Neuroscience Research
    bioRxiv preprint doi: https://doi.org/10.1101/165431; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research Short Title: Human and mouse DRG comparative transcriptomics Pradipta Ray 1, 2 #, Andrew Torck 1 , Lilyana Quigley 1, Andi Wangzhou 1, Matthew Neiman 1, Chandranshu Rao 1, Tiffany Lam 1, Ji-Young Kim 1, Tae Hoon Kim 2, Michael Q. Zhang 2, Gregory Dussor 1 and Theodore J. Price 1, # 1 The University of Texas at Dallas, School of Behavioral and Brain Sciences 2 The University of Texas at Dallas, Department of Biological Sciences # Corresponding authors Theodore J Price Pradipta Ray School of Behavioral and Brain Sciences School of Behavioral and Brain Sciences The University of Texas at Dallas The University of Texas at Dallas BSB 14.102G BSB 10.608 800 W Campbell Rd 800 W Campbell Rd Richardson TX 75080 Richardson TX 75080 972-883-4311 972-883-7262 [email protected] [email protected] Number of pages: 27 Number of figures: 9 Number of tables: 8 Supplementary Figures: 4 Supplementary Files: 6 Word count: Abstract = 219; Introduction = 457; Discussion = 1094 Conflict of interest: The authors declare no conflicts of interest Patient anonymity and informed consent: Informed consent for human tissue sources were obtained by Anabios, Inc. (San Diego, CA). Human studies: This work was approved by The University of Texas at Dallas Institutional Review Board (MR 15-237).
    [Show full text]